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In modern-day simulations of many-body systems, much of the
computational complexity is shifted to the identification of slowly
changing molecular order parameters called collective variables
(CVs) or reaction coordinates. A vast array of enhanced-sampling
methods are based on the identification and biasing of these low-
dimensional order parameters, whose fluctuations are important
in driving rare events of interest. Here, we describe a new algorithm
for finding optimal low-dimensional CVs for use in enhanced-
sampling biasing methods like umbrella sampling, metadynamics,
and related methods, when limited prior static and dynamic in-
formation is known about the system, and a much larger set of
candidate CVs is specified. The algorithm involves estimating the
best combination of these candidate CVs, as quantified by a max-
imum path entropy estimate of the spectral gap for dynamics
viewed as a function of that CV. The algorithm is called spectral
gap optimization of order parameters (SGOOP). Through multiple
practical examples, we show how this postprocessing procedure
can lead to optimization of CV and several orders of magnitude
improvement in the convergence of the free energy calculated
through metadynamics, essentially giving the ability to extract
useful information even from unsuccessful metadynamics runs.
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With the advent of increasingly accurate force fields and
powerful computers, molecular-dynamics (MD) simula-

tions have become a ubiquitous tool for studying the static and
dynamic properties of systems across disciplines. However, most
realistic systems of interest are characterized by deep, multiple
free-energy basins separated by high barriers. The timescales
associated with escaping such barriers can be formidably high
compared with what is accessible with straightforward MD even
with the most powerful computing resources. Thus, to accurately
characterize such landscapes with atomistic simulations, a large
number of enhanced-sampling schemes have become popular,
starting with the pioneering works of Torrie, Valleau, Bennett,
and others (1–13). Many of these schemes involve probing the
probability distribution along selected low-dimensional collective
variables (CVs), either through a static preexisting bias or through
a bias constructed on-the-fly, that enhances the sampling of hard-
to-access but important regions in the configuration space.
The quality, reliability, and usefulness of the sampled distri-

bution is in the end deeply dependent on the quality of the
chosen CV. Specifically, one key assumption inherent in several
enhanced-sampling methods is that of timescale separation (14):
for efficient and accurate sampling, the chosen CV should en-
code all of the relevant slow dynamics in the system, and any
dynamics not captured by the CV should be relatively fast. For
most practical applications, there are a large number of possible
CVs that could be chosen, and it is not at all obvious how to
construct the best low-dimensional CV or CVs for biasing from
these various possible options. Success in enhanced-sampling
simulations has traditionally relied on an apt use of physical
intuition to construct such low-dimensional CVs. Identification
of good low-dimensional CVs is in fact useful not just for en-
hanced-sampling simulations such as umbrella sampling and

metadynamics but also for distributed computing techniques like
Markov state models (MSMs) (15), allowing one to significantly
improve the quality and reliability of the constructed kinetic
models. Last but not the least, having an optimal low-dimensional
CV can also help in the building of Brownian dynamics-type models
(16, 17). Indeed, given the importance of this problem, there exists a
range of methods that have been proposed to solve it (18–25).
In this communication, we report a new and computationally ef-

ficient algorithm for designing good low-dimensional slow CVs. We
suggest that the best CV is one with the maximum separation of
timescales between visible slow and hidden fast processes (14, 26).
This timescale separation is calculated as the spectral gap between
the slow and fast eigenvalues of the transition probability matrix (see
Theory for a rigorous definition and implementation of the spectral
gap as used in this work). The method is named spectral gap opti-
mization of order parameters (SGOOP). Note that, in this work,
henceforth we refer to the best CV in the singular, without loss of
any generality in the treatment. The notion of such a timescale
separation and spectral gap is at the core of not just enhanced-
sampling methods but also coarse-grained, multiscale, MSM, and
projection operator methods (15, 27–29).
Our algorithm involves learning the best linear or nonlinear

