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An innovative replica exchange (parallel tempering) method called
replica exchange with solute tempering (REST) for the efficient
sampling of aqueous protein solutions is presented here. The
method bypasses the poor scaling with system size of standard
replica exchange and thus reduces the number of replicas (parallel
processes) that must be used. This reduction is accomplished by
deforming the Hamiltonian function for each replica in such a way
that the acceptance probability for the exchange of replica con-
figurations does not depend on the number of explicit water
molecules in the system. For proof of concept, REST is compared
with standard replica exchange for an alanine dipeptide molecule
in water. The comparisons confirm that REST greatly reduces the
number of CPUs required by regular replica exchange and increases
the sampling efficiency. This method reduces the CPU time re-
quired for calculating thermodynamic averages and for the ab
initio folding of proteins in explicit water.

molecular dynamics � Monte Carlo � parallel tempering � protein
solutions � rough energy landscapes

Sampling the conformation space of complex systems, such as
proteins, is a notoriously difficult problem in structural

biology and theoretical chemistry. The difficulty arises from the
infrequent crossings of high-energy barriers between local en-
ergy minima, leading to local trapping for long times and
concomitant quasi-ergodicity in the sampling. Many methods
have been devised to overcome the problem of quasi-ergodicity.
These methods include the multicanonical ensemble method
(1–3), the simulated tempering method (4–6), and the parallel
tempering or replica exchange method (REM) (7–9).

The first two methods require a non-Boltzmann weight factor
arrived at by iteration. For systems with rough energy land-
scapes, such as proteins dissolved in explicit water, obtaining the
weight factor is not a trivial process. Thus, the REM has been
attracting more and more attention because the standard Bolt-
zmann weight factor can be used. By using high-temperature
replicas to overcome the energy barrier, the REM has proven to
be a useful method for sampling phase space (10, 11).

For the standard REM, the number of replicas needed
increases as O(f1/2), where f is the solution’s total number of
degrees of freedom (12). Even for a relatively small biomolecular
system consisting of one �-hairpin protein molecule dissolved in
water (4,342 atoms in all), 64 replicas were needed to cover the
temperature range between 270 and 695 K with a nonvanishing
acceptance ratio for replica exchange (13). This requirement
severely restricts the applicability of REM to reasonably small
systems, unless one has access to a massively parallel computer.

The main reason that a large number of replicas are required
is that the overall Hamiltonian grows with system size. The
acceptance probability for the exchange of configurations be-
tween two replicas at different temperatures is exp(���E), a
quantity that depends exponentially on the change in energy. For
a larger system, one must choose smaller �� to obtain viable
acceptance probabilities: that is, replica systems more closely
spaced in temperature and, concomitantly, more replica systems
to cover the same upper and lower temperatures. If we can devise
a method that depends only on the change in energy of a small

part of the system, we can achieve a sufficiently large acceptance
probability even for replicas with widely separated temperatures,
thus reducing the need for a large number of replicas.

Fukunishi et al. (12) devised a useful alternative to REM, the
so-called Hamiltonian REM, by using a transformed Hamilto-
nian at each replica level. They showed for a simple transformed
Hamiltonian that the sampling efficiency can be comparable or
superior to the standard REM (12, 14). Their studies using
Hamiltonian REM focused on biomolecules dissolved in implicit
solvents or a vacuum. Transformations of the potential energy
surface, albeit different ones, for sampling were also used earlier
in a variant of simulated tempering (6).

It is often desirable or necessary to explicitly include water
molecules. For example, the implicit solvent model cannot
reproduce the folding free-energy landscape of a small peptide,
such as a �-hairpin, in explicit water (13). Here, we propose a
unique scheme based on a simple physical principle. We allow
the potential energy to scale with temperature in such a way that
the molecule of interest appears to get hotter, but the water stays
cold as one climbs the replica ladder. We devise a rigorous
transformation in which the acceptance probability for replica
exchange scales only with the number of degrees of freedom of
the biomolecule but not the number of water molecules. This
transformation leads to a method that we call replica exchange
with solute tempering (REST) for the efficient all-atom simu-
lations in explicit water. Our basic approach can also be used in
the usual potential energy-based Monte Carlo method, but for
biological systems, the state-generating engine is usually molec-
ular dynamics (MD) rather than Monte Carlo.

