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A Monte Carlo study of structural and thermodynamic 
properties of water : dependence on the system size and on 

the boundary condit ionst  

by C. P A N G A L I ,  M. RAO and B. J. B E R N E  

Chemistry Depar tment ,  Columbia University, 
New York, N.Y. 10027, U.S.A. 

(Received 12 March 1979 ; revision received 26 September 1979) 

The structural and thermodynamic properties of water are studied using 
the force bias /Vlonte Carlo simulation. In particular for ST2 water, the 
effect of system size is examined with 27, 125 and 216 water molecules. The 
role played by the truncation of the intermolecular potential is analysed using 
two different truncations, the spherical cut-off and the cubic cut-off. Also a 
recent simulation with the Watts potential using Ewald summation by 
McDonald and Klein is compared with one employing the spherical cut-off. 
In all cases the angular correlation functions show a strong dependence on the 
type of boundary condition used, whereas the usual radial functions goo(r), 
goH(r) and grtH(r) do not depend much on the boundary conditions. Because 
of this dependence of angular correlations on the boundary conditions, care 
must be exercised in comparing simulation results from small systems to real 
experiments. 

1. INTRODUCTION 

Computer  simulation is now widely used to understand the structure and 
dynamics of not only simple classical fluids but  also of more complex liquids 
like water [I-19] .  Such studies involve the application of molecular dynamics 
( MD)  or Monte  Carlo (MC)  techniques to the study of systems containing a 
small number  of molecules interacting with a model potential. Th e  properties 
of the bulk fluid are mimicked by employing periodic boundary conditions to 
avoid surface effects. Further ,  the pairwise potential generally assumed in these 
studies is t runcated beyond a certain specified distance r~. to reduce the computa-  
tional expense. Recently it has been suggested that for liquid water [11, 16, 20] 
and also for dipolar hard sphere fluids [21, 22] the truncation scheme employed 
and the size of the periodic primary cell have an important  effect on the proper-  
ties of the system and that a detailed study is needed to obtain the thermodynamic  
limit. It was also shown that for systems with large dipole moments  the struc- 
ture was considerably per turbed by the type of truncation scheme employed. 
It has been suggested that when there are both dipolar and large quadrupole 
moments  the results might be less sensitive to boundary conditions [23]. In the 
case of water where the dipole moment  is quite large but  there is also a quadrupole 

t Supported by a grant from the National Foundation (NSF CHE 76~ and a grant 
from the National Institute of Health (NIH RO1 NS 12714-03). 
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662 C. Pangali et al. 

moment, such a study is essential before a meaningful comparison of the simula- 
tion results with experiments can be made. In this paper we present such a 
study of the effect of using different truncation schemes on the structure of 
water. 

Using the ST2 model potential for water, we first compare two different 
truncation schemes--namely, the spherical cut-off (SC) and the cubic cut-off 
(CC) methods. We restrict the comparison of the different truncation schemes 
in this paper largely to the differences in structures obtained for the simulated 
water. It is well known that truncation of the potential leads to errors in the 
energy and other thermodynamic quantities, though tail corrections can be 
applied to compensate for these errors. Our studies show that while the differ- 
ences in the radial structure between CC and SC are small, the angular cor- 
relations display a more dramatic dependence on the truncation scheme employed 
in the simulation. Furthermore, the range, re, of the cut-off in the SC scheme 
also plays an important role in determining the angular correlations. These 
observations raise an important question regarding the size of the system used for 
the simulation : how large must the system be so that the structure and other 
measurable properties are weak functions of the truncation scheme ? 

Given a generous allowance of computer time, it is possible to simulate a 
system with long range forces without invoking any truncation. This method 
relies on the Ewald technique for computing lattice sums. Although it is clear 
that Ewald summation when applied to the simulation of small systems may 
impose extra correlations on the system, due to the periodicity of the primary 
cell, the technique has been used with considerable success in the study of 
plasmas. A simulation based on this technique was recently reported [7] for the 
Watts [23] model for water. In this paper we present a detailed comparison of 
liquid properties obtained from the Watts model of water and ST2 water, both 
using spherical truncation. We also present a comparison of the Watts model 
with spherical cut-off with results using Ewald summation as reported in [7]. 

In w 2 we define the various truncation schemes and stress the important 
features in applying them to molecular fluids. The results are presented and 
discussed in w 3. Finally in w 4 we draw attention to the important conclusions 
arising from this study. 

2. TRUNCATION SCHEMES 

We briefly discuss the various truncation schemes employed in our work. A 
detailed discussion is available in [24]. However, a few points related to non- 
central force models need a comment. 

