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The coupling between molecular reorientation and translational displace- 
ment is studied in a fluid of rough spheres. The correlation functions 
frequently encountered in thermal neutron scattering and laser light scattering 
are computed using a binary collision approximation. These are compared 
with the corresponding uncoupled results. In the diffusion limit coupled 
and uncoupled diffusion coefficients are found. The Hubbard relation is 
generalized. The maximum deviation between the coupled and uncoupled 
results occur for wavenumbers commonly found in thermal neutron scattering. 
The ratio of uncoupled and coupled correlation times displays regions where 
translation-rotation coupling is clearly important. In these regions there are 
important differences in the computed coupled and uncoupled correlation 
functions. 

1. INTRODUCTION 

Spectroscopic techniques rarely if ever determine the pure reorientational 
correlation functions [1] 

C,(t) - (P,(u(O). u(t))), (1.t) 

where Pl(x) is the Legendre polynomial of order l and u is a unit vector embedded 
in a molecule. Instead, the correlation functions [2] 

Ct(q, t) - (Pl (u( t ) .  u(0)) exp [iq. At(t)])  (1.2) 

are determined where Ar( t )= r ( t ) - r ( 0 )  is the displacement of a molecule in 
the time t and q is the wave vector defining the scattering between the probing 
beam and the molecules of the fluid. 

A good example of where such correlation functions arise is that of incoherent 
thermal neutron scattering [2]. Such functions also arise in connection with 
dipolar absorption, and Raman scattering processes [1, 3]. In these latter cases 
q is often small enough that the phase factor exp [iq. At(t)] is ignored. In 
neutron scattering [3] and light scattering [4] it is often assumed, on the other 
hand, that there is no coupling between the rotational and translational motions 
so that equation (1.2) becomes 

Ct(q, t ) ~  Cl(t)Fs( q, t), (1.3) 

where Cl(t ) is given by equation (1.1), and 

Fs(q, t ) =  (exp [iq. At(t)])  (1.4) 

is the frequently encountered Van Hove self-intermediate scattering function 
[5] which describes the self-translational motion of the molecules. 

M.P. 2 n 
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In this paper we study the orientational relaxation of a fluid of rough spherical 
molecules. The  three correlation functions Cl(t), Ct(q, t) and Fs(q, t) are 
calculated using a simple approximation recently introduced by Chandler in a 
different connection [6]. Although this approximation is not expected to give 
quantitatively accurate correlation functions [7], it is expected to provide a 
t rustworthy picture of the coupling between translational and rotational motion. 

In this paper the model of rough spheres is generalized and is studied as a 
function of a slip parameter A. When A=0 the spheres are perfectly smooth, 
whereas when A= 1 they are perfectly rough. For 0 <  A< 1, the collisions 
betWeen the spheres are less efficient transmitters of angular velocity. It is 
found that the coupling between rotations and translations is a very sensitive 
function of A such that the coupling increases as A decreases. Even in the limit 
in which Cl(t), and Fs(q, t) are adequately described by rotational and transla- 
tional diffusion equations, there are values of the parameters for which Cl(q, t) 
is not represented by equation (1.3). 

Although the calculations performed here are for classical systems, the 
approach is easily generalized to quantum-mechanical  systems. In addition 
the functions 

C,,~(q, t) = (Y,, ,*(u(t))  Y,,~(u(0)) exp ( iq .  Ar) )  (1.5) 

are also easily computed.  

2. THEORY 

It is useful to develop the theory in terms of irreducible tensorial sets [8]. 
To  this end define the irreducible tensorial set of rank l : 

cxm(q) = Y,(u) exp ( iq.  r), (2.1) 

where u is a unit vector rigidly embedded in the sphere and r is the position of 
the centre of mass of the sphere. Yz(u) is an irreducible tensorial set consisting 
of the 2 /+  1 spherical harmonics {Yt,m(u)}. In addition it should be recalled 
that the tensor dot product  (9 is defined t such that Y t (u l )QYz(%)=  Pt(ul �9 U~), 
where Pl(x) is a Legendre polynomial of rank l. 