The REST method is described in Methods and is followed by
an application to an alanine dipeptide dissolved in explicit water
molecules, a system consisting of 1,558 atoms. We show that
REST can sample the conformation space very effectively and
is significantly more efficient than standard REM.

Methods
Replica exchange (or parallel tempering) involves running
Monte Carlo (or constant temperature MD) for a certain
number of passes (or time steps) in parallel on a set of replica
systems, each at a different temperature, {T0, T1, T2, . . . , TN},
where the temperatures are ordered from the lowest T0 to the
highest TN. At the end of this period, an attempt is made to
exchange the configurations of a pair of neighboring replicas,
and this exchange is accepted with a probability satisfying
detailed balance. The process is then repeated. The highest
temperature, TN, is chosen so that its replica can rapidly cross the
potential energy barriers. Because configurations sampled at the
high temperatures can eventually exchange with the low-
temperature replicas, the low-temperature systems will experi-
ence jumps between potential basins separated by high barriers,
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something they would not be able to do easily in ordinary Monte
Carlo or MD. Likewise, different replicas can have not only
different temperatures but also different potential functions,
{E0(X0), E1(X1), E2(X2), . . . , EN(XN)}, where Xn represents
the configurational coordinates of the nth replica system. The
potential functions can be tailored to specific problems. There is
a long history of using deformed potentials in sampling (15).
Fukunishi et al. (12) and Jang et al. (14), in particular, have
applied this more general form of replica exchange to solutions
in which the solvent is a continuum (or implicit) solvent or a
vacuum. In this study, we apply a generalized replica exchange
theory in a rigorous fashion to bypass the poor scaling with
system size of ordinary replica exchange. The basic trick is to pick
a good scaling of the potential function. Our approach aims to
reduce the number of replicas required and thereby the time
required to sample large systems, such as a protein molecule in
explicit water solvent.

It is a simple exercise to derive the acceptance probability for
the exchange of configurations between the nth and mth replicas
[see Fukunishi et al. (12)],

�Xm, Em�Xm�, Tm�3 �Xn, Em�Xn�, Tm�

�Xn, En�Xn�, Tn�3 �Xm, En�Xm�, Tn�,
[1]

where Xm, Em(Xm), and Tm are, respectively, the configuration,
the energy, and the temperature of the mth replica just before
an exchange of replicas is attempted (with corresponding ex-
pressions for other replicas). The equilibrium probability for this
state is

Pm �
1

Zm
exp���mEm�Xm�� , [2]

where �m � 1�(kBTm) and Zm is the corresponding configura-
tional partition function. Denoting the transition probability for
the exchange i 3 f specified in Eq. 1 by T(i 3 f ) and for the
reverse exchange by T( f3 i) and applying the detailed balance
condition

Pm�Xm�Pn�Xn�T�i3 f� � Pn�Xm�Pm�Xn�T�f3 i� [3]

gives the ratio of the transition probabilities

T�i3 f�
T�f3 i�

� exp���nm� , [4]

where

�nm � ��m�Em�Xn� � Em�Xm�� � �n�En�Xm� � En�Xn�� .

[5]

If the Metropolis criteria is applied, the acceptance probability
can be obtained as follows:

T�i3 f� � � 1 if �nm � 0
exp���nm� if �nm � 0. [6]

The trick we use to improve the scaling with system size is
to subdivide the system into two parts in a simple way. For a
protein solution consisting of one large nondissociating pro-
tein molecule (labeled p) dissolved in a large number of water
molecules (labeled w), we take the protein as one part (the
central group) and the water as the other part (the bath).
(Later, we show how we can achieve a speedup, albeit a smaller
one, by taking the protein and its solvation shell as the central
group and the rest of the water as the bath.) Thus, the system
consists of a central part (p) and the bath (w). The potential
energy of this solution is

E0�X� � Ep�X� � Epw�X� � Eww�X� , [7]

where Ep, Epw, and Eww are, respectively, the internal energy of
the protein, the interaction energy between the protein and
water, and the interaction of the water molecules with each
other. Under usual conditions, the first two terms depend on
only a relatively small set of coordinates compared with the last
term.