(a) Spherical cut -o f f :  This is the most commonly used scheme in the 
simulation of fluids. In a Monte Carlo simulation the pair interaction 
potential is set equal to zero if the oxygen pair distance is larger than a cut-off 
distance r e. In a MD simulation the force between a pair of molecules is set equal 
to zero if the distance between them is larger than r c. Thus the potential used 
in MC is not the same as in MD unless the potential is shifted by an amount 
depending on the cut-off. In the case of spherically symmetric molecules this 
shift is just a constant and can be corrected easily to make both Monte Carlo and 
molecular dynamics give the same structure, thermodynamics and fluctuations. 
In this case ' tail corrections ' to the simulation results on small systems give the 
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pressure and energy [5, 27] in the thermodynamic limit. In the case of non- 
spherical molecules, the shift depends on their relative orientations, and for 
water can be quite large. A molecule which moves out of the sphere of influence 
of another molecule reorients, and then moves back into the sphere of influence 
of the same molecule will experience a discontinuous jump in energy. Thus 
the energy will not be conserved in a molecular dynamics simulation of non- 
spherical molecules, unlike the case with spherical molecules. Since many 
particles will be moving in and out of this sphere of influence with different 
orientations there will be fluctuations introduced in the system which depend 
strongly on the orientational correlations near the cut-off distance. The effect 
usually diminishes with increasing r e. In the case of ST2 water, for any particu- 
lar r e the potential energy of interaction of a pair of molecules separated by r e can 
can be either attractive or repulsive depending on their relative orientation. 
The larger re, the smaller the difference. Most of the thermodynamic properties 
depend on the two particle distribution function, p(l, 2) and the pair interaction 
potential, v(l, 2). If the short range part of p(l, 2) does not depend very much 
on the neglected tail of the interaction beyond re, then simple tail corrections 
can be made. However, in the case of water the short range pat:t of p(|, 2) 
depends on the value of r e used and also on the type of boundary condition em- 
ployed, as we shall show in this paper. 

(b) Cubic cut-off : The interaction potential is set equal to zero (or the force 
in the case of MD simulation) whenever one molecule crosses the surface of a 
cube with the other molecule at the centre. The orientation and dimension 
of this truncation cube are usually chosen to be the same as that of the primary 
cell. In the case of spherically symmetric molecules the potential has the 
periodicity of the primary cell, with the consequence that the particle crossing 
the surface does not experience any change in energy. This was originally 
called the minimum image convention [24]. However, in ST2 water, where the 
interaction depends on the relative orientation, the potential does not have the 
periodicity of the primary cell. Since there is no periodicity in angle space, 
whenever a molecule leaves the cube of influence, an image will enter the cube 
with a different relative orientation with respect to the central molecule (see 
figure 1). This again has the consequence that energy will not be conserved in 
a MD simulation. The potential can be made continuous by using a site-site 

b t 
a b 

Figure 1. The relative orientation of a particle labelled I with respect to another particle 2 
and its image 2'. 
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664 C. Pangali et al. 

cubic cut-off rather than a cut-off based on the centres of mass of the molecules. 
This has the advantage that in an MD simulation, energy will be strictly con- 
served. However, it has the unfortunate unphysical effect that the integrity of 
the long range electrostatic potential is destroyed. Our results show that this 
convention while conserving energy in a MD simulation leads to very different 
thermodynamic properties, structure and flhctuations compared to the spherical 
or the cubic cut-off. Because of the unphysical nature mentioned above we shall 
not discuss this cut-off. 

(c) Ewald summation : The fully replicated periodic cube is considered in the 
computation of the interaction potential. Thus all the particles and their 
images are included in the interaction potential. Though time consuming, this 
method is exact for the periodic model system considered. However, the real 
infinite system may not bear any resemblance to the small model system due to 
the extra correlations introduced by the periodicity, tn principle, Ewald sum- 
mation has the advantage that the size dependence can be extrapolated to study 
the thermodynamic limit. Also this method conserves energy in a MD simula- 
tion. 

For systems in which the dimensions of the primary cell are larger than the 
longest correlation length, and in which the potential cut-off is also larger than 
the correlation length the structure and the sampled distribution functions should 
be independent of the boundary conditions and the results should ,give thermo- 
dynamic limiting values. However, in the next section we show that for simu- 
lations of water involving of the order of a few hundred molecules the structure 
is quite sensitive to the type of boundary condition used. It is therefore im- 
portant to ask which boundary condition, if any, can be used to deduce the 
properties of macroscopic aqueous systems from small system computer simula- 
tions. 

3. RESULTS AND DISCUSSION 

3.1. The effect of cut-off radius on the liquid properties 

As noted in w 2 the most common truncation scheme is the spherical cut-off. 
This has been used in the development of the ST2 potential [4] and also in 
judging the suitability of the Clementi potential [13, 14, 15] in simulating the 
properties of liquid water. In this section we first describe the effect of changing 
the cut-off radius, re. Although one could, in principle, vary rc but keep the 
size of the system constant it is more economical to scale the size of the system 
with r~.. This procedure will yield the correct r,.-dependence of the liquid 
properties as long as the N-dependence is small or better still negligible. No N- 
dependence was observed for the BNS potential when r~. was left unchanged [11]. 
Three different systems are considered corresponding to r~= 1-5 u, 2"5 a and 
2.7 a (where ~-3"1 A). In order to ensure that the interaction between any 
pair of molecules is counted only once, it is necessary that : 

I'NV, 
t , p )  ' 

where N is the number of molecules in the system and p is the density, if 
p = 1 g cm -3, then three system sizes appropriate for the r~,s above are N =  27, 
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125 and 216. In the case of 27 and 125 molecule systems the cut-off lengths cor- 
respond to half the length of the pr imary cell. For the 216 molecule system, the 
cut-off length is the same as was used elsewhere [4, 25] ; that is, r c = 2.73 ~. A 
force bias Monte Carlo [25] simulation is used in which the random walk of the 
individual molecule is biased in the direction of the force and torque acting on the 
molecule. In all cases the translation and rotational step sizes are chosen to be 
Ar = 0-2 ~ and A0 = 0-898 rad. T h e  temperature  is set at 283 K. 