From this it is clear that equation (1.3) can also be written as 

C,(q, t )--  ((exp iLtm(O(q))Qa(')(q)) (2.2) 

where L is the Liouville operator. 
The  aim of this paper is to compute these correlation functions for a rough 

sphere fluid. 
In Appendices A and B it is shown that in the independent binary collision 

t In particular 
4~r +/ 

Yz(uz) �9 Yz(uD - 21 + 1 m=~_l Yzrn(Ux) Yzm*(u2). 

Application of the spherical harmonic addition theorem then gives Pz(u] . u2). 
J; The Liouvillian, L, is the generator of the motion in phase space. Its properties for 

hard and rough spheres are discussed in references [6] and [7] and the references cited 
therein, particularly to papers by Zwanzig, and Dorfman and Cohen. 
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approximation the rough sphere fluid is characterized by the following para- 
meters : 

1 (16mkT)Xl~ = - -  ng~2~(a)a 2, (2.3 a) 
T c 

41 
K _= (2.3 b) 

ma2' 

i.e. 

--=1 _~((I+A)K+I) 1 
% K + 1 r c 

7; = -  7 7 i  ,-;' 

(2.3 c) 

(2.3 d) 

% (1 + A ) x + l  
% A ' (2.3 e) 

where r e is the mean free time, m is the mass, n is the number  density, a is the 
sphere diameter, g(=)(a) is the contact pair correlation function [9]t, I is the 
moment  of inertia, K is the loading parameter, A is the coefficient of slip and % 
and % are respectively the linear and angular velocity correlation times. 

It  should be noted that % and % are very sensitive to the values of sc and h. 
K Specifies the mass distribution in the sphere and takes the values O, -~ and 
respectively when the mass is distributed entirely in the centre, uniformly, or 
entirely on the surface of the sphere. The  coefficient of slip varies between 
a=O for perfectly smooth spheres to A= 1 for perfectly rough spheres. It is 
important  to observe that %/% is a very strong function of A and a weak function 
of K. Mixtures are treated in Appendix B. 

It  is useful to express the time in units of the free rotational tumbling time 
( I / kT)  1t2. The  above parameters then become 

( I ~ 112 1" (2.4) -- ( 1 ~  1'2 1, /3~ \ ~ j  % _ {  I "~ ~ '2 1, fl = \_ff  T j r~ = - .  

To proceed we define the generalized scalar product  of two tensorial sets 
ACt) and B cz~ as 

(Am, Bin)= <A<Z)| (2.5) 

where ( . . . >  denotes an ensemble average. Then  we note that 

C,(q, t ) =  ((exp (iLt)am(q)),  am(q)).  (2.6) 

Clearly the correlation functions introduced in equations (1.2) and (1.1) are 
respectively, 

F~(q, t ) =  Co(q, t), (2.7) 

Ct(t ) = lim Cl( q, t). (2.8) 
q-+0 

The contact pair correlation function is well approximated by 

g(~) = (2 - n)[20 - n)q -1, 
where ~ = ~/2~rt5/6 with t~ being the reduced number density. This was first recognized 
by N. F. Carnahan and K. E. Starling. 

2B2 
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This definition of the scalar product can be used in conjunction with the 
Zwanzig-Mori formalism [101I- to derive the equation 

OCt 
~t (q' t) : - i dt Kt(q, r)C/(q, t -  r) (2.9) 

0 

where Kt(t ) is the memory function 

Kl(q, t )=(exp (JOLt)am(q), o~m(q)), (2.10) 

where Q and P are projection operators 

0 = l - P ,  (2.11 a) 

p = ( . . . ,  am(q).)=lt)(q). (2.11 b) 

act) is the instantaneous rate of change of =cz~ which can be expressed as [11] 

~')(q) = i to .  i~tl)(q) + / q .  ve,(l)(q), (2.12) 

where to and v are respectively the angular and linear velocity of the sphere and 
where ~ is the dimensionless angular momentum operator (generator of the 
rotation) of the sphere. 