combination of given candidate CVs, as quantified by a maxi-
mum path entropy (30) estimate of the spectral gap for the dy-
namics of that CV. The input to the algorithm is any available
information about the static and dynamic properties of the sys-
tem, accumulated through (i) a biased simulation performed
along a suboptimal trial CV, possibly (but not necessarily)
complemented by (ii) short bursts of unbiased MD runs, or (iii)
by knowledge of experimental observables. Any type of biased
simulation could be used in i, as long as it allows projecting the
stationary probability density estimate on generic CVs without
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having to repeat the simulation. Metadynamics (31) provides this
functionality in a straightforward manner, and hence it is our
method of choice here. Given this information, we use the
principle of maximum caliber (30) to set up an unbiased master
equation for the dynamics of various trial CVs. Through a simple
postprocessing optimization procedure, we then find the CV with
the maximal spectral gap of the associated transfer matrix. For
instance, this optimization can be performed through a simu-
lated annealing approach that maximizes the spectral gap by
performing a robust global search in the space of trial CVs.
Through three practical examples, we show how our post-

processing procedure can lead to better choices of CVs, and to
several orders of magnitude improvement in the convergence of
the free energy calculated through the popular enhanced-sam-
pling technique metadynamics. Furthermore, the algorithm is
generally applicable irrespective of the number of stable basins.
Our algorithm essentially provides the much needed ability to
extract useful information about relevant CVs even from un-
successful metadynamics runs. In addition to use in free-energy
sampling methods, the optimized CV can then also be used in
other methods that provide kinetic rate constants (32, 33). We
expect this algorithm to be of widespread use in designing CVs
for biasing during enhanced-sampling simulations, making the
process significantly more automatic and far less reliant on
human intuition.

Theory
Let us consider a molecular system with N atoms at temperature
T. We assume there exists a large number d of available order
parameters with 1 � d � N, collectively referred to as fΘg, such
that the dynamics in this d-dimensional space is Markovian.
These could be intermolecular distances (18), torsional angles,
solvation states, nucleus size/shape (34), bond order parameters
(35), etc. The identification of such order parameters poses an-
other complicated problem, but as routinely done in other
methods aimed at optimizing CVs (15, 18, 24), we assume such
order parameters are a priori known.
There are several available biasing techniques that can sample

the probability distribution of the space fΘg, and even calculate
the rate constants for escape from stable states in this space (32).
All of these techniques are feasible only for a very small number
of CVs whose number is much smaller than d—typically one to
three. These are the order parameters whose fluctuations are
deemed to be most important for the system or process being
studied, and by building a fixed or time-dependent bias of these
CVs, one should be able to determine the true unbiased proba-
bility distribution of the full space fΘg. However, how does one
decide what is an optimal low-dimensional subset or combination
of the available order parameters? This dimensionality reduction
is of central importance to methods such as umbrella sampling,
metadynamics, and others, the answer to which decides the speed
of convergence of the biased simulation, or if it will even ever
converge within practically useful simulation times.
The key idea in the current work is to perform enhanced

sampling (e.g., metadynamics) with a choice of trial CVs, com-
plemented by information gathered from short bursts of un-
biased MD simulations and experimental observables when
available, to iteratively improve the CVs. The maximum caliber
framework (30, 36, 37), which is a dynamical generalization of the
hugely popular maximum entropy framework (38), provides a
method for accomplishing this, which is now used in fields as diverse
as biology, signal processing, and image reconstruction. In this,
given certain information about the system at hand, one builds a
model that is consistent with our ignorance of unknown or missing
information. The maximum caliber approach (30) is a generaliza-
tion of this approach to dynamics, with similar underlying ideas.
We start by choosing a trial CV given by ffΘg, where f maps

the space fΘg onto a lower-dimensional space. The space along

this trial CV ffΘg is then discretized in grids labeled n. This CV
could be multidimensional, with n then indexing the multidimen-
sional grids. Let pnðtÞ denote the instantaneous probability of the
system being found in grid n. For the sake of clarity, we assume that
f is a linear combination of fΘg, i.e., f = c1Θ1 + c2Θ2 + . . . + cdΘd.
The treatment developed here applies to nonlinear combinations
as well, which we show in the examples. Then, for a fixed Δt, we
write a master equation:

