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The folding free energy landscape of the C-terminal �-hairpin of
protein G is explored using the surface-generalized Born (SGB)
implicit solvent model, and the results are compared with the
landscape from an earlier study with explicit solvent model. The
OPLSAA force field is used for the �-hairpin in both implicit and
explicit solvent simulations, and the conformational space sam-
pling is carried out with a highly parallel replica-exchange method.
Surprisingly, we find from exhaustive conformation space sam-
pling that the free energy landscape from the implicit solvent
model is quite different from that of the explicit solvent model. In
the implicit solvent model some nonnative states are heavily
overweighted, and more importantly, the lowest free energy state
is no longer the native �-strand structure. An overly strong salt-
bridge effect between charged residues (E42, D46, D47, E56, and
K50) is found to be responsible for this behavior in the implicit
solvent model. Despite this, we find that the OPLSAA�SGB energies
of all the nonnative structures are higher than that of the native
structure; thus the OPLSAA�SGB energy is still a good scoring
function for structure prediction for this �-hairpin. Furthermore,
the �-hairpin population at 282 K is found to be less than 40% from
the implicit solvent model, which is much smaller than the 72%
from the explicit solvent model and �80% from experiment. On
the other hand, both implicit and explicit solvent simulations with
the OPLSAA force field exhibit no meaningful helical content
during the folding process, which is in contrast to some very recent
studies using other force fields.

Protein-folding and -unfolding studies are of great current in-
terest in molecular biology (1, 2). Experiments that probe

proteins at different stages of the folding process have helped to
elucidate kinetic mechanisms and the thermodynamic stabilities of
folding (3–6). However, many of the details of protein-folding
pathways remain unknown. Computer simulations performed at
various levels of complexity ranging from simple lattice models,
models with implicit solvent, to all-atom models with explicit
solvent can be used to supplement experiment and fill in some of
the gaps in our knowledge about folding pathways. Because explicit
solvent simulations require enormous amounts of CPU time, many
recent studies have been carried out with implicit solvent models
(7–10). However, it is still an open question as to how well these
implicit solvent models can predict the thermodynamics as well as
the kinetics of protein folding. It will be very interesting to
determine whether implicit solvent models can reproduce either the
results from explicit solvent simulations or experimental results.

The C terminus �-hairpin of protein G has received much
attention recently on both the experimental and theoretical fronts
(3–6, 11–16), because it is believed to be one of the smallest
naturally occurring systems that exhibit many features of a full-size
protein and also because it is a fast folder (folds in �6 �s).
Understanding the folding of key protein secondary structures such
as the �-sheet and the �-helix may provide a foundation for
understanding folding in more complex proteins. The breakthrough
experiments by the Serrano (3, 4) and Eaton groups (5, 6) recently
established the �-hairpin from the C terminus of protein G as the
system of choice for studying �-sheets in isolation. These pioneering
experiments have inspired much theoretical work on this system
using both explicit and implicit solvent models (11–14, 17). For

example, Pande and coworkers have studied the kinetics of this
�-hairpin with the generalized-Born (GB) continuum solvent
model (12). Lazaridis and Karplus have explored the free energy
landscape using the CHARMM force field (CHARMM19) with a
continuum solvent model EEF1 (10). Very recently explicit solvent
simulations have also been used to study this system. Garcia and
Sanbonmatsu (14) have studied the free energy landscape of this
system in explicit solvent using the AMBER force field (AMBER94)
with a short cutoff (9 Å) in the electrostatic interactions. Berne and
coworkers (18) have also explored this system with the OPLSAA
force field and explicit solvent with no cutoffs in the electrostatic
interactions by using the particle-particle particle-mesh Ewald
(P3ME) method (19). It is of great interest to compare the free
energy landscape calculated using continuum solvent models to that
calculated using explicit solvent models. For such comparisons to be
self-consistent, it makes sense to use the same force field for the
protein (and continuum solvent model parameters parameterized
to that force field as well) and at the same time eliminate the
sampling issue by using large-scale simulations such as the replica-
exchange method (REM; ref. 20). It should be noted that periodic
boundary conditions in the explicit solvent simulations may intro-
duce some artifacts in solvation free energies (21, 22) due to the
periodicity, but for large enough primary cells and neutral systems
such as the one used in our simulations, these artifacts are expected
to be very small.