It is useful to evaluate the quantity (~m(q), 0~cZ~(q)). This is readily accom- 
plished by noting that ] is hermitian and v and to are statistically independent. 
It follows from this that (see Appendix A) 

(8(1)(q), d(g)(q)) = ~(l(l+ 1 )(oo 2) + q=(v2)). (2.13) 

To proceed we adopt an approximation first proposed by Chandler in a 
different context [6]. This approximation includes all sequences of independent 
binary collisions in which any two spheres collide with each other 0nly once. 
Thus  back-scattering events are not treated properly [12]:~. Nevertheless, this 
approximation yields results consistent with the Chapman-Enskog solution of 
the Enskog equation. We therefore call this the independent binary collision 
approximation (IBCA). Thus, applying the IBCA we find that K~(q, t) of 
equation (2.10) can be expressed in terms of Kt(~ t), the memory function 
corresponding to Cl(~ t) of an ideal gas ; that is 

Ks( Q, r) = K,r176 Q, r) exp ( -/3,(Q)r),  (2.14) 

where the time r is in units of (I/kT) 112, the dimensionless wavenumber 0 is 

02 - 4 (W)2 (2" 15 ) 

and the relaxation rate ill(0) is (see Appendix B) 

( I ( I + I ) + ( I + A ) K + I  ) X  02 

/~,(0) = fi~ 1 ( 1 + 1 ) + 0  2 . (2.16) 

t See, in particular, the didactic presentation given in reference [4]. 
A renormalizable theory would be required to account for the back-scattering events. 

See, for example, the excellent didactic treatment given by Yip and Mazenko. 
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The memory function Kt(~ r) is given by 

~Ct(O) 
(Q'  - I Kt(~ 

o 
(2.17) 

where Ct(~ ( O, r) is the translation-rotation correlation function of an ideal gas. 
Combining the Laplace transforms of equations (2.9), (2.14) and (2.17) 

then gives 

~{o)( O, p + fit(Q)) (2.18) 
•t( O, p) - 1 - fit( O)Ot(~ O, P + fit(Q))' 

where p is the  Laplace variable in units of (kT/I)  11~. 
Equation (2.18) is the primary equation of this section. In the remaining 

seCtions'we shall Laplace invert equation (2.18) and shall study Cl( Q, r) in the 
diffusion limit and in general. 

3. DIFFIJSION LIMIT 

In dense fluids Where the collision rate fie and concommitantly the relaxation 
rates fi,o and fiz(Q) are very large; it is often assumed for both Fs(q, t) and Ct(t), 
that the translational and rotational diffusion equations are valid [4, 13]. What 
would be the form of Ct(O, r) in the diffusion approximation? 

In Appendix C we show that should Fs( q, t) and Ct(t ) ever be validly des- 
cribed by the diffusion approximation, then 

Ct( Q, r) = exp ( - Dt(Q)r), (3.1) 

where the coupled translation-rotation diffusion coefficient is 

(l(l + 1) + Q2)2 
Dl(Q) = ( (1+  )K+I )" 

fi,o l ( l+ l )q  ~- . Q~ 

This should be compared with the uncoupled result : 

Ct(-nc) ( O, r) = exp ( - Dt(u"c)(Q)r), 

(3.2) 

(3.3) 

where the uncoupled diffusion coefficient is 

The ratio 

D(un~ +Dt(Q = O) 

1 (  l ( l + l ) q  ~ ) =fi,-~ ( I + ) , ) K + I  Q2 . (3.4) 

Dt(un~ 1+ ( ;~ ( I + A ) K + I  "~ Ql 2 
Dr(Q) = ( I + A ) K + I  + A 2)(1+Qt2)2 

(3.5) 

varies very strongly with A, ~: and Ql, where 

Qt----- ~/[l(l+ 1 ) ] = 2  ~/[l(i§ 1)]" 
(3.6) 
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This ratio or rather its inverse Dz(Q)/Dt(unc)(Q) is plotted versus Q for 
K = 0.4 and for several values of A in figure 1 (a). It should be noted that Dz(Q) 
deviates maximally from Dt(une)(Q ) when Qzg 1 and this deviation grows 
dramatically as A-+0. In fact the maximum value of the ratio is 