We now describe the main results. 

(i) The internal energy 

Some thermodynamic  properties for the systems considered are presented in 
table 1. The  potential energy per particle ( e )  is surprisingly independent  of the 
system size considered. (The  unit of energy is ~=0.3169 kJ tool-1.) A similar 
conclusion was reached by Beveridge et al. [26] using a Metropolis Monte  Carlo 
simulation of 64, 155, and 216 ST2  water molecules, while an N-dependence  was 
observed by Ladd [16] and Watts [11]. 

Table 1. Thermodynamic properties of ST2 water with spherical cut-off comparing the 
simulations using different system sizes. 

Number 
of 

particles Number (e) (~e 2) Cv 
in the Boundary of units of units of J mol -l 
system Potential condition passes c'l" ~2 K-1 n~t 

216 ST2 SC 10000 - 140-28 2.60 110-2 
125 ST2 SC 6000 - 139.92 3.25 86.9 
125 ST2 CC 4000 - 146-25 3.38 89.2 
27 ST2 SC I0000 - 140.22 23.61 121-8 

5-67 
5.58 
5.86 

t E = 0.3169 kJ mo1-1. ~ n is the number of nearest neighbours up t o  r = 1.13o 

The  fluctuations in the potential energy are better  understood by studying 
the probabili ty function p(e) which gives the frequency with which configurations 
occur with energy between e - ( A e / 2 )  and e+(Ae/2) .  These  functions for the 
three system sizes are shown in figure 2. T h e  width (3e~) 1/2 of p(e) is related to 
the heat capacity C v of the system (see [25] for a detailed discussion of these 
functions) 

NaN2 (Be 2) + 3R, (3.1) 
Co= R T  z 

where 

{3e 2) = (e  z)  - ( e )  ~. (3 .2)  

N A is the Avagadro number  and R is the gas constant. Clearly the smaller the 
system, the larger are the fluctuations. In our simulations it is observed that in 
order to sample all the fluctuations allowed by the partition function, the Monte  
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28.0 - 

24.0 

20.0 

O 16.0 
x 

E12o 

8.0 

4.0 

-%, 

t | N = 216 SC X N = 125 SC 
�9 N = 125 CC 
a N= 27SC 

I ~ : ~ I I 
-124 -128 -13~ -136 -140 -144 -148 -1,52 -I~ -160 -164 

POTENTIAL ENERGY, e,  PER PARTICLE IN UNITS OF E 

Figure 2. The normalized probability, p(e), of the configurational potential energy per  
particle for different system sizes. The open circles denote ST2 water with 216 
particles and a spherical cut-off. The crosses denotes the 125 particle system with 
spherical cut-off. The squares denote the 27 particle system with spherical cut-off. 

Carlo walk must be carried out to at least a certain number of passes t T = T c. For 
T > 7c the width of p(e) is independent of ~. But for ~ < %, the width increases 
with y. Therefore in order to obtain reliable information on the thermodynamics 
and fluctuations at least % passes must be used. Unfortunately % cannot be 
estimated a priori but can be approximately assessed by studying the variation 
of <Be 2) as a function of 7 (the number of passes). This point has been exten- 
sively studied in reference [25]. We also observe slow cycles in energy fluctua- 
tions whose amplitude increases with decreasing system size. This arises from 
the fact that only a small portion of the full fluctuations, p(e), is sampled in any 
small interval T. The specific heats are shown in table 1. The difference in 
specific heats between the 125 and 216 molecule systems is 21 per cent. Since 
the specific heat of the 125 molecule system changes only by 8 per cent from 
4000 passes to 6000 passes, the large difference between two system sizes may 
be real. The  27 molecule system has been equilibrated for 20 000 passes and 
another 10 000 passes are used to calculate the heat capacity. This may not be 
a long enough run for a reliable estimate of specific heat. One cannot over- 
emphasize the importance of lengthy runs for measuring the specific heat. 
Several authors in the past have obtained misleading results regarding fluctuations 
from very small runs [26]. 

