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Direct Observation of Stretched-Exponential Relaxation in Low-Temperature
Lennard-Jones Systems Using the Cage Correlation Function
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We report on the direct observation of stretched exponential relaxation in low-temperature monato
Lennard-Jones systems which were cooled slowly from the liquid phase to form crystals with a la
number of defects. We use the cage correlation function [E. Rabani, J. D. Gezelter, and B. J. Be
J. Chem. Phys.107, 6867 (1997)] which measures changes in atomic surroundings to observe t
stretched exponential relaxations. We obtain a distribution of hopping rates assuming that the or
of the Kohlrausch-Williams-Watts law is from static disorder in the distribution of barrier heights
[S0031-9007(99)09049-3]

PACS numbers: 66.30.–h, 02.70.Ns, 31.15.Qg, 61.43.Er
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We have recently developed a method to obtain es
mates of the hopping rate between basins for Zwanzig
model of self-diffusion [1], in atomic [2] and molecular
liquids [3]. We approached the problem by introducin
the cage correlation functionwhich measures the rate of
change of atomic surroundings in a computer simulatio
[2]. The hopping rate was associated with the long-tim
exponential decay of this function. The cage correlatio
concept has proven itself to be a useful tool in understan
ing the mechanisms of self-diffusion, and as such was us
to test the limits of the Zwanzig model [2,3], which is buil
on the foundation of Goldstein’s activated jump model [4
and also on the rearranging regions model due to Adam a
Gibbs [5].

What we report in this Letter is the use of the cage corr
lation function to study the hopping rate in Lennard-Jon
systems that were cooled slowly from the liquid phase a
formed crystals with a very large number of defects. The
systems are not amorphous, since we can observe lo
range translational order within our simulations. Howeve
we are interested in the kinetics of the hopping proce
at temperatures where the roughness of the potential
ergy surface is no longer a small perturbation and, f
one-component Lennard-Jones systems, this regime co
sponds to the defective crystal. Unlike the decay observ
in liquids, the cage correlation function shows a long-tim
stretched exponentialdecay in these “defective crystals.”
This relaxation behavior is similar to the behavior observe
in fragile glass-forming materials [6].

An atom’s immediate surroundings are best describ
by the list of other atoms in the liquid that make up th
first solvation shell. When a diffusive barrier crossin
involving the atom has occurred, the atom has left i
immediate surroundings. Following the barrier crossin
it will have a slightly different group of atoms surrounding
it. If one were able to paint identifying numbers on eac
of the atoms in a simulation, and kept track of the list o
numbers that each atom could see at any time, then
barrier crossing event would be evident as a substan
change in this list of neighbors.
0031-9007y99y82(18)y3649(4)$15.00
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The cage correlation function uses a generalized neig
bor list to keep track of each atom’s neighbors. If the lis
of an atom’s neighbors at timet is identical to the list
of neighbors at time0, the cage correlation function has
a value of1 for that atom. If any of the original neigh-
bors aremissingat time t, it is assumed that the atom
participated in a hopping event, and the cage correlatio
function is 0. The atom’s surroundings can also chang
due to vibrational motion but, at longer times, the cag
will reconstitute itself to include the original members.
Only those events which result in irreversible changes t
the surroundings will cause the cage to decorrelate at lon
times. The mathematical formulation of the cage correla
tion function was given in previous publications [2,3], and
is not repeated in this paper. A graphical representatio
of the cage correlation idea is shown in Fig. 1.

Averaging over all atoms in the simulation, and studying
the decay of the cage correlation function, gives us a wa
to measure the hopping rates directly from relatively sho
simulations. We have used the cage correlation functio
to predict the hopping rates in liquids [2,3], and below we
discuss the results for this correlation function when th
liquid is cooled well below the melting temperature.

We performed molecular dynamics simulations on
systems of particles interacting via the Lennard-Jone

FIG. 1. A sketch of the idea behind the cage correlatio
function. The black atom’s cage radius is denoted by the dotte
line. The grey atom was inside the black atom’s cage at tim
0 (left side), but has exited the cage at timet (right side). The
value of the cage correlation function is therefore0 in the right
figure even though four of the original five atoms stayed within
the cage radius.
© 1999 The American Physical Society 3649
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with parameters chosen to approximate the interactions
tween argon atoms (e ­ 0.2381 kcalymol, s ­ 3.405 Å)
[7]. Vcut is the standard Lennard-Jones potential evaluat
at the cutoff radiussrcut ­ 3sd, outside of which the po-
tential energy is set to0. The simulations were carried out
with 256 atoms at a reduced density ofrp ­ 1.0.