ΔpnðtÞ
Δt

=ΣmkmnpmðtÞ−ΣmknmpnðtÞ≡ΣmKnmpmðtÞ, [1]

where knm is the rate of transition from grid n to m per unit time
(39). The matrix K, where Knm = kmn, is the entirety of all these
rates. If the dynamics of ffΘg is Markovian, then the matrix Ω of
transition probabilities is given for small Δt by the following:

Ω= expðKΔtÞ≈ I+KΔt, [2]

and should not depend on the value of Δt used in Eq. 1. This
provides a self-consistency check of whether or not the CV so
generated is Markovian. Similar to K, the matrix Ω has terms
Ωnm =ωmn, where ωab = kabΔt for a≠ b and the normalization
Σbωab = 1 is satisfied. In the maximum caliber approach, one uses
all available stationary state and dynamical information to con-
struct probabilities of micropaths. Instead of defining the entropy
as a function of microstate probabilities as in information theory
and statistical thermodynamics (38), one now defines an entropy S
as a functional of the probabilities of micropaths, which is essen-
tially a path integral. For the Markovian process of Eq. 1 (40):

S=−Σabpaωab logωab. [3]

Note that ωab are not rate constants but transition probabilities of a
Markov model that is discrete in both space and time. Path ensem-
ble averages of time-dependent quantities Aab can now be calcu-
lated as follows (30), where the subscripts a,b denote grid indices:

hAi=ΣabpaωabAab. [4]

The path entropy of Eq. 3 incremented by quantities accounting
for constraints placed by our knowledge of observables hAni,
where n runs over the number of known observables, and some
other constraints such as detailed balance, is collectively called
caliber (30). As derived for instance in ref. 37, maximizing the
caliber is then equivalent to being least committal about missing
dynamic and static information, with the end result being that
one obtains a relation between the grid-to-grid rates and the
stationary probabilities as follows:

ωab =
ffiffiffiffiffi
pb
pa

r
e−ΣiρiA

i
ab . [5]

Here, i runs over the number of available dynamical pieces of
information, and ρi is the Lagrange multiplier for the associated
constraint. As a special case, consider when the only observable
at hand is the mean number of transitions hNi in observation
interval Δt over the entire gridded CV (37). hNi would be a
measure of the total number of jumps in the time Δt between
any two points on the gridded CV. In this case, the above equa-
tion takes a particularly simple and useful form:

ωab =
ffiffiffiffiffi
pb
pa

r
e−ρ. [6]

Eqs. 5 and 6 are the two central equations in this work upon
which the estimation of the spectral gap of the dynamics is based.
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Interestingly, an equation similar to Eq. 6 has been previously
derived by Bicout and Szabo by assuming a constant position-
dependent diffusivity (41).

Spectral Gap. Our method involves calculating for various trial
CVs the spectral gap of the associated transition probability
matrix Ω. Let fλg denote the set of eigenvalues of Ω, with
λ0 ≡ 1> λ1 ≥ λ2 . . .. The size of this set depends on the dis-
cretization interval of the trial CV f—for the purposes of im-
proving CVs, we found very little sensitivity to the details of the
discretization. The spectral gap is then defined as λs − λs+1, where
s is the number of barriers apparent from the free-energy esti-
mate projected on the CV at hand, that are higher than a user-
defined threshold (typically J kBT). Estimating the Lagrange
multiplier is computationally expensive, so a first estimate for
maximizing the spectral gap is performed using Eq. 6 where the
Lagrange multiplier ρ need not be computed, because it sets only
the overall timescale but does not influence the spectral gap.
Also note that, in the limit of small Δt, the matrix Ω will be di-
agonally dominated (42), and to estimate the spectral gap one
needs only an accurate estimate of relative local free energies.
There is a wide scope for creativity in choosing the dynamic

observables to be used to constrain the caliber for calculating the
spectral gap. For instance, one could consider the average
number of transitions per unit time not on the entire grid as we
do here, but separately in different parts of the configuration
space. One could even include experimental observables such as
correlation functions from scattering experiments. More static or
dynamical information (41, 43–47) simply introduces additional
Lagrange multipliers and can be treated through Eq. 5. This can
be done if the intention is to calculate an accurate kinetic model
with correct estimates of the dominant eigenvalues and not just
the spectral gap. For detailed balance to be satisfied through Eq.
5, the observable must be symmetric or be symmetrized on the
grid, i.e., Aab =Aba.