(D{ ~ne') ( A ( I + A ) K + I )  
- -  = � 8 9  ( I + A ) K + I  t- . ( 3 . 7 )  \ Dt /max A 

Equations (3.5) and (3.7) can be also expressed as 

vt(unc'(Q) 1 + ( r ~ + 5 - 2 ~  Q2 
Dr(Q) = ,,% r~. / ( l+Q2)= '  (3.8 a) 

(D"In~ [(%)+(~"'~] .  (3.8 b) 
/m.x Z x-o,/J 

% is always greater than r,.. The  larger the coefficient of slip, the greater 
%/r c. From this it follows that the greater the difference between % and r,, 
the more likely will we see strong coupling between the translation and rotation 
in the diffusion limit. This difference increases as A decreases. In addition 
the maximum deviation occurs for Q~_~ 1 but the deviation persists as Qt varies 
over a decade. Thus  we should look at 

~1 /(l(l+ 1____~)~ (3.9) 
q ~ u  K /" 

Wavenumbers of this magnitude are attainable in neutron scattering [15]. 

4. GENERALIZED HUBBARD RELATION 

The correlation time ~'t(Q) of the coupled correlation function CI(Q, r) is 
defined as 

~2 
~-t(Q)= J d r  Ct(Q , 1-). (4.1) 

0 

This correlation time is a strong function of Q and of (%/rv). Combining 
equations (4.1) and (2.18) gives the explicit form 

~'t(Q) = 1 - f l (Q)Ct t~  fz(Q))' (4.2) 

where Cl(~ P) is given in equation (2.18). Equation (4.2) shows that 
-rt(Q) is a function of ft(Q) and Q. In the limit of large Bit(Q) it is not very 
difficult to show that (see Appendix C) 

1 
rt(Q), r~.~o(Q): l(l+ l)+Q ~, (4.3) 

where r,;o~(Q)=--ft-l(Q) is the coupled 'velocity correlation time '. This is a 
generalization of the Hubbard relation [14]. It shows that there is an inverse 
relation between the twi relaxation times ~'t(Q) and r~,~(Q) such that the smaller 
r,,,o(Q) the larger ~'t(Q). Equation (4.3) only results from the high Bit(Q) l imit;  
that is, in the diffusion limit. 
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The correlation time for the uncoupled function equation (1.3), is 

= I Fs(Q, 
0 

(4.4) 

This time is a function of fll(Q = 0) and ri0(Q), and also varies explicitly with Q. 
To locate where we expect the largest effect of coupling to occur we plot the 

ratio rl(O)/rl{Un~'~((s in figure 1 (b-c) as a function of Q for several values of K 
and A and fl~ where fie= ~ fl~. It is clear from these curves that the effects of 
translation-rotation coupling are largest for small values of the slip parameter A. 
Physically, this reflects the need of a ' nearly smooth ' sphere to translate further 
than a ' rough ' one in order to suffer enough collisions to undergo reorientation. 
The figures also show that the coupled functions relax faster than the uncoupled 
functions for small values of fi~ (low collision rates) and slower than the un- 
coupled functions for large fi~. (high collision rates). The transition between 
these two cases occurs roughly for rio in the neighb0urhood of 'fi~ = 7. 

To demonstrate the possible observable effects of translation-rotation 
coupling we have numerically computed coupled and uncOupled power spectra, 
It(oJ), where 

1 S dr C,(Q, r) exp (-i~or) (4.5) It(~ = ~/2-----~ _ 

in two cases where the ratios of coupled and uncoupled correlation times show 
large deviations from unity. These are displayed in figures 2 (a) and (b). We 
note in passing that even larger effects may be possible for mixtures (see Appendix 
B) as there is a greater range of mechanical parameters in that case. 