We take the lowest replica to be the protein solution with the
potential surface given by Eq. 7 at temperature T0, and we label
this replica by the index 0. As we go up the replica ladder, we
rescale the potential surface as follows. The potential surface for
replica m can be decomposed into three terms,

Em�X� � Ep�X� � � �0

�m
� Eww�X� � � �0 � �m

2�m
� Epw�X� ,

[8]

where �m � 1�(kBTm) and the terms Ep, Eww, and Epw are the
interactions within the central group, within the bath, and
between the central group and the bath, respectively. When �m �
�0 (T0 is the target temperature: e.g., 300 K), the original energy
surface is recovered. In the case where the central group includes
the entire system, REST reduces to REM. Substituting Eq. 8 into
Eq. 5, one finds that

�nm � ��n � �m���Ep�Xm� � 1⁄2Epw�Xm�� � �Ep�Xn�

� 1⁄2Epw�Xn��� . [9]

It should be noted that Eww does not appear in this expression,
because it cancels out in the algebra. This term causes the poor
scaling with system size in the ordinary REM. The acceptance
probability for the exchange is thus much larger for the scaled
potentials, because �Ep � (1�2)Epw� 		 �Ep � Epw � Eww�.

It should also be noted that the Boltzmann factors for the
replicas are

exp���mEm�

� exp��� �mEp � �0Eww � � �0 � �m

2 � Epw� � . [10]

Physically, our scheme is similar to but not the same as changing the
temperature of the central group while the temperature of the
surrounding group is kept at the same target temperature. For this
reason, we named our scheme ‘‘replica exchange with solute
tempering’’ (REST). Our method is very different from the partial
REM or the local REM recently proposed by Cheng et al. (16).
Their method is based on the assumption that the coupling between
the central group and the surrounding group is weak and that the
conformation of the surrounding group is hardly changed during
the simulation. Generally, this assumption is not correct for many
important processes, such as protein folding. Furthermore, they
thermostated different parts of the system at different tempera-
tures, thus sampling a steady-state distribution and not the true
equilibrium distribution. By scaling the potential surface appropri-
ately, our method does not introduce any approximation or as-
sumptions and therefore is rigorous.

It is important to recognize that because the potential energy
surfaces of all of the replicas other than the lowest one are
deformed, this method only samples the correct distribution for
replica 0. Nevertheless, because of the improved scaling with
system size, we sample exchanges between replicas up and down
the ladder of replicas more efficiently than in ordinary replica
exchange.

In the present study, we chose the molecules we are interested
in as the central group. Although we chose this particular
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partition, REST is applicable to any choice of partitions. How-
ever, if there is significant exchange of molecules between the
central group and surrounding group (e.g., if the water molecules
in the first solvation shell are also included in the central group),
the groups should be updated periodically. During the update
process, another Metropolis decision must be made to ensure
that detailed balance is satisfied.

Results
As our first application, we apply REST to an aqueous solution
consisting of one small peptide molecule, alanine dipeptide,
dissolved in 512 TIP4P (17) water molecules. The potential
model for alanine dipeptide is taken to be the OPLS-AA�L
(all-atom optimized potentials for liquid simulations) force field
(18, 19). We simulate the system with cubic periodic boundary
conditions by using the P3ME (particle–particle particle–mesh
Ewald) method (20–22) for calculating the electrostatic inter-
actions. The internal geometries of water molecules and the bond
lengths of the alanine dipeptide are constrained with the RAT-
TLE algorithm (23). The system temperature is controlled by
Nose–Hoover chain thermostats (24). We performed a REST
simulation with the alanine dipeptide as the central group and
solvent as the bath. The target temperature for REST was set to
300 K. Three replicas, with temperatures of 300, 420, and 600 K,
were used to generate acceptance ratios ranging from 23% to
29%. For comparison, a regular replica exchange simulation was
performed with 22 replica systems distributed roughly exponen-
tially between 300 and 603 K, with corresponding nearest-
neighbor acceptance ratios ranging from 22% to 29%.

The energy probability distributions obtained from regular
replica exchange are shown in Fig. 1 Upper. If there were only
three replicas, with 300, 417, and 603 K, essentially no exchanges
would be accepted because there would be no overlap between
those corresponding energy distributions. When REST is ap-
plied, however, there are sufficient overlaps between the distri-
butions that, even with only three replicas, one gets the afore-
mentioned large acceptance probabilities (
22–29%), because
the exchange is based on Ep � 0.5Epw rather than on the full
potential energy, which includes Eww.