Algorithm. We are now in a position to describe the actual al-
gorithm. It comprises the following two steps in a sequential
manner, and can be improved by iterating:

i) Perform metadynamics along a trial CV f = c1Θ1 + c2Θ2 + . . . +
cdΘd to get a crude estimate of the stationary density.

ii) As postprocessing, perform optimization in the space of mixing
coefficients fc1, c2 . . . cdg to identify the CV with the maximal
spectral gap. The reweighting functionality (31) of metadynamics
allows projection of free-energy estimates on different CVs with
minimal computational effort, and is used to calculate the Ω
matrix through Eq. 6 (see ref. 31 and Supporting Information

for a summary of reweighting in metadynamics). We elaborate
on the optimization procedure details in the next section
(Illustrative Examples).

The optimization procedure gives the best CV as the one with
highest spectral gap, given the information at hand. As in any
maximum entropy framework (38), the better the quality of this
information, the more accurate will be the spectral gap. How-
ever, even with very poor quality information, as we show in the
examples, the algorithm still leads to significant improvements in
the CV. Furthermore, whether or not the CV is Markovian can
also be checked by repeating step ii for different time intervals Δt
of observation and determining whether the spectral gap is in-
dependent of the value of Δt.
It is natural to compare our approach with MSM. The simi-

larity between these two approaches begins and ends with the
construction of the master equation Eq. 1. A MSM builds this
equation by constructing extensive unbiased simulations and
attempts to obtain all relevant eigenvalues. Ours is a maximum
path entropy-based approach that uses biased and unbiased
simulations to obtain the difference between the slow and fast
eigenvalues rather than the exact spectrum of eigenvalues.

Illustrative Examples
Model 2D Landscapes: The De Leon–Berne Potential. The first illus-
trative example for SGOOP is a model two-state potential in-
troduced by De Leon and Berne (48). To sample this landscape
at temperature kBT = 0.1, we perform metadynamics with path
CVs, a class of widely used CVs that can capture nonlocal and
nonlinear fluctuations (see Supporting Information and ref. 49 for
details). Path CVs require specification of a series of landmarks
between two points in configuration space, where the landmarks
can be described in terms of generic order parameters. Fluctu-
ations in the system can then be enhanced in the direction along
and perpendicular to these landmarks, leading to efficient ex-
ploration of the space. In Fig. 1A, we show the 2D potential
along with several possible path CVs imposed on it. We first
perform a short trial metadynamics run biasing the y coordinate.
By postprocessing this, we generate the spectral gaps for various
paths using Eq. 6 (Fig. 1B). By comparing Fig. 1A against Fig.
1B, it is clear how the path with maximum spectral gap is the
minimum energy pathway passing through the saddle point. In
this case, although this result could have simply been obtained
through nudged elastic band-type calculations (50), the point is to
use this example to develop intuition for the method. Also note
that moving around the best path to others that are a bit distant
from it, does not lead to much change in the spectral gap. This is
consistent with the observation that, in several enhanced-sampling

Fig. 1. In A, we provide the 2D De Leon–Berne potential (48) with several candidate path CVs imposed on it. Black circles denote the corresponding
landmarks (49). See Supporting Information for further details of path CVs. In B, the corresponding eigenvalues λ1 and λ2 (i.e., excluding the stationary ei-
genvalue λ0) are shown for each of these paths. As per the spectral gap given here by λ1 − λ2, we identify two possible good paths marked with black circles in
B and correspondingly with thicker black lines in A. Energy is in absolute units and kBT = 0.1.
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methods such as metadynamics or umbrella sampling (3, 7, 8), the
CV need not be precisely the true reaction coordinate, as long as
it has a sufficient overlap with it (49, 51).
In Supporting Information, we provide a similar analysis on

another 2D model potential but with three states (Fig. S1). The
conclusions are similar.