5. CONCLUSION 

It is clear from the foregoing that there are significant differences between 
the coupled and uncoupled correlation functions for values of q often probed in 
neutron-scattering experiments. The larger the separation in the time scales 
characterizing the linear and angular momentum decays, the larger will be the 
differences between the coupled and uncoupled correlation functions. The 
differences are most easily perceived in connection with dense fluids where the 
coupled diffusion approximation might well apply, and where we have derived 
explicit results for the coupled diffusion coefficient (cf. equations (3.2), (3.5), 
(3.8). 

This work should serve to point out the danger in analysing thermal neutron- 
scattering data according to the uncoupled approximation. 

The binary collision model used here is easily generalized to quantum 
rotors and may be very useful in the discussion of Dicke narrowing of spectral 
lines in dilute gases. 

It is important to note that this paper is based on the rough sphere model. 
Real molecules, unlike rough spheres, sweep out a volume larger than the 
molecular volume when they rotate. Thus, in dense fluids volume fluctuations 
must occur if these molecules are to rotate in certain directions. This should 
lead to a much stronger coupling between rotational and translational motion in 
real molecular fluids than in rough sphere fluids. Thus, by establishing the 
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Figure 2. The power spectrum Ii(oJ) (cf. equation (4.5)) of the correlation functions 
CI(Q, r) and Cl(une)(Q, r) is plotted versus the dimensionless frequency co (a) for 
A=0"I, K=0"4, Q = 0 ' I ,  and 13e=0"5 and (b) for A=0.5, K=0.4, Q = l ' 5 ,  and fie=5. 

importance of coupling in the rough sphere fluid, it becomes all the more obvious 
that these effects should be heeded in real molecular fluids. 

We are grateful to Dr. Jon S. Gethner for making available to us his computer 
code for calculation of the error function for complex values of its argument. 

APPENDIX A 

The binary collision approximation for neat fluids and mixtures 

The parameter fit(Q) of equation (2.14) is given in the Chandler [6] approxi- 
mation by 

( I '~112 (To'.'(t), ~(t,) 
f i t ( Q )  = 

where dt (t) is the instantaneous rate of change of a (t~. 
collision operator 

7"= E T.,j 
i>j 

(A 1) 

T is the total binary 

(A 2) 
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and T;j. is the binary collision operator for collisions between particles i and j 
which only has an effect when acting on dynamical properties that depend on 
either the linear velocity or angular velocity of particle i or j .  The property 
~(t) in equation (2.12) refers to one particle--say particle labelled 1, so that 

(T~I( / ) ,  ~1(/)) = (N1 - 1)(T12(11)~1 (r), dl(l))  + N2(T12(12)dl (l), 51(l)), (A 3) 

where T12(11) corresponds to a collision between two spheres labelled 1 and 2 
both of the same species, whereas T12 (12) corresponds to two spheres of different 
species. 

The quantities (TOil(Z) , Oll (1)) must be further simplified. First we note 
from the explicit form of ~1(1)(q) given by equation (2.12) that 

hl(t)(q) = (iq. u ~- itOl" il)al(~)(q), (A 4) 

where i I is the generator of the rotation. This is none other than the dimension- 
less angular momentum operator of quantum mechanics. Now ll=l(l)(q) is a 
function of orientation and position but not of v 1 or ~1, meaning that in the 
averaging procedure it can be decoupled from the to I and v 1 averages. In 
addition in an equilibrium ensemble u and to 1 are not correlated. Thus 

(~1 ( / ) , d l  (/)) = <(q. u t- <(0) 1 �9 11(11 (/)) @(0)  1 �9 i1r (A 5) 

In cartesian components 

__ 1 / V  2 \~  <Vla'Ulfl> = <Vla2>~afl-- 3 \  1 / aft, (A 6a) 

_ 1/oa 2\8 (A 6b) <(DlaOJlfl> -- 3", 1 / aft" 

Then equation (A 5) becomes 

(&l(l), dh(l))=�89 <j~=l(lljOtl(ll(q))@(lljOt(!)(q)) >. (A7) 

The quantity eyl(l)(q)@lXl(tl(q)=Pt(u . U)= 1 is a scalar quantity; that is, it is 
invariant to a rotation of the system. This means that it is unchanged when 
acted upon by the generator of the rotation 