To explore the (lack of) dependence of the average potential energy per 
particle, <e), on r~ let us define the function 

e(r)= j" p~(1, 2)v(1, 2) dl d2. (3.3) 
D(r) 

t A pass is defined as N attempted moves and each move involves both translation and 
rotation. 
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Monte Carlo study of structural and thermodynamic properties of water 667 

Here p~(1, 2) is the pair distribution function involving the six positions and six 
angles of the pair molecules, v(1, 2) is the ST2 pair potential and the domain 
D(r) is a sphere of radius r centred on molecule 1. The quantity e(r) is the 
interaction energy of molecule 1 with all water molecules lying within a sphere of 
radius r centred on molecule 1. Comparison of the curves in figure 3 show that 
e(r) is a very sensitive function of the cut-off re, particularly in the region of the 
first neighbour shell, r ~< 1.5 ~. As we shall see later in this section, this is 
precisely the region where the angular correlations for the three systems are also 
very different. 

0.0 

-I0.0 

-30.0 

-50.0 

t -70.0 
err) 

-90.0 

-110.0 

-150.O 

icfN=27) re(N= 125) 

I 1,.o2,., 

e N = 216 $C 
X N = 125 $C 
�9 N =  t 2 5  CC 
Q N = 2 7  SC 

- I~.0 
I I I I I I I I 

0 2.0 3.0 4.0 5.0- 

v 

|.0 
r ( I N  U N I T S  O F  o-) 

Figure 3. The angular correlation function e(r) as a function of r. The symbols are the 
same as in figure 2. 

Interestingly, e(r) for all the curves converges to the same value e(rc) as 
r-+r  c. Note that e(rc) = <e). Since 2e(rc) is the total binding energy per particle, 
it is found that this quantity appears to be independent of the cut-off. Thus  
ST2 water, like dipolar hard sphere systems [21], has the property that when the 
cut-off is changed, the structure changes in such a way as to leave the binding 
energy unchanged. This  result is in contrast to the conclusions of Ladd [16] 
and of Watts [11]. Both of them found a strong dependence of e(re) upon r~, a 
result that we now believe is attributable to the small lengths of the runs employed 
for their larger systems. One aspect of figure (3) that may be confusing to the 
reader concerns the dependence of e(r) on r >re. In these studies the liquid 
configurations were generated using a cut-off potential. Two options were open 
to us in computing the function e(r). In the first option, the truncated pair 
potential-- the same potential used in generating the walk--could be used in 
equation (3.3). Then  e(r) would vary strongly for r<r~, but would reach a 
plateau value around e(r~) and stay at this value for r>r  e since v(1, 2 ) = 0  for 
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668 C. Pangali et al. 

r > r c. This is entirely expected since molecules at a distance r > r e from another 
molecule do not interact with it. Strictly speaking, this is the only option con- 
sistent with the model. The  other option is to compute e(r) using the full 
(untruncated) ST2 potential albeit with configurations generated with a truncated 
potential. This  option is inconsistent with the hamihonian used in the simula- 
tion. The  function e(r) so calculated will agree with the previous e(r) for r ~<rc, 
but will vary with r for r > r e. This  variation will be largely due to multipolar 
forces, and should reflect the angular correlations at long range. Thus  differ- 
ences in e(r) for r > rc for different CUt-offs simply show differences in the angular 
correlations. For this reason we chose to compute e(r) using the second option. 

(ii) Hydrogen bonding 
In the previous paragraph we remarked that as the cut-off radius is decreased, 

the nearest neighbours appear to become more tightly bound to the central 
molecule. We therefore expect stronger hydrogen bonds for the system with the 
smaller r o, other factors being equal. 

5-  

4-  

5- 

2" 

I -  

O" 

5 

4 -  

5" 

2" 

I" 

0 

5" 

4- 

5" 

2 

I '  

O" 

5 

4 

3" 

2" 

l 

O 

V = - 2 8 E  

N=27SC 

N = 125 SC 

N = 216SC 

3 

N=125CC 

+ - + - + - + - + - + - ~  

2 4 6 

' = -  40,E V = - 5 2 ~  

4 

5 

2 

5 

3 

2 4 6 

3 

2 

2 

2 4 6 

= - 6 4 ~  

L 
T 

1 

2 4 

Figure 4. Histograms showing the fraction of molecules .with given number of hydrogen 
bonds for four choices of V. 
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In order to get a quantitative feel for the increase in hydrogen bonding with 
decrease in the cut-off distance re, a bond energy analysis along the lines proposed 
by Rahman and Stillinger [5] is performed. A pair of molecules i and j is 
designated to be hydrogen bonded if the interaction energy Vi~ for the pair lies 
below a preassigned cut-off energy, V. In this way it is possible to determine 
NHB, the number of hydrogen-bonded interactions per molecule. Of course the 
distribution of NnB , p(NHB), depends on V, a very large choice of V results in 
very few bonds being classed as hydrogen bonds. Vfith four choices for V we 
find that the fraction of molecules with a large number of hydrogen bonds 
decreases with increasing r e (see figure 4). This trend is much more noticeable 
with larger values of V, i.e. V=  - 5 2  c or V=  - 6 4  E in figure 4. For example, 
with V = - 6 4 ~  the fraction of molecules with exactly three hydrogen bonds 
decreases by ~ 50 per cent in going from r e = 1.5 a to r e= 2-73 or. Thus as r~ is 
increased, the number and strength of the hydrogen-bonded interactions per 
molecule diminish. This is an important point because in the analysis of 
aqueous solutions one is often interested in the change in HB in the vicinity of the 
solute [29]. Our work demonstrates that such measurements could be qualita- 
tively different with different cut-offs. 