To test the accuracy of our scheme, we compare the Ram-
achandran plots, the population distributions of � and � back-
bone dihedral angles of alanine dipeptide, of REST to those of
REM at 300 K. As shown in Fig. 2, the population distributions
of REM and REST are very similar. There are four pronounced
peaks, regions PII, 	R, �, and 	�, ordered by population. How-
ever, for the regular REM, there is still a difference in the
Ramachandran plots, even after a 10-ns replica exchange sim-
ulation, if we start from two quite different initial conformations,
A and B. However, the final population distributions are almost
identical for two different REST runs. Table 1 shows the
populations for REM and REST in each region, defined in Fig.
2, for two independent simulations. Our simulation results based
on the OPLS-AA�L�TIP4P force field seem to be able to
generate population distributions in good agreement with ex-
periments, which have a dominant region PII and two minor
populated regions, � and 	R, for alanine tripeptide (25, 26).

If a sampling procedure is ergodic, averages of any property of
the system computed from two independent trajectories A and
B should be equal. This condition of self-averaging must be
satisfied if one is to equate trajectory averages with statistical
averages over conformation space. Thirumalai et al. (27) and
Whitfield et al. (28) have proposed a simple means for measuring
the simulation length needed to guarantee self-averaging: the
‘‘ergodic measure.’’ They define the mean-square difference
between the average of the property taken over the A trajectory
and the average taken over the B trajectory summed over all
atoms of the protein. This metric provides a measure of the
convergence of the two averages. In an ergodic system, the

mean-square difference will decay to zero at long times as 1�Dt,
where D is the generalized diffusion constant, which provides a
time scale for self-averaging in the simulation. The decay of the
ergodic measure to zero at long times is a necessary condition for
the system’s average properties to correspond to equilibrium
thermodynamic averages. Moreover, in the optimization of a
computational algorithm, one may choose the optimum value of
a variable parameter to maximize the generalized diffusion
coefficient and the rate of phase space sampling. To check the
convergence for both methods, REST and REM, we calculated
the decay of the ergodic measure for different properties. To
accomplish this, two simulations starting from two significantly
different initial configurations A and B were performed for 10
ns for each method. The total simulation time was �0.5 
s.

The first ergodic measure we calculate is for the conformation
change. For this purpose, the Ramachandran plot can be dis-
cretized by dividing the � and � axes into n 
 m uniform cells
of area ���� � 4 �2�nm. The population in the ijth cell is
denoted Ri,j, and Ri,j can then be regarded as a population matrix.
We define the ergodic measure of the population as

�2�t� �
1

mn �
i�1, j�1

m, n

�R� i, j
A � R� i, j

B �2. [11]

For long simulations, the mean-square deviation �2(t) should
decay to zero if the sampling method is ergodic. Fig. 3 shows this
ergodic measure as a function of CPU time (including the
contributions from all of the replicas). Both methods, REM and

Fig. 1. The probability distributions of potential energy for different tem-
peratures for REM (Upper) and REST (Lower). For REST, only the ‘‘effective
potential energy,’’ Ep � 0.5Epw, is considered, based on the formula-of-
acceptance ratio (Eq. 9).
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REST, can give convergent results if the CPU time is long
enough. However, it is obvious that the REST converges much
faster than the regular REM. For example, for a variance (�2) of
0.0005, REST is 
10 times more efficient than ordinary REM.

As a further test of REST, we alter the potential function of
alanine dipeptide to raise some of the energy barriers that
separate the free-energy basins by including the following extra
term:

U��, �� �
1
2

k��� � �0�
2 � �

i�1

n

A�,iexp��
�� � � i�

2

2
�,i
2 � .

[12]

The first term, 1
2
k�(� � �0)2, restrains the � angle to be near �0.

The second term creates potential wells at a series of points �i

in y direction. A�,i characterizes the well depth, and 
�,i defines
a spread of this potential well in the � direction. We apply two
wells (n � 2) on the centers of rectangular boxes of conformation
PII and 	R, shown in Fig. 2, with the spread in both directions of
10° and a well depth of 3.0 kcal�mol. For each method, two
independent simulations are run for 10 ns starting from these
two distinct wells. For comparison, regular MD (neither REM

nor REST) is performed for 10 ns as well. The cumulative
simulation time is �0.5 
s.