In this article, we use a highly parallel REM and the surface-
generalized Born (SGB; ref. 9) implicit solvent model to explore the
free energy landscape, and the results are compared with our earlier
explicit solvent simulations. A total of 18 replicas are simulated with
temperatures spanning 270–690 K, which has the same tempera-
ture coverage as the previous explicit solvent simulation (18),
although more replicas (64 replicas) have to be used in the explicit
solvent simulation (18). Because the force field is normally param-
eterized at room temperature, we do not expect it to yield accurate
results for higher temperatures; nevertheless, these high-
temperature replicas permit the system to cross the energy barriers
rapidly and thus lead to efficient sampling at the lower tempera-
tures. It is found that the free energy landscape for the continuum
solvent model is quite different from that of the explicit solvent
model. Some of the nonnative states are heavily overweighted in the
continuum solvent model as compared with the explicit solvent
model, and more importantly, the lowest free energy state from the
continuum solvent model is no longer the native �-strand structure.
It is found that the continuum solvent model over-stabilizes salt
bridges compared with the hydrophobic interactions between hy-
drophobic residues and thus in large part leads to the heavy
population of this nonnative state. Furthermore, the �-hairpin
population at 282 K is found to be less than 40% for the continuum
model, as compared with 72% for the explicit solvent model and
�80% for experiment. On the other hand, both our continuum and
explicit solvent simulations with the OPLSAA force field predict no
meaningful helical content during the folding process, in agreement
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with experiment but in contrast to recent simulations using the
AMBER force field and the OPLS united atom force field (12, 14).

Methodology
The REM has been implemented in the context of the molecular-
modeling package IMPACT (19, 23). Replicas are run in parallel at
a sequence of temperatures. Periodically, the configurations of
neighboring replicas are exchanged, and acceptance is determined
by a Metropolis criterion that guarantees detailed balance. The
acceptance criterion used in REM is identical to that in jump-
walking methods (23). Because the high-temperature replica can
traverse high-energy barriers, there is a mechanism for the low-
temperature replicas to overcome the quasiergodicity they would
encounter in a one-temperature walk. The replicas themselves can
be generated by Monte Carlo (MC), hybrid MC (HMC; ref. 24) as
was used in our recent implementation of jump walking and smart
walking (23), or molecular dynamics (MD) with velocity rescaling
as used by Sugita and Okamoto (25). The HMC method, which uses
MD to generate possible conformations, is often called ‘‘bad MD
but good MC’’ (24). The HMC method is adopted in this study for
the sampling of each of the replicas. In the previous explicit solvent
simulation (18) we used Sugita and Okamoto’s approach, i.e., MD
with velocity rescaling. Both approaches probably are equally good
for this study, but in general HMC scales badly with system size and
thus is more suitable for smaller systems such as the protein in
continuum solvent. It should be recognized that MD simulations of
continuum solvent models often omit the required surface-area
gradients. Our implementation of HMC allows us to bypass this
problem.§ It should be pointed out, though, that since all REM uses
the Metropolis criterion for replica exchanges, they are essentially
MC methods not MD methods. Thus the MD timings reported here
and also in previous REM studies (14, 18, 25) should not be taken
as direct kinetic measurements.

The REM itself can be summarized as the following two-step
algorithm:

1. Each replica i (i � 1,2,. . . ,M) at fixed temperature Tm (m �
1,2,. . . ,M) is simulated simultaneously and independently for a
certain number of MC or MD steps.

2. Pick a pair of replicas, and exchange them with the acceptance
probability

T�xi � xj� � � 1, for � � 0,
exp����, for � � 0, [1]

where � � (�i � �j)[V(xj) � V(xi)], �i and �j are the two
reciprocal temperatures, xi is the configuration at �i, xj is the
configuration at �j, and V(xi) and V(xj) are potential energies
at these two configurations, respectively. After the exchange,
go back to step 1.

In the present work, HMC is used in step 1, and all the replicas
are run in parallel on M processors (M � 18). In step 2, only
exchanges between neighboring temperatures are attempted,
because the acceptance ratio decreases exponentially with the
difference of the two � values.

The continuum solvent model adopted in this study is the SGB
model, which was developed by Friesner and coworkers (9). In
theory, SGB is basically the same as the original GB model of
Still et al. (8). The only difference is that SGB uses the surface
integral rather than the original volume integral in the single-
energy term in GB models (see below, Eq. 4), but it can be
proved easily that they are equivalent using Green’s theorem (9).

