
LETTERS
PUBLISHED ONLINE: 9 JANUARY 2011 | DOI: 10.1038/NPHYS1865

Quantum fluctuations can promote or inhibit
glass formation
Thomas E. Markland1, Joseph A. Morrone1, Bruce J. Berne1, Kunimasa Miyazaki2, Eran Rabani3*
and David R. Reichman1*
Glasses are dynamically arrested states of matter that do not
exhibit the long-range periodic structure of crystals1–4. Here
we develop new insights from theory and simulation into the
impact of quantum fluctuations on glass formation. As intuition
may suggest, we observe that large quantum fluctuations serve
to inhibit glass formation as tunnelling and zero-point energy
allow particles to traverse barriers facilitating movement.
However, as the classical limit is approached a regime is
observed in which quantum effects slow down relaxation
making the quantum system more glassy than the classical
system. This dynamical ‘reentrance’ occurs in the absence
of obvious structural changes and has no counterpart in the
phenomenology of classical glass-forming systems.

Although a wide variety of glassy systems ranging from metallic
to colloidal can be accurately described using classical theory,
quantum systems ranging from molecular, to electronic and
magnetic form glassy states5,6. Perhaps the most intriguing of these
is the coexistence of superfluidity and dynamical arrest, namely
the ‘superglass’ state suggested by recent numerical, theoretical and
experimental work7–9. Although such intriguing examples exist,
at present there is no unifying framework to treat the interplay
between quantum and glassy fluctuations in the liquid state.

To attempt to formulate a theory for a quantum liquid to
glass transition, we may first appeal to the classical case for
guidance. Here, a microscopic theory exists in the form of
mode-coupling theory (MCT), which requires only simple static
structural information as input and produces a full range of
dynamical predictions for time correlation functions associated
with single-particle and collective fluctuations10. Although MCT
has a propensity to overestimate a liquid’s tendency to form a glass,
it has been shown to account for the emergence of the non-trivial
growing dynamical length scales associated with vitrification11.
Perhaps more importantly, MCT has made numerous non-trivial
predictions ranging from logarithmic temporal decay of density
fluctuations and reentrant dynamics in adhesive colloidal systems to
various predictions concerning the effect of compositional mixing
on glassy behaviour12,13. These have been confirmed by both
simulation and experiment14–16.

A fully microscopic quantum version of MCT (QMCT) that
requires only the observable static structure factor as input may
be developed along the same lines as the classical version. Indeed,
a zero-temperature version of such a theory has been developed
and successfully describes the wave-vector-dependent dispersion
in superfluid helium17. In the Supplementary Information, we
outline the derivation of a full temperature-dependent QMCT.
In the limit of high temperatures, our theory reduces to the
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Figure 1 | Dynamic phase diagram calculated from the QMCT for a
hard-sphere fluid. φ is the volume fraction, Λ∗= (βh̄2/mσ 2)1/2 is the
thermal wavelength in units of inter-particle separation σ , and β = 1/kBT is
the inverse temperature. The approach by which the line separating liquid
from glass is determined is given in the Supplementary Information. Inset:
Dynamic phase diagram using the quantum mechanical input with a
classical MCT.

well-established classical MCT, whereas at zero temperature it
reduces precisely to the aforementioned T = 0 quantum theory.
The structure of these two theories is markedly different, suggesting
the possibility of non-trivial emergent physics over the full range
of parameters that tune between the classical and quantum
limits. Although this formulation makes no explicit mention
of particle statistics, such an extension is possible, enabling
treatment of purported glass formation in systems with a finite
superfluid fraction7–9.

The fully microscopic QMCT allows for a detailed description of
the dynamical phase diagram that separates an ergodic fluid region
from an arrested glassy one as a function of both thermodynamic
control variables and the parameters (for example h̄) that control
the size of quantum fluctuations. To illustrate this, we carry
out detailed QMCT calculations on a hard-sphere system as a
function of the system’s volume fraction φ and the dimensionless
parameter Λ∗, which is the ratio of the de Broglie thermal
wavelength to the particle size and controls the scale of quantum
behaviour. Despite their simplicity, hard-sphere systems are well
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Figure 2 | Diffusion as a function of quantumness from RPMD simulations. a, The diffusion constant as a function of the quantumness, Λ∗, obtained from
the RPMD simulations for a quantum Kob–Anderson Lennard-Jones binary mixture for T∗= 2.0 (red curve) and T∗=0.7 (black curve). b, Classical and
quantum static structure factor of the ‘A’ type particles. c, Root mean square of the radius of gyration as a function of Λ∗=0 for the two systems shown in
a. The radius of gyration is defined as the average distance of the replicas from the polymer centre.

characterized, experimentally realizable, and show all of the features
of glassy behaviour that are exhibited by more complex fluids.
It is well known from experiment and simulation that classical
hard spheres enter a glassy regime for volume fractions in the
range φ= 50–60% independent of temperature18,19. Figure 1 shows
the full structure of the dynamical phase diagram. The QMCT
calculations are consistent with this in the classical limit (Λ∗→ 0),
but on departure from this show a rather remarkable reentrant
behaviour. In particular, as the scale of quantum fluctuations
is tuned from small to high values, an initially flat regime is
followed by the system becoming glassier and then finally favouring
the fluid when quantum fluctuations are large. This behaviour
is surprising given the fact that reentrance is not hinted at in
the static structure factor. We also show the behaviour produced
by a strictly classical MCT calculation carried out with the
quantum structure factor as input where only a featureless border
separating liquid from glass is demonstrated. This fact clearly
shows that the reentrant behaviour predicted by QMCT is a non-
trivial product of the properties of the theory and not the static
structure factor input.