In Fig. 4, we monitor the dihedral angle �, which characterizes
which basin the system is in, as a function of CPU time. For the
regular MD, during 20 units of CPU time (1 unit corresponds to
1 ns of regular MD simulation), only three transitions between
these two wells were observed. In comparison, 19 transitions, on
average, were made in REM within the same time window, and
189 transitions were made for REST during the same period. If
the efficiency to sample the phase space can be measured by the
number of transitions made in a time period, REST appears to
be 
10 times more efficient than REM and 60 times more
efficient than the regular MD for this very small system.

Finally, we investigate the ergodic measure for the 1,4-pair
distance metric d14(t), first introduced by Thirumalai,

d14�t� � 1�N�
i�1

N

�r� 14,i
A � r� 14,i

B �2, [13]

to compare the convergence of REST and REM on the system
with the modified potential (cf. Eq. 12). Here, N is the number
of 1,4 pairs, and r�14 is the average 1,4-pair distance over time. Fig.
5 shows the ergodic measure d14(t) for REST and REM. With
the help of high-temperature replicas, both generate reasonable
convergence, indicated by the monotonic decay for these two
curves. If the value 0.05 is set as the satisfying criteria for the
convergence of d14(t), REST appears to converge seven times
faster than REM.

Discussion
We introduce REST, an innovative replica exchange algorithm
for the efficient sampling of systems with rough potential energy
surfaces, including biological systems such as a protein in water.
In the algorithm, we partition the system into two groups: a
central group and the bath group. REST builds on the idea that
the sampling can be enhanced by using high-temperature rep-
licas of the central group but low-temperature (target temper-
ature) replicas of the bath. This idea guides us in defining a
scaled potential energy surface for the replicas. By this scaling of
the potential energy function, the number of replica systems

Fig. 2. The Ramachandran plots of backbone dihedral angles of alanine
dipeptide, � and �, at 300 K. The two subplots in Upper are collected for 10 ns
through standard REM simulation over 22 replicas. The plots in Lower are from
10-ns simulation of REST over three replicas. Left and Right are from two
distinct initial configurations, A (in the region PII) and B (in the region 	R),
respectively. All of the plots are color-coded and follow the spectrum from
blue (lowest probability) to red (highest probability).

Table 1. Comparison of the percent population of four regions

Population
region

REM REST

A B A B

PII 0.430 0.463 0.467 0.466
	R 0.233 0.214 0.212 0.214
� 0.182 0.181 0.183 0.183
	� 0.155 0.142 0.138 0.137

The results are collected over 10 ns for standard REM and REST. The errors
listed are the standard deviations of the percent population.

Fig. 3. The Ramachandran plot variance, defined in Eq. 1, as a function of
CPU time. (Inset) The magnified plot in y direction.
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required can be greatly reduced, because the acceptance prob-
ability for replica exchange becomes independent of the solvent–
solvent interaction energy, which is the main factor leading to
poor scaling with system size in ordinary replica exchange. Thus
REST, unlike REM, scales well with system size and hence
requires substantially fewer parallel processors than REM.

We have simulated alanine dipeptide in water. We simulated
this system by using standard REM and REST for the alanine
dipeptide system. The REST simulation of alanine dipeptide in
water showed that even for a simple system as small as alanine
dipeptide in 512 water molecules, the sampling in REST was
7–10 times more efficient than in REM, an impressive speedup
for such a small system. The larger the system, the better will be
the relative performance of REST to REM. A hand-waving
argument suggests that the efficiency of REST versus REM
will scale as �ftotal�fprotein, where ftotal is the total number of
degrees of freedom in the system (protein plus bath) and fprotein
is the number of degrees of freedom in the protein. In the alanine
dipeptide system the dipeptide consists of 45 degrees of freedom,
and the water consists of 3,072 degrees of freedom, so that
REST should be approximately �3,117�45, or eight times
more efficient than REM, in agreement with what was found
in the simulation.