Of course, the parametrizations are different also. The SGB
model of Friesner and coworkers has been parameterized with
the OPLSAA force field to reproduce the experimental solvation
free energies for �200 small organic molecules (9, 26).

In typical GB models the total solvation free energy (8, 9) of
a protein is expressed as the sum of the ‘‘reaction field energy,’’
Urxn, and the ‘‘cavity energy,’’ Ucav, such that

USGB � Urxn � Ucav. [2]

In the SGB formulation, the total reaction field energy (consult
ref. 9 for more details) is expressed as

Urxn � �
i

Use�qi, ri� � �
i � j

Upr�qi, qj, ri, rj�, [3]

where the ‘‘single energy’’ Use is

Use � �
1

8	
�1�
i � 1�
o��

S

qk
2

�R � rk�4 (R � rk)�n�r�d2R,

[4]

where 
i is the dielectric constant for the interior of the solute
(for proteins, it is typically �1.0–4.0 in SGB; ref. 9), 
o is the
dielectric constant for outside water (78.5), and the pairwise
screened Coulomb energy is

Upr � �(1�
i�1�
o)
qiqj

�rij
2 � �ij

2e�D
, [5]

with parameter �ij � ��i�j (�i and �j are the Born radius) and
parameter D � rij

2�(2�ij)2.

Results and Discussion
The �-hairpin under study here is taken from the C terminus
(residue 41–56) of protein G (PDB ID code 2gb1). The 16-
residue �-hairpin is capped with the normal Ace and Nme
groups, resulting in a blocked peptide sequence of Ace-
GEWTYDDATKTFTVTE-Nme, with a total of 256 atoms. The
SGB continuum solvation model is used with a dielectric con-
stant of 2.0 for this small �-hairpin (assigning dielectric constants
for proteins can be very tricky; refs. 27 and 28). In this study, we
also tried 1.0 and 4.0, similar free energy contour maps are
obtained, and the general conclusions are basically the same (see
below). All the MD simulations are carried out with IMPACT (19,
23). A total of 18 replicas are simulated with temperatures
ranging from 270 to 690 K. Before the production run, a
conjugate gradient minimization is performed first for each
replica, and then a 100-ps MD equilibration is followed with
temperature ramping from 0 K to the specified temperature for
each replica. The final configurations of the above equilibration
then are used as the starting points in the 18 replicas. Each
replica is run for 2.0 ns for data collection. The replica exchanges
are attempted every 200 fs, and protein configurations are saved
every 80 fs, giving a total of 0.45 million configurations.

The optimal temperature distribution in REM should be
exponential, i.e., Tn � T0 exp(kn), where Tn is the nth temper-
ature, and T0 and k are constants that can be obtained easily by
running a few short trial simulations. In this study, we used a total
of 18 replicas with temperatures from 270, 282, 295, 310,. . . ,649
to 690 K (temperature gaps from 12 to 41 K). With this choice
we get an acceptance ratio of �40%. We observe that the
‘‘temperature trajectory’’ for one replica (e.g., replica 4 starting
at 310 K) visits all the temperatures many times during the 2-ns
MD run, and at a given temperature (e.g., 310 K) all the replicas
are also visited many times during the same MD run, indicating
that our temperature series are optimized reasonably.

§We generate MD moves using a Hamiltonian H0, and we accept or reject these moves using
the Metropolis criterion based on the true Hamiltonian, H. Thus in our treatment H � H0

would give rise to all the forces arising from surface-area gradients and other terms often
left out in continuum models. This procedure can be shown to sample the correct
distribution function Z�1 exp(��H) if the MD steps are reversible, as they are here.
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The free energy landscape is determined by first calculating
the normalized probability distribution function P(X) from a
histogram analysis (14) of either an MD or MC simulation. Since
the potential of mean force (PMF) W(X), or equivalently the free
energy, is related to this probability distribution function
through the relation

P�X� � Z � 1exp���W�X�	, [6]

where X is the specified choice set of reaction coordinates (RCs),
and Z is the partition function, the relative free energy change
corresponding to a change in RC can be obtained easily from

W�X2� � W�X1� � �RT ln
P�X2�

P�X1�
. [7]

In previous work we determined the free energy surfaces for the
�-hairpin in explicit water for different sets of RCs (18) including
the number of �-strand hydrogen bonds, the hydrophobic core
radius of gyration, the fraction of native contacts, and the radius
gyration of the entire peptide, the principal components (29), and
found the number of �-strand hydrogen bonds and the hydrophobic
core radius gyration to be very informative for this small �-hairpin.
Thus, here we compare the free energy contour maps as a function
of these two RCs for the explicit with the implicit solvent models.