(iii) Structure in the liquid 

The radial distribution funct ions goo(r), go.(r) and gun(r) for the two 
systems N =  125 (shown in crosses) and N = 2 1 6  (shown in open circles) are 
compared in figures 5-7. These  two sets of curves for the two different size 
systems are identical within statistical errors. This might lead one to conclude 

3.C 

2,C 

goo(r) 

1.0 

tl �9 N - 2 1 6  SC 

x N* 1 2 5 S C  

�9 N �9 1 2 5  CC 

S 
I .,, I I [ 

1 .0 1.5 2 . 0  2 . 5  
r ( IN  UNITS OF o ' } - - -~  

Figure 5. Oxygen-oxygen  pair correlation funct ions of ST2 water  as a funct ion of r in 
units  of a. T h e  symbols  are the same as in figure 2. 
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]de 

$ 

�9 ~ :( 
~, 

�9 ~ 

o~ 

~ e N = 216 SC 

X N = 12.5 SC 

3 �9 N= 125 CC 
~ �9 

lg 

�9 $ 

I I I 
1.0 1.5 2 . 0  

r ( I N  UNITS OF o-) �9 

Figure  6. O x y g e n - h y d r o g e n  pair  corre la t ion func t ion  of S T 2  water.  T h e  symbols  are 
the  same as in  f igure 2. 

1 . 5  

QH.( r )  

1.C 

�9 N "  216 SC 

X N �9 125 SC 

�9 N = 125 CC 

0.5 
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r ( I N  UNITS O F o , ) - - - ~  
0 . 5  

Figure  7. H y d r o g e n - h y d r o g e n  pair  corre la t ion func t ion  of S T 2  water.  T h e  symbols  are 
the  same as in  f igure  2. 
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that the thermodynamic limit has been attained and one can use small systems 
to study the properties of water [17]. Unfortunately this conclusion does not 
hold when the orientational correlations are studied in detail. Even though the 
radial distributions are the same, there exist large differences in the orientational 
structure of the water molecules relative to one another. To study these cor- 
relations we define two functions ht(r ) and h2(r) as follows : 

f dl dZ 
hi(r) = D, (3.4) 

I re(l, 2) dl d2 ' 
D~ 

f p,(t, 2 ) ( ]0 , , .  �89 dl d2 
h2(r) = D, (3 .5 )  

f p (l, 2) al  a2 
Dt 

Here pz(1, 2), the pair distribution function, completely specifies the positions 
and relative orientation of the pair molecules, 1 and 2, v(l, 2) is the ST2 pair 
potential, ~i is the dipole moment vector of molecule i and di denotes a volume 
element of the coordinates of i. The domain D a is a shell of thickness Ar at a 
distance r from molecule 1. ha(r ) is the dipolar correlation function. It gives 
a measure of how two water dipoles separated by a distance r are correlated. If 
at this distance the two dipoles are likely to be parallel, hi(r ) will be positive 
whereas if they are likely to be antiparallel ha(r ) will be negative, h~(r) on the 
other hand will be positive for both these cases. It gives a separate measure of 
the angular correlations. Both these functions should have limiting values of 
zero as r ~oo  in an infinite system. In a finite system, both of these functions 
will be very sensitive to the cut-off and the boundary conditions. 

There is an interesting interplay of dipolar and higher multipolar (principally 
the quadrupolar) forces in the ST2 model. For pair separations larger than 
1.6 a the dipolar interaction predominates, resulting in collinearity of the molecu- 
lar symmetry axes for the minimum energy configuration. On the other hand 
the quadrupolar forces favour the hydrogen bonded configuration for a pair 
separated by less than 1.6 o, and in the most stable configuration the symmetry 
axes of the pair are aligned at an angle of 105.4 ~ with an oxygen-oxygen separation 
of 2"852 A 4. However, the network structures [28] normally found in either the 
myriad of ice forms or in liquid water have the comparatively less stable hydrogen 
bond configurations where the symmetry axes of the hydrogen bonded pairs are 
almost parallel [28]. 

In figure 8 (a) we show hi(r) for the two principal forms of ice, namely cubic 
ice and hexagonal ice. These functions have been computed from the data of 
Rahman and Stillinger [28]. The lack of long range correlations is striking. 
The nearest neighbours have their dipole vectors parallel as indicated by the 
first peak. 

In figure 8 (b) we see that while all the curves for hx(r ) show a positive peak 
at a position closer than the first neighbour, r = 0.75, the magnitude of the peak 
diminishes with decreasing cut-off. For comparison we note that the first peak 
in goo(r) occurs at r = 0-91 o. The positive peak in hl(r ) indicates that molecules 
separated by roughly the hydrogen bond distance are more likely to have their 
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0.5 
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-0.5 
0 

(a) 

�9 CUBIC ICE 
X HEXAGONAL ICE 

DATA TAKEN FROM RAHMAN 
AND STILLINGER 

\\ 
\ 

�9 -~_~ X ~ ~L~._~ 

x j 

I I I I I z 
1.0 2.0 3.0 4.0 50. 