/1]2(1~1(')(q) @ ~l(1)(q))  = 0. (A 8) 

Applying I1~ serially then gives the relation 

(Ilj2~l( l)(q))  @ CXl(I)(q ) + 0tl(1)(q ) @(Ilj21Xl(l)(q)) 

= 2(Iljlxl(t)(q)) @(Ili~Xl(t)(q)). (A 9) 

Now summing over j we see that the right-hand product can be identified with 
a term in brackets in equation (A 7). Since ~. I i 2 = i  2 is the square of the square 

J 
of the total angular momentum and the tensorial set el(/)(q) transforms like the 
spherical harmonics it follows that 

i~al(t)=l(l+ 1)al  (t~. (A 10) 

The left-hand side of equation (A 9) is then 21(l+ 1). 
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Combining this with equation (A 7) then gives 

(~1(~), ~1(i)) = �89 + I(l+ 1)(%2))  

as was asserted in equation (2.13). In like manner we find that 

(Tdl(I)(q), &l(/)(q)) = l(q2(v 1 . TVl) + l(l+ 1)(r Teal). 

Equation (A 1) then becomes 

( I "~112 (q2(vl .  TVl),+I(I + 1)(Oll . TtOl)" ~ 

It remains to compute the quantities @% . T12oal) and (v 1 . T12v1). 
has already computed these quantities for the perfectly rough sphere. 
we would like to generalize this model to arbitrary roughness. 
Appendix B. 

(A 11) 

(A 12) 

(A 13) 

Chandler 
Actually 

This is done in 

APPENDIX B 

The rough sphere model with arbitrary roughness for our neat fluids and mixtures 
It is useful to generalize the rough sphere model to arbitrary roughness. 

This we do by introducing a coefficient of slip A into the collision dynamics of 
the rough sphere fluid. A is chosen such that when ~ = 1 the spheres are com- 
pletely rough. Taking 0 < ~ < 1 gives intermediate cases. 

In the usual rough sphere model [15] the relative velocity of the points of 
contact on the surfaces of the colliding spheres, 

g21 = v2 - v l  - �89162  + (*ltOl) (B  1 ) 

is completely reversed by the collision that is 

g21' = - g21 (B  2 )  

In equation (B 1) v 2 - v  1-v21 is the relative velocity of the centres of mass, 
(.1 and (*2 are the diameters of the two spheres and n is a unit vector pointing 
from the centre of sphere 2 to sphere 1 at contact, i.e. the direction of the line of 
centres. Primed quantities indicate values of properties after collision and 
unprimed quantities indicate the values before collision. The dynamical law 
embodied in equation (B 2) gives rise to no slip whatsoever of the surfaces past 
each other. 

For the purposes of generalizing the model, we imagine that the surface of 
each sphere of type 1 is covered by domains of roughness between which there 
are domains of perfect smoothness. These domains are randomly distributed 
and are such that the fraction of surface area that is rough will be denoted % 
whereas the fraction that is smooth is ( 1 - % ) .  Contact between the rough 
domain of one sphere and the smooth domain of another must give rise to a 
perfect slippery collision whereas collision between two rough domains gives 
rise to a perfect rough collision. The probability p of a rough collision is 
therefore equal to %% = A21 and the probability of a smooth collision is equal to 
q = 1 - %% -- 1 - A2~. 
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To generalize, we resolve gsl into a part parallel to n and a part perpendicular 
to n labelled g ~ and g j,  respectively, then in a collision we take 

g , '  = - g i,, (B  3a) 

g i  : (1 - 2bsl)gi, (B 3b) 

g' = g N' + g •  = - g ~ + (1 - 2bsl)g• (B 3c) 

where b21 = 1 for a ' rough contact ' and bsl= 0 for a smooth contact. Now it is 
clear from the foregoing that when b m is averaged over all collisions between 
a particle of type 1 with that of a particle of type 2 

<bsl ) = A21= o~1o(2 . (B 3d) 

Following Chapman and Cowling we t h e n  find that 

2Ms 
C1' : Cl A ((% + (1 - b21)K2K1)rl(rl , g21) -j- b21R'l/<2921) (B 4a) 