Fig. 1 shows the comparison of the free energy contour maps
for explicit (a) and continuum solvent (b) simulations at 310 K.
The free energy is plotted against the two RCs mentioned above,
i.e., the number of �-strand hydrogen bonds (NHB

� ) and the
radius of gyration of the hydrophobic core (Rg

core). NHB
� is de-

fined as the number of backbone–backbone hydrogen bonds
excluding the two at the turn of the hairpin (18). Rg

core is the
radius of gyration of the side-chain atoms on the four hydro-
phobic residues, W43, Y45, F52, and V54. Surprisingly, the free
energy contour maps from these two models are quite different.
A closer look at the free energy contour map from the contin-
uum solvent model reveals several important features. (i) The
native state (NHB � 5.0 and Rg

core � 5.8 Å) is no longer the lowest
free energy state in the continuum solvent model. (ii) The most
heavily populated state, or the lowest free energy state, has no
meaningful �-strand hydrogen bonds (NHB � 0), and it also has
a slightly higher radius of gyration for the hydrophobic core

(Rg
core � 7.0 Å). It has �2.92 kcal�mol (4.75 RT) lower free

energy than the native state [since this state is similar to the
intermediate state H from explicit solvent model (11, 14, 18), we
also name it the H state for simplicity]. (iii) The overall shape of
the free energy contour map, however, is still an ‘‘L’’ shape,
which is the same as the contour map for the explicit solvent
simulation. This indicates that the folding process probably is still
driven by hydrophobic core collapse (18). In preliminary work
with the AMBER�GBSA (GB with surface area for cavity) model
(30) on this same �-hairpin, we also find large deviations from
the explicit solvent model (results will be published elsewhere).

To understand why the continuum solvent model favors nonna-
tive structures, we analyze the heavily populated state H in detail.
The structures belonging to that free energy basin are partitioned
into clusters defined such that a structure belongs to a cluster if it
has an rms deviation no larger than 1 Å from at least one other
structure in that cluster. This clustering algorithm allows us to
determine the unique structures in a free energy basin and the
populations in each cluster bin. Fig. 2 shows one of the most heavily
populated structures in state H (b), and for comparison we also
show one of the most heavily populated structures from the explicit
solvent model, which is really the native structure (a). Two inter-
esting observations emerge from the comparison of these two
structures. (i) The hydrophobic residue F52 is expelled from the
hydrophobic core in the continuum solvent, while it is well packed
with the other three hydrophobic residues (W43, Y45, and V54) in
the explicit solvent model. In other words, the four hydrophobic
residues form a well packed core in the explicit solvent but not in
the continuum solvent. (ii) In explicit solvent, the side chains of
charged residues extend fully into the solvent and thus are fully
solvated, whereas in the continuum solvent model, the charged
residues are clustered to form salt bridges between opposite
charges. For example, D46 and D47 form two salt bridges with K50
near the �-hairpin turn, and the C-terminal end residue E56 also
swings toward K50 to get closer to the positive charge. The net
effect of this salt-bridge formation brings the oppositely charged
residues, two near the �-hairpin turn (D46 and D47) and one from
the C-terminal end (E56), into closer contact with residue K50,
thereby expelling the hydrophobic residue F52 (in the middle of the
same �-strand as K50) from the hydrophobic core. This suggests
that the balance between electrostatic interactions and the hydro-

Fig. 1. Comparison of the free energy contour maps versus the number of �-sheet hydrogen bonds NHB
� and the hydrophobic core radius gyration Rg

core for
explicit (a) and implicit (b) solvent simulations at 310 K. A hydrogen bond is counted if the distance between two heavy atoms (N and O in this case) is less than
3.5 Å, and the angle NOH. . .O is larger than 150.0°. The free energy is in units of RT, and contours are spaced at intervals of 0.5 RT.
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phobic interactions is no longer preserved. The electrostatic inter-
actions between the charged residues (salt bridges) overwhelm the
hydrophobic interactions between the four hydrophobic core res-
idues. SGB overestimates the salt bridge, because the loss in ‘‘single
energies’’ (compare Eq. 4) when two oppositely charged groups
associate is not strong enough to overcome the gain in Coulombic
interactions. It is possible also that hydrophobic interactions be-
tween hydrophobic residues are underestimated in the SGB and GB
models.