(a) 
1.0 

0.5 

hl(r ) 

e N = 2 1 6  S C  
x N= 125 SC 
�9 N =  125 CO 
o N = 2 7  S C  

re(N= 2T) 

1 re(N= '25) ' J  

l I(N=21 i 

-0.! I I I k J I I [ I I 
1.0 2.0 3,0 4.0 5.0 

r ( IN UNITS OFo-)----p 

(6) 

Figure 8 (a). The angular correlation function ha(r) for cubic ice and for hexagonal ice. 
The figures are based on the data of Rahman and Stillinger (reference [28]). (b) The 
angular correlation functions hi(r) for ST2 water obtained from the present study. 
Symbols as in figure 2. 

symmet ry  axes parallel to one another.  T h e  smaller peak height with smaller 
r,, is consistent with the conclusion drawn previously that sys tems with smaller 
r ,  have s tronger  hydrogen bonds. At larger separations the tendency to align- 
ment  d imin ishes ;  with the smallest  cut-off  used here pairs of molecules at 
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separations corresponding to the second neighbour have their symmetry  axes 
preferentially antiparallel. Similar behaviour is found for cubic and hexagonal 
ice forms (figure 8 (a)), though the minima are not as deep as for the systems 
studied here. 

It is interesting to note that for all three cases hl(r ) decays to zero at r = r,.. 
This  contradicts some earlier work [11] which indicated significant correlations 
at the cut-off for small r, . .  The  functions h~(r) are seen to continue smoothlv 
beyond the cut -of f ;  the second maximum in hl(r ) for N = 2 7  arises from the 
strong correlations of the molecules in the corners of a cube centred on the central 
molecule. 

3.2. Comparison o[ cubic cut-of[ and spherical cut-off 
Next we present results for ST2 water with 125 molecules using the cubic 

cut-off. The  extra interaction involved in the corners of the cube affect the radial 
distribution functions goo(r), goal(r) and g H , ( r )  for all r. Th e  deviations from 
the spherical cut-off functions are, however, small as shown (dots) in figures 5-7. 
The  differences in the radial correlations betwen the SC and CC truncations are 
most marked around r =  1-0 ~r to r =  1.5 ~r. Thus  it appears that the structure in 
the second shell is slightly different for the two boundary conditions. As before, 
the radial correlations are fairly insensitive to changes in cut-off and boundary 
conditions. Again, the other properties are much more sensitive to these 
different truncation schemes. In figure 3 we see from the function e(r) that the 
first shell of neighbours is much less strongly bound with CC than with SC. 
This  diminution in hydrogen bonding can also be inferred from figure 4 where 
focusing on, say, the fraction of molecules with exactlv four hydrogen bonds for 
various cut-offs we find the fraction to be significantly smaller with CC than 
SC. However,  the net interaction or binding energy is larger with CC than SC 
(figure 3) because of the much larger number  of interactions per particle permit ted 
with the CC. In table 2 we compare the average energy and specific heat. 

Table 2. Thermodynamic properties of ST2 water with different boundary conditions. 

Property 
Spherical Cubic 

cut-off cut-off 

Passes 

~e'~ 
(reduced units) 

Co 
(J tool -I K-l) 

6000 4000 
-139.92 -146-25 
- 136.78)t ( - 133.60)$ 

86-9 89-2 

Energy measured with cubic cut-off convention. 
Energy measured with spherical cut-off convention. 

The  dipolar correlations for CC are qualitatively similar to those for N -  
125 SC or N = 2 i 6  SC (figure 8 (b) and figure 9) for r~<2"5. However,  in the 
corners of a cell centred around a molecule, the overwhelming majority of the 
molecules are aligned parallel to the central molecule. This  is very similar to the 
behaviour found by Levesque et al. [21] for the dipolar fluids. 
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0 . 4  

0 . 3  
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e N = 216 SC 
x N = 125 SC 
�9 N= 125 CC 
o N= 2 7 S C  
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r ( I N  UNITS OF o - ) - ~ P -  

Figure 9. The angular correlation function h~(r) as a function of r. The symbols are the 
same as in figure 2. 

The cubic cut-off convention does not appear to offer any advantages over the 
spherical cut-off convention. In fact the former consumes twice as much 
computer time as the latter. Furthermore it introduces correlations along the 
diagonals which are a consequence of the fact that CC reinforces the artificial 
cubic symmetry generated by the periodic boundary conditions. Our purpose 
in studying the cubic cut-off was to examine the influence of various boundary 
conditions upon the interior of a system. It is apparent that with system sizes 
considered here the type of boundary condition used affects the structure for all r. 
The differences between CC and SC are most pronounced beyond the first 
neighbour structure. However, the distribution of binding energy (as shown by 
e(r) in figure 3) exhibits the largest variation between the two truncation schemes 
in the region of the first shell of neighbours. 