To obtain a physical understanding of this surprising prediction,
we turn to the ring-polymer molecular dynamics (RPMD)
approach to quantum dynamics20. This method exploits the path
integral formulation of quantum mechanics in which a quantum
particle is mapped onto a classical ring polymer consisting of a
series of replicas linked by harmonic springs. Static properties can
be calculated exactly using this mapping while RPMD uses the
classical evolution of the polymers to provide an approximation to
quantum dynamics. This approach has been previously shown to
give accurate dynamical properties for systems ranging from nearly
classical to those where tunnelling is dominant21,22.

We carried out RPMD simulations for a binary Lennard-Jones
system at a density and temperature that classically exhibits glassy
behaviour (details provided in the Supplementary Information)23.
Figure 2a shows the change in the diffusion coefficient of the
particles as the quantum fluctuations of the system, controlled
by varying Λ∗, are increased. This property shows the same

reentrance seen in the QMCT results. The structure factor, shown
in Fig. 2b, reveals only a monotonic broadening over the entire
region under study.

Analysis of the RPMD trajectories allows us to deduce the origin
of this effect. In Fig. 2c, we show the ratio of the average radius
of gyration of the polymers representing each particle, a static
property given exactly by the RPMD simulations, to its free-particle
value, which is proportional to Λ∗. The spread of each polymer
(or the width of the thermal wave packet) is directly related to
the quantummechanical uncertainty about its position. Hence, the
uncertainty principle dictates that decreasing thewidth of the packet
corresponds to an increase in kinetic energy.

The trend in the spread of the particles as shown in Fig. 2c is
in excellent agreement with that seen in the diffusion coefficient
(see Fig. 2a) and provides insight into the reentrant behaviour. As
quantum fluctuations are introduced into the system, the wave
packet of each particle attempts to delocalize. Initially (Λ∗ < 0.1),
thermally accessible space is available in the system for the particle
to expand into, allowing the radius of gyration to increase almost
freely. The ratio of the spread of the particles to their free-particle
values is near unity and the diffusion is largely unchanged.However,
as Λ∗ is increased further, the width of the packet becomes
comparable to the size of the cage in which it resides. There is
now little free space into which the packet may expand, leading
to a marked decline in the ratio. Figure 3a shows a configuration
typical of this regime in which the particle is localized in its cavity.
This confinement in its position causes a large rise in the kinetic
energy of localization exerting, asΛ∗ increases, a progressively larger
quantum pressure on the cavity.

For diffusion to occur, the particles must rearrange in this
highly crowded environment. This requires contraction of their
wave packets as they pass through the narrow gaps, localizing them
further and incurring an additional increase in their kinetic energy.
This higher energy required to push through the gaps acts as a
bottleneck to diffusion and leads to the slowing reflected in the
intermediate Λ∗ region (see Fig. 2a). This is also shown in the
inset of Fig. 3a, which depicts the mean square displacement of the
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Figure 3 | Snapshots from the RPMD simulations. a,b, Results for the caged (Λ∗=0.7) (a) and tunnelling (Λ∗= 1.3) (b) regimes at T∗=0.7. For clarity,
all but one ring polymer in each snapshot is represented by its centre of mass. The red spheres represent the replicas of the polymer. Insets: The mean
square displacement, 〈|R(t)−R(0)|2〉, calculated from RPMD (solid curves) and classical molecular dynamics (dashed curves) in Lennard-Jones reduced
units. The inset of a shows a long beta relaxation regime compared with the classical simulation and the tunnelling case shown in b.

particle. A long intermediate beta relaxation regime is observed in
which the particle is caged before being becoming mobile again
at long times. When Λ∗ is raised further, the thermal wavelength
becomes comparable to the particle size and the kinetic energy
becomes sufficient to flood the barriers between cavities, leading
to a rise in the radius of gyration and the occurrence of tunnelling
between the cavities, thereby facilitating diffusion. This can be
seen in the representative snapshot shown in Fig. 3b in which the
particle is stretched across two cavities. Accordingly, the ratio of the
radius of gyration to its free value recovers with a corresponding
increase in diffusion and diminishing of the caging regime as shown
in the inset of Fig. 3b.

The theory we have developed for the quantum glass transition
predicts interesting generic dynamical anomalies such as a reentrant
border between the disordered arrested and fluid regimes. Semi-
classical quantum dynamics simulations exhibit similar features
and physically illuminate the origin of the predicted relaxation
motifs. The physical interplay between crowding and quantum
delocalization reported here, a generic feature of quantum glassy
systems, might also be responsible for other physical phenomena.
For example, it has been experimentally observed that lighter
isotopes of hydrogen diffuse more slowly than heavier ones in
water24 and palladium25, which has been recently elucidated by
theory26. Therefore, behaviour similar to our predicted reentrance
has been observed in chemical systems. However, although the
two approximate methods, RPMD semi-classical simulations and
QMCT theory, predict a consistent picture, the exact degree of the
reentrancemay be less pronounced in physical systems27.

It is likely that the reentrant transition observed here may
also have implications beyond glassy systems. Intuition suggests
that increasing quantum fluctuations monotonically enhances the
exploration of the energy landscape. This forms the basis of
the quantum annealing approach to optimization28,29. However,
our work indicates that in certain regimes increasing quantum
fluctuations can lead to dynamical arrest and hinder optimization.
Indeed, reentrance has recently been observed in the dynamical
phase behaviour of simple models of quantum optimization under
investigation in the field of quantum information science30. Thus,

deep connections exist that unite these seemingly distinct physical
systems and processes.
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