(1r162 -~- if0) 

2M1 
C2' = Cs ((,~o + (1 - bsl)JC2K1)n. (n .  g21) + bslJrl~cSgsl) (B 4b) 

4MsKs 
COl' =CO1 bs](n x g21), (B 4c) 

4MIK1 
COs' : COs b21(n x g21), (B 4d) 

where C 1' and C s' are, respectivelY, the linear velocities of the points of contact 
and CO1' and CO2' are the angular velocities of the two spheres after collision, and 

m 1 411 
i l  m I -t- m e ml0,1 s ' 

m2 41s 
M2 = - -  ; •2 = - -  " 

i~11 -~ i~/2 m20"22 ' 

K o --= MIK 1 + M2K2, 

where m 1 and m s are the masses of the two spheres. Equation (B 3c) and 
(B 4a-d)  completely define the collision�9 

A formula due to Zwanzig [16] that is suitably generalized to the excluded 
volume problem by the insertion of the contact pair correlation function is 

(As T12'SA1) = g((~]s)CrlS2 �9 4V ( ~ d~21%l]As " ( A I ' -  A 1 ) > '  (B 5)  

where the averageJ" is over the Maxwell distribution of unprimed linear and 
angular velocities, A I ' - A  1 is the change in the property A 1 of particle 1 on 
collision with particle 2 and dr2 is the solid angle specifying the orientation of ft. 

Here (O.1 -1- 0,2) 

O'12 2 

t The  average is also over all orientations of the spheres, so that wherever b21 appears 
in the foregoing dynamics it is replaced by its average value, A21 (cf�9 equation (B 3d)) in 
equation (B 6). 
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is the distance of closest approach of the spheres, and g(a12 ) is the contact pair 
correlation function. 

Combining equations (A 3), (B 1), (B 4a-d), and (B 5) gives the following 
formulae : 

1 = ( N I - 1 ) ( V  1 . T12(11)V1> ( l + A n ) K l + l  
= Pn ,  (B 6a) 

r,:(1, 1) (V12) KI-~- 1 

1 N2(V,  , T1212V1) (KO 2V ( 1 -]- .~21)K1K2 ~ 
%(1, 2) (VI 2) =4M2 2 Pa2, (B 6b) 

\ KIK2 -~- frO // 

1 _(N~- 1)(tO 1 . T12(11)to1) '~11 Pll, (B 6c) 
%(1, 1) (o.J12) KI"~- 1 

1 _ N 2 ( t O l .  Tx21=~l>_2M2~2A=i P,2, (B 6d) 
%(1, 2) (%2> K1K2 + K ~ 

where (1/rv)(1, j )  and (1/%)(1, j )  are respectively the contributions to the 
linear velocity and angular velocity relaxation rates of particle 1 due to collisions 
with particles of type j .  The quantities P~a are defined as 

2= (8kBT~ 1!2 
P~ = ~ n~g(%B)a~2 . (B 7) 

\ "*r/*~.s / 
These quantities are equal to -~ multiplied by the collision frequency for collisions 
between a particle of type a and particles of type/5. These quantities depend 
on the concentration through n a and g(%a), g(%a) has been computed by 
Lebowitz [17] from the Percus-Yevick approximation. Equations (B 6a-d) 
contain the two parameters k n and a12 which can be different since collisions 
between different pairs of particles may be more or less sticky. 

Thus the parameter fit(Q) appearing in equation (2.14) for a mixture is 

( I <,,,,2> o5 <v,2>) 1(l+11 r~77~+~ ~ / '  (Ba) 
f3 ,( Q ) \ k T / ( 7(~i)TL~,b~q~<777 J 

where 

1 1 1 
%(1)-%(1, 1) + %(1, 2)' (B 9a) 

1 1 1 
§ (B 9b) ~(1) ~(1,1) ~j1,2)' 

where the various terms in equation (B 9) a~'e given in equation (B 6). 
In the case of a pure fluid 

1 1 ( 1 +  k )x+  1 
Fll, %(1) % •+1 

1 1 A 
r~(1) r~ K+I  I 'n '  

(B 10a) 

(B 10b) 
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% _ ( l + A ) • + l  

This quantity increases without bound as A-~0. 

fi,(Q)=3., l(l+ l)+Q2 , 

where 

(B 10c) 

Equation (B 8) then reduces to 

(B 11) 

K(qa)2 (B lZa) 
Q~-  4 

is the dimensionless wavenumber and 

( I x~ 112 1 (B 12b) 
- \ / ,2; 

is the dimensionless angular velocity relaxation rate. Equation (B 11) is 
identical to equation (2.16). 