3.3. Comparison of Ewald and spherical cut-oil 
It has been suggested that Ewald summation is a better alternative to the 

spherical cut-off for long range potentials. Such a simulation for water using a 
recently developed potential due to Watts has been reported [7]. In this paper 
we present a simulation of this potential [23] using the spherical cut-off to 
study the differences between the two boundary conditions. Using 216 mole- 
cules interacting with a Watts potential, a force bias Monte Carlo simulation was 
performed. The density of the system was 1 g cm -3 and the temperature T=  
273 K. These are identical conditions to those used in the simulation [7] with 
Ewald sums. The latter used the molecular dynamics method for the simulation. 
Apart from this the only difference between the two simulations was that a' SC 
truncation with re=8-1 A was applied in the Monte Carlo simulation. 3000 
passes were used to equilibrate the system. A further 6000 passes were then 
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generated and used to obtain the structure and thermodynamics. The con- 
vergence was checked using the p(e) function (see figure 10). In figure 11 we 
present the radial distribution functions goo(r), goH(r) and gHH(r) obtained 
from this simulation and compare these with those determined by Ewald sum- 
mation from [7]. 

6 . 0  

5 . 0  

4.0  

o 
o 

x 3.0 

-8 .9  

2 . 0  

1.0 

WATTS POTENTIAL 

- x - - x - - x - P A S S  I TO PASS 3 0 0 0  ::::::::::::::::::::: 

, , 

- 9 . 0  -9.1 - 9 .2  -9 .3  -9 .4  -9 .5  
POTENTIAL  ENERGY, 9, PER PARTICLE IN KCAL/MOLE 

\ 

-9.6 -9.7 

Figure 10. T h e  probabili ty distr ibution function p(e) as a function of e in the case of Watts 
potential with spherical cut-off boundary condit ion showing the slow convergence 
(1 kcal = 4.184 kJ.) 

5.0 

4.0 

~3.0 

o o 

2.0- 

2.5- 

2 . 0 -  

1.5- 

o 1.0- 

4:0 6b e O 0 

25- 

2.O 

~176 ~ 1.5 

I 
- ~  1.0 

0.5 

, , , 0 

2.0 0 2.0 4.0 6.0 8.0 0 
R IN ANGSTROM UNITS 

2.0 4.0 6.0 8.0 

Figure  11. T h e  radial distribution functions for Watts water comparing the Ewald sum 
results (circles) with the spherical cut-off results (full line.) 
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It is interesting to note that , : theangte averaged radial distribution functions 
in both simulations are identica!with~n:error bars. This  observation suggests 
that w h e n  one is interested only in  t h e  angle averaged properties, the spherical 
which is less expensive is sufficient. 

Unfortunately, the angular Correlation functions have not been reported m 
[7] ; thus we are unable to ex tendthe  comparison of SC and Ewald summation to 
these functions. However, we shall comment on the angular correlations for the 
Watts water in the next paragraph. 

3.4. Watts water compared with ST2  water 
Although it is not directly relevant to the theme of this paper, we shall 

present a brief comparison of the  structure of Watts water with the well- 
established ST2 water. The reason for so doing is that this is the first op- 
portunity for comparing the two models under similar conditions of simulation. 
The ST2 simulation was based on 216 molecules at a density of 1 g c m  -3 at 283 K, 
while the Watts water is generated with 2t6 molecules at 273 K and = 1 g cm -a. 
The radius of truncation was slightly different in the two simulations : r c = 8.1 A 
for Watts water and r(.=8-46 A for ST2 water. As we observed in the first 
part of this section, such a small difference in r~. should not lead to dramatic 
differences in structure. If significant differences in structure are observed, 
between ST2 and Watts water in the present comparison, they must therefore be 
attributed directly to the model potentials and not to any artifacts of simulation. 

It is clear from figure 12 that appreciable differences exist between the Watts 
water and ST2 water. For instance goo(r) is much less structured for Watts 
water. And in goH(r) the first peak is larger than the second with the Watts 
potential, although the areas under the first peak seem to be the same for the two 
potentials. Finally, grin(r) for the Watts potential also displays less correlation 
than the corresponding function with the ST2 potential. It  appears that the 
Watts potential has a structure corresponding to a higher effective temperature 
than the ST2 potential. 

In figures 13 and 14,  hl(r ) and e(r) corresponding the Watts and ST2 
potentials with cut-offs of 8.1 A and 8.26 A respectively are presented. Although 
the two simulations were performed at slightly different temperatures (as shown 
in figure 13) certain qualitative differences are worth noting. A small second 
maximum is observed in hl(r ) for the Watts potential at the position of the second 
neighbour. The e(r) curves (figure 13) for the two potentials are qualitatively 
very similar for r ~<3-3 A ; however, the interactions beyond the first shell are 
much more binding for the ST2 potential. The Watts potential gives rise to 
much less structural order beyond the first shell as evidenced by a very smooth 
e(r) and the small magnitude of the second peak i n goo(r). It  wou!d beo f  interest 
to compare the angular correlation functions discussed here with those obtained 
with the Ewald summation method. 

