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The usual interpretation of high-energy nuclear reactions entails a two-step mechanism: (1) a first step,
which includes the emission of knock-on particles in an intranuclear cascade generated by the incident
particle, followed by (2) the “evaporation” of particles from the residual excited nucleus, which is assumed
to be at statistical equilibrium. If the independent-particle model with residual two-body interaction is
taken as a description of the residual excited nucleus, the assumption in the second step requires that the
nonequilibrium distribution of nucleons and holes that are produced in the fast step approach the equilib-
rium distribution before more particles leave the nucleus. This requirement has been investigated and
shown to be valid by numerically solving a Boltzmann-like master equation for a Fermi-gas system.

I. INTRODUCTION

IGH-ENERGY nuclear reactions have usually
been interpreted in terms of a two-step mecha-
nism.! In the first, or fast, step the bombarding particle
develops a cascade in the nucleus through a series of
binary nucleon-nucleon collisions in which somenucleons
escape. Then in the second, or slow, step the unstable
residual excited nucleus de-excites through the emission
of nucleons, clusters of nucleons, and v rays. Viewing
the nucelus as a Fermi gas, the state of the residual
excited nucleus that remains after the fast cascade can
be described by the occupation numbers of single-
particle nucleon states. The levels in the Fermi gas are
thus occupied by either particles or holes.

Past calculations of the de-excitation of the residual
excited nucleus have been made on the assumption that
the residual nucleus comes to statistical equilibrium so
rapidly that essentially no nucleons have a chance to
escape during equilibration, and that thereafter the
nucleons are emitted from the relaxed nucleus by evapo-
ration. This model is analogous to the well-known
phenomena of thermionic emission of electrons from
metals. The equilibrium state of the excited residual
nucleus is then characterized by the excitation energy
and the particle numbers of the residual excited nucleus.

This view of the de-excitation process, particularly
for highly excited nuclei, has met with considerable
criticism. It has been asserted that the relaxation time
of such residual nuclei is long compared with the life-
times for nucleon emission and that therefore consider-
able particle emission and consequent loss of excitation
energy will take place long before the residual nucleus
comes to statistical equilibrium. Further, it is suggested
that excitation energies that are of the order of the
binding energy of the nucleus are somehow without
meaning.

It is the purpose of this paper to offer evidence in
support of the evaporation theory applied to even highly
excited cascade products. Our procedure is to solve
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! For a review and general discussion see J. M. Miller and J.
Hudis, Ann. Rev. Nucl. Sci. 9, 159 (1959).
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numerically a Boltzmann-like master equation for the
time evolution of the occupation numbers of a Fermi
system. In this computation, when allowance is made
for the escape of nucleons, it is found that very few
nucleons escape before the residual nucleus has relaxed
to statistical equilibrium even when the excitation
energy is of the order of the total binding energy of
the nucleus. The analysis is based on a model in which
only binary nucleon-nucleon interactions are important
and in which the only particle correlations considered
are those required by Fermi statistics. Thus the nucleus
is viewed as a dilute gas of fermions. It should be noted
that departures of the nucleus from this model will be
such as only to decrease the relaxation time and thereby
make our conclusions more convincing.

II. MODEL AND METHOD OF
CALCULATION

For convenience, we shall consider the relaxation of
a single-component Fermi gas. Assuming the gas is made
up of independent fermions, the occupation numbers for
the single-particle states of the gas completely specify
its configuration. The problem is to determine these
occupation numbers as the gas relaxes.

The gas is initially confined to translational states
within a volume V of the order of nuclear dimensions,
but with access to translational states in a volume
of the order of laboratory dimensions. The volume V
is adjusted to give a Fermi energy for the gas of 40
MeV. The maximum energy of a ‘“bound” state is
taken as 48 MeV. These energies correspond approxi-
mately to the Fermi energy of neutrons and the Fermi
energy plus binding energy of neutrons in nuclear
matter. The gas is assumed to equilibrate within the
states “inside the nucleus” lying between 0 and 96 MeV
and to have access to all unbound states “outside the
nucleus” with laboratory energies between 0 and 48
MeV. In other words, only particles whose energies
“inside the nucleus” are above 48 MeV have access to
the laboratory states, or equivalently, can escape from
the “nucleus.” It is also assumed that:

(a) The states within the “nucleus” interact pairwise.
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Fic. 1. Total configuration of a 100-particle Fermi system at
various times. The initial excitation of the system was 1054 MeV.
The time ¢ is in units of 1/{wi(0)).