The simulations were started with the atoms in th
face-centered-cubic (fcc) lattice, and with velocitie
sampled from a Maxwell-Boltzmann distribution with a
temperature that was 4 times the melting temperatu
Following a 100 ps period of equilibration at this tem
perature, we quenched the liquid system to a temperat
just above the melting pointsTp ­ 1.25d with velocity
rescaling performed every 100 fs. The trajectory wa
allowed to stabilize at the new temperature for 100 p
and following this stabilization we quenched the syste
in steps of approximatelyDTp ­ 0.08 until the system
reachedTp ­ 0.33. For each temperature we allowed
an equilibration of 100 ps before we performed the ne
velocity quench. At the reduced temperatureTp ­ 0.5,
0.41, and 0.33, we started collecting data for7.2 ns runs.
This procedure was done separately for each memb
of an ensemble of50 trajectories which had different
initial configurations.

We calculated the pair distribution function,gsrd, for
each trajectory (and at each temperature). We usedgsrd
to classify the configurations, and find that there are tw
broadly defined types ofgsrd: One set of configurations
is “liquidlike” and has first and second solvation peak
which are characteristic of liquid simulations. These co
figurations are very unstable (i.e., they often crystalliz
if allowed to evolve for about 200 ps). The other fam
ily of configurations is “defective crystals” which have
an additional peak between the first and second solv
tion peaks. This peak is the signature of the fcc stru
ture, although the peak widths in the perfect crystal (
the same temperature) are narrower in comparison w
these configurations.

In the lower panel of Fig. 2 we showgsrd determined
from a typical trajectory for a defective crystal. Thos
trajectories that did not fit this profile were culled from
the group of 50 trajectories, leaving us with 15 trajectorie
for defective crystals. The defective crystal configuration
studied here are far from having a perfect fcc structur
Their average potential energy (see the upper panel
Fig. 2) when extrapolated toTp ­ 0 is higher than the
fcc potential energy, and the peaks ingsrd are much
broader than those of a perfect fcc structure at the sa
temperature. By examining several configurations w
have observed atomic level defects as well as larg
scale fault planes and twists between planes in the lo
packing arrangement.
3650
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FIG. 2. The lower panel shows the pair distribution functio
of the defective (solid line) and perfect fcc (dashed line
crystals at Tp ­ 0.41. Distances are reported in units o
Re ­ 21y6s. In the upper panel, we show the average potent
energy per particle (in reduced Lennard-Jones units) for the
two crystal systems as a function of temperature.

These 15 defective crystal trajectories are stable on
time scale of our simulations. There is no temperatu
drift during the runs which would signify a hop to a
basin with a very different average potential energ
Also, since we observe self-diffusion on the time sca
of the simulation (which is absent for the perfect fc
structure), we can assume that they have not relaxed
the perfect fcc crystal. Furthermore, if we perform th
cage correlation function analysis on different segments
the trajectories, we obtain very similar relaxation behavi
no matter where our observation begins. We conclu
that the dynamics we observed is diffusion via defe
migration in highly defective crystals, and is not a
annealing process.

The primary result of this paper is the observation th
the cage correlation functions in the defective crysta
cannot be fit with a simple exponential function a
long times, as was done for the liquids [2,3]. Th
cage correlation functions shown in Fig. 3 were fit wit
a stretchedexponential function (Kohlrausch-Williams-
Watts law),

Ccagestd ­ e2sgtdb

, (2)

with b ø 1y2 for all three temperatures shown. Althoug
the value ofb has been reported asø0.8 in Lennard-
Jones binary mixtures [8–10], a recent study ofsingle-
componentLennard-Jones clusters by Angelaniet al. has
reportedb ø 1y2 for temperatures similar to those tha
we are reporting here [11]. These other estimates of
value of b have all found that it varies with tempera
ture. Although we have not seen any variation in our es
mates ofb, the temperature range we have studied is qu
small, andb may not vary significantly over this range
Also, our estimates ofb are obtained from data that ex
tends to 7 ns. The cage correlation function has decay
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FIG. 3. A log-log plot of the decay of the cage correlatio
function for near-crystalline Lennard-Jones systems at th
different temperatures. The open circles are forTp ­ 0.5, the
open triangles are forT p ­ 0.41, and the open squares are fo
T p ­ 0.33. The dashed curve is an exponential decay with
rate that equals the stretched rateg at Tp ­ 0.5. Note that the
Ccagestd functions shown here do not decay due to vibration
as this short-time contribution to the decay has alrea
been subtracted.

by only a single order of magnitude at these times, a
estimating stretched exponentials from incomplete dec
may result in large errors inb.