4. CONCLUSIONS 

In this paper an attempt is made to study;the effect of systemsize and boun-  
dary conditions on the structure and thermodynamics 9f tiquid water us[ag a 
force bias Monte Carlo simulation. The  results are s i~ l a r . t 0  those observed in 
a dipolar hard sphere fluid [21, 22]. The structure; thermodynamics,  and 
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r: ja 

�9 WATTS POTENTIAL,MC, 
SC, T = 273~ 

3 I l l  x WATTS POTENTIAL, MD, 
~ EWALD SUM 

I ~  ~ ST?_ POTENTIAL,MC, 
2 I ~  SC, T=283~ 

2 

• 

1 2 5 4 5 6 7 8 

IN ANGSTROMS 

Figure 12. The oxygen-oxygen radial distribution function for the Watts potential. The 
dots indicate Monte Carlo simulation using spherical cut-off. The crosses indicate 
molecular dynamics simulation (at 410 K) using Ewald summation, obtained from 
reference [7]. The triangles denote the ST2 results (N--216,  SC). 



D
ow

nl
oa

de
d 

By
: [

EB
SC

O
H

os
t E

JS
 C

on
te

nt
 D

is
tri

bu
tio

n]
 A

t: 
20

:4
2 

1 
M

ay
 2

00
7 

678 C. Pangali et al. 

0.5 
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0.0 
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N=216~T=273~ SC 

r c ( WATTS ) 

Irc ( sT2 )  

-~ ' ' ' ~ ' I ' ' 3.1 .2 93 12~ 
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Figure 13. The angular correlation functions hi(r) comparing ST2 water (triangles) and 
Watts water (circles). 
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Figure 14. The angular correlation function e(r) comparing ST2 water (triangles) and 
Watts water (circles). 
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fluctuations are sensitive to the type of boundary conditions used. Even in the 
case where there are no observable differences in radial distribution functions, 
the angular correlations as shown in this paper are considerably different. 
Although similar results have been observed previously [11] using a different 
model potential for water, their importance generally has been neglected. This 
paper re-examines some of the questions raised recently [16, 20] using an efficient 
Monte Carlo simulation and two different model potentials for water. It would 
be of interest to see how the Clementi potential for water behaves under such an 
investigation. It is also important to note that the value of energy e(r) at the 
cut-off distance r c is the same for the three different systems (N--27, 125, 216) 
(compare figure 6). 

These observations together with the results on hard dipolar fluids [21] force 
us to conclude that the orientational correlations are quite sensitive to r~ and the 
boundary conditions employed. These points lead us to believe that caution 
should be exercised when studying aqueous solutions, particularly with non- 
spherical solutes. In addition, there are the problems of estimating errors 
because of the slow settling to equilibrium. Thus one must take with a 'grain 
of salt ' any estimate of the thermodynamic properties of water either based on 
short simulation runs or on small system sizes, unless these results are properly 
corrected to yield their thermodynamic limit. 

A note of caution regarding error estimates is in order. Because of the strong 
correlations between successive configurations generated in the course of the 
Monte Carlo walk [25] (be it Metropolis or force- bias), often the error estimates 
are much smaller than are justified. For example, the error in the average 
energy (e) is given by 

(Be 2) 
E r ~ 

n 

where n is the number of independent blocks used in computing e. A block is a 
section of phase trajectory and is considered independent if it covers a time r 
greater than the correlation time, r o for the property (i.e. energy, in this example) 
being averaged. The most conservative estimate of % is obtained by setting 
n=  1. Usually, it is a difficult matter to determine re. In [25] we estimate 
%_5000 passes using an optimized version of the force bias algorithm on 216 
molecules. Thus a 10 000 pass trajectory affords us two independent blocks for 
estimating Er. Poor determinations of the errors often lead to over-optimistic 
estimates of the entropy and free energy. 

We are therefore forced to conclude that the properties of simulated water 
are dependent on the cut-off and on the boundary conditions. How then can 
one proceed ? One obvious way is to perform a sequence of simulations on 
systems of larger and larger size with Ewald summation until the properties 
reach a limiting value. This method although rigorous is impractical because of 
the enormous expense that it entails. Another possibility is to follow a path 
similar to that used by Levesque et al. [21] for a point dipolar hard sphere fluid. 
These authors used the results of the computer simulations on small systems in 
conjunction with the Linearized Hypernetted Chain approximation with great 
success. Another possibility involves computer simulations on sufficiently 
large systems that a reaction field approximation can be used. This approach 
has been applied on the BNS potential by Watts [11]. Recently, however, Van 
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Grunsteren  et al. [20] have shown that there are strong differences between a 
molecular dynamics simulation using the normal reaction field and one using 
a delayed reaction field [20]. Clearly, a more detailed study along these lines is 
needed before progress can be made in comparing simulation results with real 
experiments.  
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