We note that REST can sample the phase space efficiently
only at the target temperature because the Hamiltonians of the
replicas at different temperatures are different from the real
Hamiltonian. However, if one is interested in sampling biological
systems at a certain temperature [for example, protein folding at
body temperature (310 K) or room temperature (298 K)], REST
is a powerful tool. Because the ratio between the size of the total

system and the central group increases with increasing system
size, the saving will be more pronounced for larger systems.

It is possible to include one or two shells of water with the
protein as the central group, which we have done by storing a
neighbor list of the protein. Because the water molecules orig-
inally in the central group will thus move out of the solvation
shell of the protein as the configuration of a replica changes
during its normal walks, and because the potential is different for
the waters in the central group and the bath, it is necessary to
invoke a Metropolis criterion for updating the neighbor lists.
This requirement adds some overhead to the calculation. For
example, choosing to include one shell of waters in the central
group, we find that REST is only three to five times faster than
REM for the alanine dipeptide system, rather than the 7- to
10-fold speedup of REST with only the protein as the central
group. In this study, we use the simple version of REST in which
all of the water molecules are treated as a bath.

The choice for the deformation of the energy given in Eq. 8
is a special case of the more general Em(X) � Ep(X) �
amEww(X) � bmEpw, where we choose am � �0��m and bm � (�0 �
�m)�2�m. The only conditions required to get the correct
Boltzmann distribution at T0 are am3 1 and bm3 1 as m3 0.
The specific form we chose for am was dictated by the desire to
have terms arising from Eww cancel in the acceptance probability.
The choice for bm is less obvious. Our choice is only one of many
possible choices. We could have just as well chosen bm �
(�0��m)1/2 or bm � 1. In this study, we made no effort to optimize
bm but chose it to correspond to a temperature intermediate
between T0 and Tm.

To get some feeling for the magnitudes of the above effects of
our choice of bm, we note that for the highest temperature replica
in the dipeptide simulation (T0 � 300 K and Thighest � 600 K),
am � 2 and bm � 1.5. For this energy surface, the water–water
interaction is twice as strong as the ‘‘true’’ interaction, and the
protein–water interaction is 1.5 times as strong as the true
interaction, which has the effect of making the solvent stiffer and
the protein–water repulsions and attractions stronger. From Eq.
10 we see that, despite this, the waters will move no more slowly
than they normally would on the ground-state surface, albeit

Fig. 4. The trajectories of � for MD (Top), REM (Middle), and REST (Bottom)
for the alanine dipeptide with biased potentials. A and B correspond to the
results from two different initial configurations, as described in the legend of
Fig. 2.

Fig. 5. The 1,4-distance correlation function for the alanine dipeptide with
biased potentials. The black and red lines correspond to the results from REM
and REST simulations, respectively. (Inset) The magnified plot in y direction.
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with a somewhat stronger protein–water interaction, the latter
being adjustable by a different choice of bm.

One very feature of REST that may prove useful in the study
of more complex systems is that the solvent (or whatever we
consider to be the bath) will be unlikely to undergo an extreme
structural transformation (like a phase transformation), even at
the highest temperatures used. The contrary is true in REM,
where, at high temperatures, it is possible to have large-scale
configurational changes. Should that happen, the acceptance
probability for swapping the configurations of a replica lower in
temperature with one above this temperature will yield a van-
ishing acceptance probability and will thus destroy the ergodicity
of REM.

REST should be useful for complex systems containing a large
molecule of interest embedded in a matrix dispersed or dissolved
in water. Because the upper temperature is chosen to surmount
barriers, it might be sufficiently high that the matrix would
collapse. Taking the water and matrix as the bath and the protein
as the system, REST will leave the matrix intact, whereas REM
might lead to the destruction of the matrix. An example would
be a flexible molecule embedded in a detergent micelle or a
protein embedded in a membrane and surrounded by a salt

solution. One might then take the bath to be the micelle (or
membrane) plus water and the system to be the flexible molecule
(or protein). In REM, the micelle (or membrane) would fall
apart at high temperatures but not in REST.

We believe that REST will prove to be a useful sampling
methodology for certain complex biochemical systems because it
reduces the number of processors required in REM, it gives
enhanced barrier-crossing like REM does, and, for the high-
temperature replicas, it avoids structural transitions in the
solvent or surrounding matrix, thereby enabling simulations of
complex systems (like membranes) that are not amenable to
application of ordinary REM.
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