VOLUME 82, NUMBER 18 PHYSICAL REVIEW LETTERS 3 My 1999

Direct Observation of Stretched-Exponential Relaxation in Low-Temperature
Lennard-Jones Systems Using the Cage Correlation Function
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We report on the direct observation of stretched exponential relaxation in low-temperature monatomic
Lennard-Jones systems which were cooled slowly from the liquid phase to form crystals with a large
number of defects. We use the cage correlation function [E. Rabani, J.D. Gezelter, and B.J. Berne,
J. Chem. Physl07, 6867 (1997)] which measures changes in atomic surroundings to observe the
stretched exponential relaxations. We obtain a distribution of hopping rates assuming that the origin
of the Kohlrausch-Williams-Watts law is from static disorder in the distribution of barrier heights.
[S0031-9007(99)09049-3]

PACS numbers: 66.30.—h, 02.70.Ns, 31.15.Qg, 61.43.Er

We have recently developed a method to obtain esti- The cage correlation function uses a generalized neigh-
mates of the hopping rate between basins for Zwanzig'sor list to keep track of each atom’s neighbors. If the list
model of self-diffusion [1], in atomic [2] and molecular of an atom’s neighbors at timeis identical to the list
liquids [3]. We approached the problem by introducingof neighbors at timé), the cage correlation function has
the cage correlation functionvhich measures the rate of a value ofl for that atom. If any of the original neigh-
change of atomic surroundings in a computer simulatiorbors aremissingat time ¢, it is assumed that the atom
[2]. The hopping rate was associated with the long-timeparticipated in a hopping event, and the cage correlation
exponential decay of this function. The cage correlatiorfunction is0. The atom’s surroundings can also change
concept has proven itself to be a useful tool in understanddue to vibrational motion but, at longer times, the cage
ing the mechanisms of self-diffusion, and as such was usedill reconstitute itself to include the original members.
to test the limits of the Zwanzig model [2,3], which is built Only those events which result in irreversible changes to
on the foundation of Goldstein’s activated jump model [4],the surroundings will cause the cage to decorrelate at long
and also on the rearranging regions model due to Adam antimes. The mathematical formulation of the cage correla-
Gibbs [5]. tion function was given in previous publications [2,3], and

What we report in this Letter is the use of the cage correis not repeated in this paper. A graphical representation
lation function to study the hopping rate in Lennard-Jone®f the cage correlation idea is shown in Fig. 1.
systems that were cooled slowly from the liquid phase and Averaging over all atoms in the simulation, and studying
formed crystals with a very large number of defects. Thes¢he decay of the cage correlation function, gives us a way
systems are not amorphous, since we can observe longs measure the hopping rates directly from relatively short
range translational order within our simulations. Howeversimulations. We have used the cage correlation function
we are interested in the kinetics of the hopping processo predict the hopping rates in liquids [2,3], and below we
at temperatures where the roughness of the potential ediscuss the results for this correlation function when the
ergy surface is no longer a small perturbation and, fotiquid is cooled well below the melting temperature.
one-component Lennard-Jones systems, this regime corre-We performed molecular dynamics simulations on
sponds to the defective crystal. Unlike the decay observeslystems of particles interacting via the Lennard-Jones
in liquids, the cage correlation function shows a long-time
stretched exponentialecay in these “defective crystals.”

This relaxation behavior is similar to the behavior observed

in fragile glass-forming materials [6]. O O

An atom’s immediate surroundings are best described O@@ O@@
by the list of other atoms in the liquid that make up the O'@ () ‘O —_— O'@ X
first solvation shell. When a diffusive barrier crossing %) . .0 QO
involving the atom has occurred, the atom has left its ®) OO O OO

immediate surroundings. Following the barrier crossing,
it will have a slightly different group of atoms surrounding FIG. 1. A sketch of the idea behind the cage correlation
it. If one were able to paint identifying numbers on eachfunction. The black atom’s cage radius is denoted by the dotted

; ; ; ; line. The grey atom was inside the black atom’s cage at time
of the atoms in a simulation, and kept track of the list ofO (Ieft side), but has exited the cage at tim@right side). The

num_bers thaf[ each atom could see at any time, then t_h%lue of the cage correlation function is therefora the right
barrier crossing event would be evident as a substantigigure even though four of the original five atoms stayed within
change in this list of neighbors. the cage radius.
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with parameters chosen to approximate the interactions be- E',’ 05 | ///// 1
tween argon atoms:(= 0.2381 kcal/mol, o = 3.405 A) ool
[7]. Veu isthe standard Lennard-Jones potential evaluated 00 L=~ s )
at the cutoff radiugr.,. = 30), outside of which the po- 0.00 0.50

tential energy is settd. The simulations were carried out

with 256 atoms at a reduced densitygf = 1.0. T
The simulations were started with the atoms in the o
face-centered-cubic (fcc) lattice, and with velocities ®o0ft
sampled from a Maxwell-Boltzmann distribution with a
temperature that was 4 times the melting temperature. jAVYIAL T
Following a 100 ps period of equilibration at this tem- 09,0 10 R/R_ 20 30