(b) The transition probabilities connecting either two
different pairs of states inside or a state inside to a state
outside depend only on energy.

(c) These transition probabilities vary slowly with
energy over some energy interval Ae.

These assumptions allow the states to be grouped
according to their energy. That is, all states within the
nucleus whose energies were between e;—31Ae and
ei+3Ae form the ith group of “nuclear” states where
€; is the mean energy of the ith group. The total number
of states in the sth group, g;, is given by

e+Ae/2
gim / p(9de, 0<e<I6EMeV (1)

—Ae/2
p(e)=4mV (2M)*2e 12 /13 . (2)

The quantity p(e) is the density of translational states
for the gas “inside the nucleus” and M is the neutron
mass. Similarly, the laboratory states were grouped such
that g/ (primed quantities represent states of particles
escaped from the nucleus), the total number of states
in the group 7, is given by

€/+Ae/2
o= / p(de, 0<<I8MeV  (3)

i’ —Ae/2
o' () =[4rQ(2M)*/h*]e 2. 4)

The quantity p’(e) is the density of laboratory trans-
lational states; p and p’ both include a spin degeneracy
of two for fermions.

The occupation number of the ith group of “nuclear”
states, #;, is defined as follows:

N ;=the total number of occupied states in the sth group
=nigi. (5)
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Fic. 2. Total number of escaped particles up to time ¢ with
energy E. ¢ is in units of 1/(w:(0)).

The master equations describing the relaxation of this
Fermi gas are, then?:

d(nigs)
dt

= % wii-iigegm(1—ns) (1—n;) (g:gi/ Ae)
K12

X o(eit ej— ex—€) — 2, wijrignigin;(1—mnx)

ikl
X (1—n1)(grgi/ A€)d(eit€;— er—82)
—nigiwi-igi 0(e;,—48—e/), (6)
for all 7 such that 0<¢;<96 MeV.
AN /dt=1g:3; -8 (ei— 48— €', @)

for all 7/ such that 0<¢/<48 MeV.

The quantity w;.s is the probability per unit time
that a particle in a particular state of the ¢th group
escapes; wi-i =0 if ¢,<48 MeV. The quantity wii-s; is
the probability per unit time that a particle in a particu-
lar one of the states in the kth group scatters from a
particle in a particular one of the states in the /th group
such that one particle goes to the ith group, the other
to the jth group. The & functions ensure that there is
conservation of energy in these transitions.

For a given set of transition probabilities and a given
initial configuration, the above set of equations can be
solved for the group occupation numbers #; and the
number of escaped particles with energy ¢/, N/
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F1c. 3. Total configuration of the Fermi system inside the
“nucleus” at various times. The time £ is in units of 1/{w:(0)).

2 R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1938), Chap. V.
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The transition probabilities ws;.x used are purely
classical and are taken to be

o onn(eit€)[(2/M)(eite) 12

(8)
V 2 [(gmgn/A€)d(eit €5~ en—e€n) |

where 0,.,(€) is the elementary neutron-neutron scatter-
ing cross section evaluated at an energy e. The quantity
oun was determined from elementary proton-proton
scattering cross sections after Coulomb effects had been
removed at the lower energies.®* The transition prob-
ability ;. corresponds to scattering between two
particles whose initial velocity vectors were at 90° to
one another, i.e., the most probable angle in a random
distribution of orientation angles. This transition prob-
ability assigns equal weight to all pairs of final states
that can be reached by scattering.
The w;.» are given by

ar A2 (2/ M) e/ JH?

where m7?4%% is the geometrical cross section for the
“nucleus,” 4 is the original number of nucleons present,
and 7o is chosen such that a Fermi gas of 4 particles
confined to a volume V=4%r7:*4 has a Fermi energy of
40 MeV. This transition probability assigns equal
wieght to all states in the ith group that can be reached
by a particle striking the nucleus with a laboratory
energy €;’.
III. RESULTS

The system of differential equations (6) and (7) with
transition probabilities (8) and (9) were solved numeri-
cally using the method of Runga-Kutta—-Gill.® The
group energy width Ae was taken as 2 MeV. The results
presented here are for a 100-particle Fermi-gas system
whose initial distribution of particles and holes cor-
responds to the maximum excitation possible—1054
MeV. If this were a real nuclear system, then it would
have an excitation energy greater than its total binding
energy.