APPENDIX C 

The coupled diffusion equation and the generalized Hubbard relation 
The free particle correlation function is [7] 

(1  , ) 
Ct(~ r ) =  2 l +  1 ~_, exp (i(moJ+Q%)r) (C 1) 

r / t =  

where oJ, % and r are in reduced units and (~o z) = 3, (vz 2) = 1. The Laplace 
transform required in equation (2.18) is thus 

1 1 1 \ .  
O'(~ P + f i ' ) =  2l+1 ,,,~_, p+flt- i(mco+%Q)/ (C 2) 

If flz >>l, Q this can be expanded in powers of (p + fil)-l. To second order 

where we have used 

O{~ - 1~ (l(l+l)+Q~) (C3) 
P + 3, (P + ~t) ~ 

1 t 1 / l ( l +  1) 
2l+1 ~ 1--1" ~ m ~-  m=-t ' 21+1 3 

The memory function Kl (Q , r) is related to the time correlation function 
Cz(Q , r) through the memory function equation (cf. equation (2.9)). Laplace 
transformation then gives 

1 
O,( Q, P)-p+ K,(Q, p)" (C 4) 
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Comparison of this with equation (2.18) then gives a formula for the memory 
function 

R, (Q,  p ) =  1 - (p + fl,)O{~ P+fil) (C 5) 
O/~ p+ 3,) 

Substitution of equation (C 3) into equation (C 5) and retaining the term that 
is lowest order in (p + fit) -a gives 

l(l+ 1) + 92 
R , ( Q ,  p )  = P + fl ,(Q) . (c 6) 

The orientational correlation time rt(Q) is 

rt(Q) = lim C,(Q, p). (C 7) 
p~O 

Substitution of equations (C 4) and (C 6) into equation (C 7) then gives 

1 
r,(Q)r,,~(Q) - l(l + 1 ) + QV (c  8) 

where we have defined the coupled velocity correlation time as 

%o(Q) - (fi,(Q))-l. (c  9) 

This is the analogue of the Hubbard relation in the theory of rotational re- 
orientation [14]. 

Next we solve the memory function equation subject to equation (C 6) : 

P + fl' (C 10) 
O,(Q, p) p~+f,p+(l(l+l)+Q2). 

Inverse Laplace transformation gives 

(p+ + fi,) exp (p+r) - (p_ + fit) exp (p_z) C,(Q, r) (p+_p_) , (C 11) 

where 

p+=-�89 23z 1 - 4 \  

Now because fit >> l, Q, it follows that these roots can be well approximated by 

I -D(Q), 
p+ = ( c  13) 

[ - 3t(Q) + D~(Q), 
where we define 

l(/+ 1 ) + Q  ~ 
D,(Q) - fi~(Q) (C 14) 

This is the coupled rotation-translation diffusion coefficient of equation (3.2). 
Substituting these roots into equation (C 11) gives 

r ) =  (3~-D~) exp ( -D~z)-Dz(Q) exp ( - ( f l , -Dt ) z )  
CI(Q, (c 15) 

(fl ,-2Dz) 
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Because D t ~ fit, this consists of a very fast decay exp ( - ( f i z - D r ) r )  followed by 
a much slower decay exp ( - D t r  ) ; clearly then, for times ~ > fit -1, the correla- 
tion function decays as the simple exponential 

C t (Q,z  ) = exp ( - Dt(Q)r ). (C 16) 

This  is the simple diffusion result mentioned in equation (3.1) 
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