Five-Residue Peptide. Now, we move to a more complex system,
which has also been considered as a test case for new enhanced-
sampling methods (52) to establish their usefulness. This is the five-
residue peptide Ace–Ala3–Nme in vacuum (Fig. 2A), where there
are six possibly relevant dihedral torsion angles. Here, we ask the
question: what is the best possible 1D linear combination of these
six dihedrals that we could bias but still maximally enhance
exploration of the 6D space comprising all of the dihedrals?
In this problem, for periodicity-related numerical reasons, we

bias a reference cosine defined by cos(θ− θ0), where θ is one of
the six dihedral angles, and θ0 is some reference value whose
optimal choice we do not know a priori. Through our algorithm
we then seek to identify:

i) The best choice of mixing coefficients fcg to use in trial CV
f = c1Φ′

1 + c2Ψ′
1 + c3Φ′

2 + c4Ψ′
2 + c5Φ′

3 + c6Ψ′
3, where we keep

the Euclidean norm of fcg= 1, and for any angle θ the prime
denotes the transformation θ ↦ 0.5+ cosðθ− θ0Þ;

ii) The best choice of θ0, kept same for all six dihedrals.

We start with the trial CV where all members of fcg are the
same subject to Euclidean norm of fcg = 1, and an arbitrary
choice of θ0 = 0.75 radians is taken. A short metadynamics run is
performed biasing this trial CV. See Supporting Information for
details of the metadynamics and MD parameters (53–55), and
Fig. 3A for the metadynamics trajectory used for spectral gap
optimization. Based on the free-energy estimate generated from
this run, a simulated annealing procedure is performed in the
space fcg for various θ0 values. Starting from the spectral gap
estimated using Eq. 6 for the trial CV, this involves executing
Metropolis moves in the fcg space with an attempt to find the
global maxima of the spectral gap. In Fig. 2, B–D, respectively,
we show how the spectral gap is increased by the simulated
annealing procedure, and the corresponding best estimate of
fc, θ0g. The algorithm suggests the minimal role of the angles

Fig. 2. (A) The five-residue peptide studied in this work. The six dihedral angles are marked. (B) The output of the simulated annealing algorithm run
separately for different θ0 values (blue circles). The starting value with the trial choice of CV is marked with a magenta-colored star. (C) The trial (magenta)
and optimized (blue) mixing coefficients fcg for the six dihedrals. (D) The spectrum of eigenvalues for dynamics projected on the trial (magenta) and op-
timized (blue) CVs. A distinct improvement can be seen in the spectral gap. Process index i refers to the ith index in the transition matrix.

Fig. 3. A and B show trajectories obtained from metadynamics biasing the trial CV and the optimized CV, respectively. The first 20 ns of the trajectory shown
in A was used to generate the optimized CV for B. A very pronounced improvement in the enhancement of sampling can be seen with the optimized CV.

2842 | www.pnas.org/cgi/doi/10.1073/pnas.1600917113 Tiwary and Berne

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600917113/-/DCSupplemental/pnas.201600917SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600917113/-/DCSupplemental/pnas.201600917SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600917113/-/DCSupplemental/pnas.201600917SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1600917113


Ψ1,Ψ2,Ψ3 as can be seen through their relatively low weights
(52) (Fig. 2C). The spectrum of eigenvalues for dynamics pro-
jected on the trial (magenta) and optimized (blue) CVs, along
with respective spectral gaps is provided in Fig. 2D. Fig. 3, A and
B, shows the metadynamics trajectories for the three dihedral
angles Φ1,Φ2,Φ3, with the trial and the optimized CVs, re-
spectively. A very pronounced improvement in the quality of
sampling can be seen. Fig. 4 A–C shows the rate of convergence
of the error of the estimated free energy (31) with respect to
reference values from other approaches (52), through metady-
namics runs performed with each of the trial and optimized CVs,
respectively. The error metric is the same as in refs. 52 and 56,
and is calculated for all points within 25 kJ of the global mini-
mum in the respective 1D free energy. The behavior is robust
with respect to the choice of this threshold value. As can be seen,
the optimized CV, even though it was obtained on the basis of a
very poorly converged and short (20-ns) metadynamics run, leads to
several orders of magnitudes improvement in the rate at which the
free energies converge. Interestingly, iterating the algorithm with
the improved 1D CV did not lead to much improvement in the
sampling, reflecting that the optimized coefficients fcg are close to
the best that can be achieved with a 1D CV for this problem.