Several other representative structures in the H state found from
clustering are shown in Fig. 3. These structures exhibit similar
behavior. The hydrophobic core again is destroyed in favor of more
stable electrostatic contacts. The erroneous formation of salt

bridges probably is exacerbated by the fact that counter ions are not
included in implicit solvent models. In explicit solvent simulations,
there are three counter ions (3 Na
), which will neutralize the
negatively charged residues somewhat (E42, D46, D47, and E56),
so that these negative charges may be partially screened, thus
reducing the direct electrostatic interactions that would lead to a
salt bridge. This is probably a small effect, because the Na
 ions are
free ions in solution. It should be pointed out that such salt effects
can be included in the Poisson–Boltzmann solvers (31) but are not
incorporated easily in GB-type models. As mentioned above, in the
continuum solvent model all charged groups interact through a
Coulomb potential with a small dielectric constant (between 1 and
4; ref. 9), and thus it is more favorable for oppositely charged
residues to come close together instead of being hydrated as they
would be in explicit water. One way to fix this is to invoke a stronger
dielectric screening (a much larger dielectric constant) in the
Coulomb interaction between charged residues as suggested by
Warshel and coworkers in another context (32). There is some
experimental evidence for this (28). Another possible approach to
fix this problem is to introduce a penalty function between oppo-
sitely charged residues as was suggested by Jacobson and Friesner
in connection with their loop geometry optimizations (unpublished
results). Of course the introduction of a larger dielectric constant
for charged residues similarly gives rise to a penalty, albeit a
different one than that introduced by Jacobsen and Friesner. Some
initial testing of the penalty function indicates that it fixes the
problem partially. We will address this question in more detail in a
separate publication, because it involves a complete refitting of the
model. It is possible that other continuum solvent models or other
implementations, such as AMBER�GBSA (preliminary results show
a similar effect), might exhibit this salt-bridge effect and may
require a similar correction and refitting.

To go one step further, we also calculate and compare the
�-hairpin population at various temperatures to the populations
determined experimentally from measurements of fluorescence
quantum yields (5). It is of interest to calculate this population in
both explicit and implicit solvent simulations. Klimov and Thirum-
alai (17) and Zhou et al. (18) have used the average fraction of
native contacts to estimate the �-hairpin population, and here we
follow the same approach. Experimentally, it is found that the
�-hairpin population at a low temperature of 282 K is �80%. From
calculating the average fraction of native contacts, we obtained 72%
�-hairpin population in the explicit solvent (18) and 39% in the
implicit solvent at 282 K. As expected, the �-hairpin population is
seriously underestimated in the implicit solvent model. Fig. 4 shows
the detailed population histogram at various fractions of native
contacts for both explicit and implicit solvent simulations at 282 K.
In explicit solvent, the most heavily populated states have 70–80%
of the native contacts, while in the implicit solvent the most heavily
populated states have only �30–40% of the native contacts. This
is because these heavily populated states (H state) in implicit
solvent have very different structures from the native state as
mentioned above. The number of native contacts formed in the H
state is significantly less than in the native state. Thus, one finds
reasonable populations of �-hairpin in the explicit solvent model at
these temperatures but not in the implicit solvent model. Other
dielectric constants (e.g., 
i � 1.0 and 4.0) have also been tried for
this peptide, and the �-hairpin population improves slightly (2–3%
from 
i � 2.0 to 
i � 4.0) with higher dielectric constants, but it is
still much too low in the implicit solvent model. This indicates that
the erroneous salt-bridge effect and the imbalance between polar
and nonpolar interactions in the implicit solvent model are not
eliminated. Thus the problem cannot be fixed easily by increasing
the overall protein dielectric constant, although it is possible that
introduction of a much larger dielectric screening of the charged-
residue interactions alone might well do the trick.