The results of solving (6) and (7) with this distribu-

Wisit = ) (9) . . " . .
g tion are presented in Figs. 1-6. The time scale used in
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3 N. Metropolis, R. Bivins, M. Storm, A. Turkevich, J. Miller, and G. Friedlander, Phys. Rev. 110, 185 (1958).
4 H. Bertini, Oak Ridge National Laboratory Report No. ORNL-3383 (unpublished). :
5 A. Ralston and H. Wilf, Mathematical Methods for Digital Computers (John Wiley & Sons, Inc., New York, 1966).
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these figures is in units of 1/(w;(0)) where

<w,(o>>——§ 55 5 Ot
48 Ae

1=1 j=1 k=1 l=1

—e). (10)

That is, 1/{w;(0)) is approximately the initial average
classical collision period for a particle in the gas:
1/{wi(0))=2.31X10"28 sec for this particular initial
configuration.

Figure 1 shows the configuration of the gas “inside
the nucleus” at various times during the relaxation
process under the assumption that w;.;=0 for all 7 and
7';1.e., that particles could not escape from the “nucleus”
as it relaxed. This system relaxed approximately ex-
ponentially to a continuous or “equilibrium” distribu-
tion in about 11 collision periods. The final distribution
(t= ) has the expected solutions:

1
 eBw1’

X 3(6,"{- € €

i=1, ---, 48,

where 1/8=16 MeV is the temperature of the gas and
p=34 MeV is its chemical potential. This final dis-
tribution is, of course, the same for all transition prob-
abilities used in (7) that satisfy

(a) Wij>kl™= WEl>ij’
(b) w;»i»=0 for all ¢ and 7'.

The quantities 8 and u have the same value when calcu-
lated independently through the conservation of energy
and number of particles for the system.

Figures 2 and 3 contain plots of the total spectra of
escaped particles and the configuration of the “nuclear”
system at various times during the relaxation process
when w;.5£0, but is given by Eq. (9). The configura-
tion of the “nuclear” system relaxed to a continuous or
“quasiequilibrium” distribution again in approximately
11 collision periods. In Figs. 4 and 5 an attempt is made
to fit the usual Maxwellian-type distribution to the
spectra of emitted particles. These fitted spectra are
normalized to the same number of particles as the calcu-
lated spectra. For the short time, ¢=35, the fit is not
satisfactory because of the predominance of low-energy
particles, but for the long time, {=35, the fit is very
good and corresponds to the neutron spectra evaporated
from a system whose temperature is approximately 14
MeV.

Finally, Fig. 6 contains a plot of the total number of
particles that have been emitted as a function of time.
The number of particles that escape before “equilib-
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F16. 6. Total number of escaped particles up to time ¢ versus time.

rium” has been reached is seen to be approximately
5% of the original number present.

IV. CONCLUSIONS

The system relaxes to an “equilibrium” distribution
in about 11 collision periods, and it is seen from Fig. 4
that only about 5%, of the particles are emitted during
this time. From the energy spectra of the emitted
particles given in Fig. 2, this corresponds to a loss of
about 109, of the excitation energy during equilibration.
Therefore, it is concluded in terms of this model of the
relaxation process, that

(i) The high nuclear temperatures (7-12 MeV) and
corresponding high excitation energies®® that are re-
quired to explain the spectra of emitted clusters of
nucleons such as Li® present no intrinsic difficulties.

(ii) The bulk of the de-excitation of nuclei that are
excited even up to the vicinity of their total binding
energy may be treated as emission from an equilibrium
system.
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