Discussion
To conclude, we have introduced a new approach named SGOOP
for improving the choice of low-dimensional CVs for biasing in
enhanced sampling in complex systems. This is accomplished
through the use of a maximum caliber-based approach, where we
build kinetic models for different CVs. For each CV, we separate
out the slow motions that involve crossing barriers, from hidden
or orthogonal motions. Through a spectral gap maximization, we
make the orthogonal fluctuations as fast as possible, compared
with the slow motions apparent in the CV. The algorithm is it-
erative in spirit and attempts to learn how to improve CVs based
on available stationary and dynamic data. We also provide

several proof-of-concept practical examples to establish the po-
tential usefulness of the method. For model 2D potentials, the
algorithm was shown to yield the minimum energy pathway. For
a small peptide, we found very significant improvement in de-
termining the best 1D CV from six possible functions with no ad
hoc or intuition-based tuning. Future work will use this algorithm
to treat a range of problems, especially involving protein–ligand
unbinding. For instance, the displacement of water molecules
and protein flexibility are often slowly varying order parameters
in unbinding (33, 51, 57, 58), but do we really need to bias one or
both of these for the purpose of sampling? Another issue to be
considered in future work is whether we can use these optimized
CVs to obtain reliable dynamical information from metady-
namics (25, 32), including the very important off-rate for ligand
unbinding (51, 59).
One central limitation of this algorithm is having to specify

possibly a large number of order parameters that may be im-
portant. However, for many physical problems, one does have a
sense of which order parameters could be at work, and this is
where we expect this algorithm to be of tremendous use. Another
obvious limitation is with systems devoid of a timescale separation
(60)—for example, in glassy systems where there is an effectively
continuous spectrum of eigenvalues with no discernible timescale
separation. However, the dynamics of many complex and real-
world molecular systems does thankfully show a timescale sepa-
ration between few relevant slow modes and remaining fast ones
(62), and we expect our algorithm to be of help in unraveling the
thermodynamics and dynamics in such systems.
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Metadynamics
Here, we briefly describe metadynamics and the related concepts
that are used in the present work.

Reweighting. The reweighting operation in metadynamics is central
to this work, as it allows projecting probability densities on arbitrary
collective variables (CVs) without having to repeat the simulation. A
more detailed discussion can be found in ref. 31. In metadynamics,
one constructs a time-dependent bias V (s,t) as a function of some
low-dimensional CV s (R), where R denotes the configurational
coordinates. At time t, the biased probability distribution for R can
then be written as follows:

PðR, tÞ= e−β½UðRÞ+V ðsðRÞ, tÞ�R
dR  e−β½UðRÞ+V ðsðRÞ, tÞ�, [S1]

where UðRÞ is the potential energy of the system (31). This in
turn can be rewritten as follows:

PðR, tÞ=P0ðRÞ  e−β½V ðsðRÞ, tÞ−cðtÞ�, [S2]

where P0ðRÞ is the unbiased Boltzmann probability density and
the function cðtÞ is defined as follows:

cðtÞ= 1
β
log

R
dse−βFðsÞR

dse−βðFðsÞ+V ðs, tÞÞ. [S3]

β is the inverse of the temperature multiplied by the Boltzmann
constant kB. The time-dependent function cðtÞ is an estimator for
the reversible work done by the bias. As shown in ref. (31), it can
be calculated by substituting the running estimate of FðsÞ (31)
into Eq. S3 as follows:

cðtÞ= 1
β
log

R
ds exp

h
γ

γ − 1 βV ðs, tÞ
i

R
ds exp

h
1

γ − 1 βV ðs, tÞ
i. [S4]