Similarly, one can calculate the hydrogen-bond populations
and compare them to NMR results. For example, NMR data

Fig. 2. Comparison of the representative structures with the lowest free
energy from the explicit (a) and implicit (b) solvent simulations. The hydro-
phobic residues (W43, Y45, F52, and V54) are represented by space-fill,
charged residues (E42, D46, D47, K50, and E56) are represented by sticks with
positively charged residues colored blue and negatively charged residues
colored red, and the rest are represented by ribbons. The implicit solvent
structure show very different features compared with the explicit solvent
structure (see text for details).

Fig. 3. Representative structures in the lowest free energy basin (state H) in
the implicit solvent from clustering with rms deviation (see text for details). All
of them show a partially broken hydrophobic core in the favor of stronger
electrostatic interactions between charged groups.
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show �42% of the �-sheet hydrogen-bond population at 310 K
(3, 4), whereas our previous explicit solvent simulation found
�45% average probability for the �-sheet hydrogen bonds, in
good agreement with the experiment (18). However, in the
implicit solvent model only �10% of the hydrogen-bond popu-
lation is found, a much smaller population than found in experi-
ment. It should be pointed out, nevertheless, that although the
explicit solvent model simulation predicts populations in reasonable
agreement with experiment near the biological temperatures, it
overestimates populations at higher temperatures (18). The tem-
perature dependence of the population in the implicit solvent is also
not correct; it underestimates the populations at lower tempera-
tures and overestimates them at higher temperatures.

Another interesting question regarding the folding process and
folding intermediates is: to what extent do �-helical structures form
during the folding process? Earlier experiments and theoretical
works both show no evidence for significant helical contents during
the folding process (3–5, 11, 13). However, very recently, in
simulations reported by Garcia and Sanbonmatsu (14) using the
AMBER (parm94) force field and explicit solvent model significant
helical content between 15 and 20% was found at the experimental
temperatures. Pande and coworkers also found significant helical

intermediates at 300 K from their kinetics simulation using an old
version of the OPLS united atom force field and the continuum
solvent GB model (no percentage is reported, but from the figures
in this paper it seems significant; ref. 12). These authors speculated
that significant helical content was not found in earlier simulations
because of insufficient sampling (12, 14), but our recent extensive
sampling with the explicit solvent model and OPLSAA force field
did not find any significant �-helical contents at all (18). It is
interesting to see whether this remains the case for the implicit
solvent simulation with the OPLSAA force field.

The number of residues in the �-sheet and the �-helix are
calculated with the STRIDE program (33). In the implicit solvent
simulations we find that the number of helical residues, including
both the �-helix and the 310-helix, is less than or equal to 3, and only
1–2% of the conformations exhibit helical content at all tempera-
tures, which is consistent with the results from our previous explicit
solvent simulation (18). Furthermore, almost all the helices we find
are 310-helices near the original �-turn (residue 47–49). Very few
conformations are found to have helical residues in places other
than the original �-turn. These findings also agree very well with the
results from the explicit solvent model simulations even though the
free energy contour maps are quite different. This suggests that the
helical content is determined mainly by the protein force field and
not by the solvation model in this case. This might make sense,
because helix formation is driven mainly by local hydrogen bonds
(local in residue sequence) and determined largely by torsional
potentials; while �-sheets involve global interactions (global in
residue sequence), and both hydrophobic interactions and hydro-
gen bonds contribute. Thus, �-sheet formation might be influenced
more by solvation models, while the formation of helices is probably
determined by protein force fields (largely by the torsions). As
mentioned above, the minimal helix content predicted by the
OPLSAA force field in both the explicit and implicit solvent models
is in marked contrast with the simulations based on use of the
AMBER94 force field (14) and an old OPLS united-atom force field
(12). The OPLSAA results seem to agree with experiments better
in this regard.

Many groups have been using the implicit solvent model and
particularly the OPLSAA�SGB energy (protein potential energy
plus the solvation free energy) as a scoring function for protein-
structure prediction (34–36). It thus would be of great interest

Fig. 5. The OPLSAA�SGB energy histogram for structures in state H from
implicit solvent simulation. The native structure is found to have the lowest
OPLSAA�SGB energy in this case (marked in the figure). The fact that the
native structure is found to have the lowest energy validates its use in protein
structure prediction as a scoring function, since the OPLSAA�SGB energy
scoring function still picks the native structure as the best structure.