Since the cage correlation function is averaged over
atoms in the simulation, it cannot distinguish nonexpone
tial decay that is due to a static distribution of local env
ronments in the system from nonexponential decay tha
due to dynamically fluctuating local environments. Wh
the cage correlation functiondoesprovide is a direct ob-
servation of the dynamics of the hopping between basi
In the defective crystal, these hops are not characteriz
by uniform jumps that give rise to a simple exponenti
relaxation behavior. We note that the analysis of the v
Hove correlation function provides a very similar pictur
for binary mixture Lennard-Jones glasses [8,10], but
does not directly measure the hopping between basins.

If we make a simplifying assumption that the stretche
behavior has only static causes [12], the cage correlat
functions that were fit to the Kohlrausch-Williams-Watt
law [Eq. (2)] can be used to obtain the distributio
of rates by inverting the integrated expression for th
correlation function,

Ccagestd ­ e2sgtdb

­
Z `

0
dk rskde2kt , (3)

whererskd is the distribution of rates. Forb ­ 1y2, this
distribution of rates is known analytically [13],

rskd ­
1

2k3y2

r
g

p
e2gy4k . (4)
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FIG. 4. The distribution of decay rates for three differen
temperatures assuming a Kohlrausch-Williams-Watts law fo
the decay of the cage correlation function, and a stati
mechanism for the nonexponential decay. The solid line is fo
a temperature ofTp ­ 0.33, the dotted line is forTp ­ 0.41,
and the dashed line is forT p ­ 0.5.

(The distribution of rates can also be obtained numer
cally whenb fi 1y2 [14,15].) The distribution of rates,
rskd, is shown in Fig. 4 for three different temperatures
In Table I, we show the best-fitting values forg, assum-
ing the Kohlrausch law withb ­ 1y2.

The origin of this value forb in the single-component
system is still unexplained. There are dynamic [16–18
and static [18,19] disorder models which predict stretche
exponential relaxation withb ­ 1y2, but the connection
of our work to these models is not yet clear.

The distribution of rates provides a statistical view o
the hopping dynamics in the low-temperature Lennard
Jones systems. It is also a useful tool to obtain averag
properties such as the self-diffusion constant. To th
extent that the Zwanzig model for self-diffusion is valid
for this kind of system [1], we can make the assumptio
that the nonexponential decay has static origins, an
obtain the self-diffusion constant by integrating Zwanzig’s
expression for the diffusion constant over the distributio

TABLE I. Best fits of the parameters in the Kohlrausch law
[Eq. (2)] to the decay of the cage correlation function for thre
different temperatures of the defective crystals.

Reduced g sns21d Full nonlinear fit
temperature (fit withb ­ 0.5) b g sns21d

0.5 1.9 0.49 1.9
0.41 0.83 0.50 0.83
0.33 0.43 0.49 0.43
3651
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TABLE II. Comparison of diffusion constants measured vi
molecular dynamics with those calculated using Eq. (5).kmax
has been set to0.39 ps21 for all of these calculations, and the
diffusion constants reported are in units of Å2 ns21.

Reduced Diffusion constant
temperature Einstein relation Cage correlatio

0.5 0.66 0.74
0.41 0.52 0.42
0.33 0.35 0.24

of hopping rates

D ­
kBT
M

Z kmax

0
dk rskd

Z `

0
dv rvibsvd

k
k2 1 v2 ,

(5)

wherervibsvd is the distribution of vibrational frequen-
cies in the basins [3], In the above equation we have
troduced a maximum value for the hopping rate,kmax, to
properly limit the rates to those which are associated w
diffusive hopping. Rates higher than this threshold are
artifact of assuming static barrier heights and, beyond
maximum value, are unphysical. (And we strongly ca
tion against interpreting the stretched exponential dec
functions too literally at short times.) The agreement b
tween the self-diffusion constant calculated directly fro
the Einstein relation and from Eq. (5) is reasonable usi
a single cutoff value of the rate at all temperatures, a
the results are given in Table II.

In this Letter we have shown that it is advantageous
use the cage correlation function to study the complex d
namics of low-temperature systems. We have found th
when defective crystals are observed, the cage correla
function decays with a Kohlrausch-Williams-Watts law
with a stretched factorb ø 1y2 for all three temperatures
studied. To our knowledge, this is the firstdirect obser-
vation of the complex hopping dynamics for crystallin
defect migration in a molecular dynamics simulation. W
also obtained the distribution of hopping rates assumi
that the origin of the stretched decay is static, and us
this distribution to predict the self-diffusion constant b
extending Zwanzig’s model to include a distribution o
hopping rates. We are currently extending the cage c
3652
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relation function approach to a simple monatomic syste
that forms amorphous glasses [20].
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