Here, γ is the bias factor in well-tempered metadynamics that
modulates the decay of hill height each time a point is revisited
(8). Using Eq. S4 in Eq. S2, we can then easily calculate the
distribution of any generic observable OðRÞ over the unbi-
ased ensemble from the metadynamics trajectory through the
following:

hOðRÞi0 =
�
OðRÞeβ½V ðsðRÞ, tÞ−cðtÞ�

�
. [S5]

Path CVs. In the path CV framework (2, 49), one assumes that
initial and final states A and B are known. One then specifies a
series of landmarks between these two points, which can be
described in terms of generic order parameters in some high-
dimensional space R. This series of landmarks then denotes a
trial path connecting the initial and final states in the space R, which
we call S0ðtÞ. Two variables s and z are then introduced, defined as
follows, that, for a given series of landmarks, respectively denote
distances along and perpendicular to the trial path:

sðRÞ= lim
λ→∞

R 1
0 dt  t  e−λkSðRÞ−S0ðtÞk2R 1
0 dt  e−λkSðRÞ−S0ðtÞk

2 , [S6]

zðRÞ= lim
λ→∞

0
@−

1
λ
log

Z 1

0
dt  e−λkSðRÞ−S0ðtÞk

2

1
A. [S7]

In practice, the paths are discretized (i.e., a finite number of
landmarks are chosen), and λ is taken as the inverse distance
between points in the path (49).

Simulation Setup for Metadynamics Calculations
All peptide simulations are performed with the GROMACS 4.5.4
MD package (54), patched with the PLUMED 2.2 plugin (53).
The production runs were NVT (constant number, volume,
temperature) with a temperature of 300 K implemented with the
stochastic velocity rescaling thermostat (55). An integration time
step of 2 fs was used for all runs. The model potentials were
simulated in an in-house code.
For De Leon–Berne potential (main text), Gaussian hills were

added every 50,000 integration time steps, with a starting height
of 0.1 kBT, width of 0.1 unit, and tempering factor (8) of 6.
For the five-residue peptide (main text), Gaussian hills were

added every 400 integration time steps, with a starting height of
1.7 kJ/mol, width of 0.03 units, and tempering factor (8) of 15.
For the three-state potential (SGOOP Optimization Details),

Gaussian hills were added every 50,000 integration time steps,
with a starting height of 0.4 kBT, width of 0.2 unit, and tempering
factor (8) of 15.

SGOOP Optimization Details
For the model potentials, the maximum spectral gap was ascer-
tained by tabulation against candidate CVs. For the peptide,
simulated annealing was performed with negative of the spectral
gap as the objective function. A starting temperature of 2.5 units
was used for the Metropolis moves, with a geometric cooling
schedule, where at each step the temperature was reduce by a
factor of 0.995.

SGOOP on a 2D Three-State Potential
Similar to the De Leon–Berne potential described in the main
text, we tested SGOOP as a proof of principle on another 2D
potential but with three states at temperature kBT = 0.15. This
potential can be seen in Fig. S1A, along with five candidate path
CVs imposed on it (49). The functional form of this potential is
given by the following:

V ðx, yÞ=−3.0e−ðx+2.8Þ
2−ðy−2.5Þ2 − 3.7e−ðx+0.1Þ

2−ðy−3.5Þ2

− 3.7e−ðx+1.4Þ
2−ðy−0.3Þ2 + 0.005

�
ðx+ 1Þ6 + ðy− 1Þ6

�
.

We first perform short trial metadynamics run biasing the y
coordinate. By applying SGOOP, we obtain spectrum of eigen-
values corresponding to trial paths, and the corresponding
spectral gaps (Fig. S1B). As can be seen, the maximal spectral
gap so obtained is approximately for the minimum energy
pathways on this landscape filtering out the bad paths.

Tiwary and Berne www.pnas.org/cgi/content/short/1600917113 1 of 2

www.pnas.org/cgi/content/short/1600917113


Fig. S1. (A) Three-state potential with five trial path CVs imposed on it, and (B) corresponding spectral gaps. Energies are in absolute units and simulation
temperature was kBT = 0.15. In both figures, paths are to be counted in the same order, and the second and third paths counting from the left have the
maximal spectral gaps. These can be seen to be roughly the minimum energy pathways.
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