Fig. 4. Comparison of the histogram population versus the fraction of native
contacts for explicit and continuum solvent models. In the explicit solvent
model, the most heavily populated states have �70–80% of native contacts,
while in the implicit solvent model, the most heavily populated states have
only �30–40% of the native contacts.
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to see whether the global OPLSAA�SGB energy minimum gives
the native structure even though the global free energy minimum
does not. We have minimized the structures clustered in state H
(lowest free energy state) and compared their OPLSAA�SGB
energies with the native structure. Fig. 5 plots the energy
histogram for these structures. The native structure is found to
have the lowest OPLSAA�SGB energy, �7.7 kcal�mol lower
than the lowest H-state structure. Most of the H-state structures
have energies �20 kcal�mol higher than the native structure.
The large number of conformations found for the H state gives
rise to its having a larger entropy and lower free energy than the
native state. We have checked other nonnative states, and they
show higher OPLSAA�SGB energies than the native structure
too. The fact that the native structure is found to have the lowest
OPLSAA�SGB energy validates its use in protein-structure
prediction for this �-hairpin. It remains to be seen whether this
behavior is manifested in other proteins. There is some indirect
evidence that this is the case from recent work (34) on detecting
native-like structures from a large number of decoys using the
OPLSAA�SGB energy-scoring function and other recent work
comparing a hydrophobic scoring function with OPLSAA�SGB
energies for three decoy sets (36). There seems to be good
correlation between the OPLSAA�SGB energy and the rms devi-
ation from the native structure. Thus, despite the salt-bridge
problem found above, implicit solvent models still may be useful in
providing scoring functions for protein-structure determination.
However, for such models to be useful in calculating thermody-
namic properties, in sampling or MD, one must devise better
implicit solvent models, because the current one overestimates the
stability of salt bridges, especially for protein-folding studies where
large conformational changes occur.

Conclusion
The free energy landscape of a �-hairpin folding in the implicit
solvent SGB model is studied in this paper, and the results are
compared with our earlier explicit solvent simulation. A highly
parallel REM consisting of 18 replicas spanning from 270 to 690
K has been used for the extensive sampling, and the OPLSAA
force field is used for the �-hairpin. The major conclusions are
summarized in the following section.

Surprisingly, the free energy landscape found for the implicit
solvent model is quite different from that found for the explicit
solvent model. Nonnative states are heavily overweighted in the
implicit solvent model, and more importantly, the lowest free

energy state for the implicit solvent model is not the native
�-hairpin structure. We found this to be the case not only for the
SGB model but also for the GBSA model implemented in
AMBER. A detailed analysis of the most heavily populated state
reveals that the electrostatic interaction between charged resi-
dues results in an erroneous salt-bridge effect. The strong salt
bridge amplifies the imbalance between the polar electrostatic
interaction and the nonpolar hydrophobic interaction, which in
turn results in a most heavily populated structure with one
hydrophobic residue, F52, expelled from the hydrophobic core
and the C-terminal end (negatively charged residue E56) swing-
ing toward the charged residue, K50. Furthermore, the �-hairpin
population at 282 K is estimated to be less than 40%, as
compared with 72% from the explicit solvent model and �80%
from experiment. We have suggested several possible fixes for
this problem. On another front, both the implicit and explicit
solvent simulations using the OPLSAA force exhibit no mean-
ingful helical content during the folding process, in agreement
with experiment and contrast to recent simulations by others
using either the AMBER (with explicit solvent) or OPLS united-
atom (with continuum solvent) force fields. The presence or
absence of helical content seems to be determined mainly by the
protein force fields and not by solvation models in this case.

The global free energy minimum structure found from the
implicit model is markedly different from that found from the
explicit solvent model. The former has a strong salt bridge with
one hydrophobic residue ejected from the hydrophobic core,
whereas the latter has the native �-hairpin structure. In addition,
thermodynamic averages will be quite different for these two
models. Despite this we find evidence that the global potential
energy minimum for the OPLSAA�SGB model gives the native
structure. Should this be true for other proteins, implicit solvent
models still may be quite useful for protein-structure determi-
nation as partially shown in some recent works on decoys.
However, much work remains to be done to establish a better
implicit solvent model that can handle slat bridges correctly. This
seems particularly important for protein-folding studies, because
large conformational changes are involved.
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