perature, we quench_ed the_ “qL,fld system t_o a temp_eraturﬁG_ 2. The lower panel shows the pair distribution function
just above the melting point7™ = 1.25) with velocity o the defective (solid line) and perfect fcc (dashed line)
rescaling performed every 100 fs. The trajectory wasrystals at7* = 0.41. Distances are reported in units of
allowed to stabilize at the new temperature for 100 psR. = 2!/°¢. In the upper panel, we show the average potential
and following this stabilization we quenched the systemenergy per particle (in reduced Lennard-Jones units) for these
in steps of approximatehAT* = 0.08 until the system two crystal systems as a function of temperature.
reached7T* = 0.33. For each temperature we allowed
an equilibration of 100 ps before we performed the nexh
velocity quench. At the reduced temperatdté = 0.5,
0.41, and 0.33, we started collecting data & ns runs.
This procedure was done separately for each memb
of an ensemble of0 trajectories which had different
initial configurations.

We calculated the pair distribution functiog(r), for
each trajectory (and at each temperature). We ysepl
to classify the configurations, and find that there are tw

These 15 defective crystal trajectories are stable on the
me scale of our simulations. There is no temperature
drift during the runs which would signify a hop to a
basin with a very different average potential energy.
Iso, since we observe self-diffusion on the time scale
of the simulation (which is absent for the perfect fcc
structure), we can assume that they have not relaxed to
the perfect fcc crystal. Furthermore, if we perform the
ci:age correlation function analysis on different segments of
. . . he trajectories, we obtain very similar relaxation behavior
broadly defined types af(r): One set of configurations no maftter where our observz\tion begins. We conclude

is “liquidlike” and has first and second solvation peaks ; A .

. o e : that the dynamics we observed is diffusion via defect
which are characteristic of liquid simulations. These con-_."" .~ ~7 ™ . . .
. . . -__migration in highly defective crystals, and is not an
figurations are very unstable (i.e., they often crystallize

. annealing process.
!f allowed to ev_olve f_or“about .200 ps). Tpe of[her fam- The primary result of this paper is the observation that
ily of configurations is “defective crystals” which have

an additional peak between the first and second solva{he cage correlation functions in the defective crystals
: Pe ) : cannot be fit with a simple exponential function at
tion peaks. This peak is the signature of the fcc struc; . o

. ; ong times, as was done for the liquids [2,3]. The
ture, although the peak widths in the perfect crystal (a{ X . - L

. : - cage correlation functions shown in Fig. 3 were fit with
the same temperature) are narrower in comparison with : : -
' ; a stretchedexponential function (Kohlrausch-Williams-
these configurations.
. . Watts law),
In the lower panel of Fig. 2 we show(r) determined ()

from a typical trajectory for a defective crystal. Those Ceage(t) = € ’ )
trajectories that did not fit this profile were culled from with 8 = 1/2 for all three temperatures shown. Although
the group of 50 trajectories, leaving us with 15 trajectorieghe value of 8 has been reported as0.8 in Lennard-
for defective crystals. The defective crystal configurationslones binary mixtures [8—10], a recent studysoigle-
studied here are far from having a perfect fcc structurecomponent.ennard-Jones clusters by Angelatial. has
Their average potential energy (see the upper panel atported =~ 1/2 for temperatures similar to those that
Fig. 2) when extrapolated t@* = 0 is higher than the we are reporting here [11]. These other estimates of the
fcc potential energy, and the peaks gtr) are much value of 8 have all found that it varies with tempera-
broader than those of a perfect fcc structure at the santere. Although we have not seen any variation in our esti-
temperature. By examining several configurations wemates ofg, the temperature range we have studied is quite
have observed atomic level defects as well as largesmall, andB may not vary significantly over this range.
scale fault planes and twists between planes in the locallso, our estimates of8 are obtained from data that ex-
packing arrangement. tends to 7 ns. The cage correlation function has decayed
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. FIG. 4. The distribution of decay rates for three different
FIG. 3. A log-log plot of the decay of the cage correlation temperatures assuming a Kohlrausch-Williams-Watts law for
function for near-crystalline Lennard-Jones systems at threghe decay of the cage correlation function, and a static
different temperatures. The open circles arefor= 0.5, the  mechanism for the nonexponential decay. The solid line is for
open triangles are fof* = 0.41, and the open squares are for g temperature of * = 0.33, the dotted line is forT™* = 0.41,
T* = 0.33. The dashed curve is an exponential decay with agnd the dashed line is fai* = 0.5.
rate that equals the stretched ratet 7* = 0.5. Note that the
Ceage (1) functions shown here do not decay due to vibrations,
as this short-time contribution to the decay has already
been subtracted. (The distribution of rates can also be obtained numeri-

. . . lly wh # 1/2 [14,15].) The distributi f rates,
by only a single order of magnitude at these times, an%.‘a y whenp /21 1 e cistribution of rates

estimating stretched exponentials from incomplete deca
may result in large errors iB.

Since the cage correlation function is averaged over a
atoms in the simulation, it cannot distinguish nonexponen

ial d hat is d ic distribut f local . 'system is still unexplained. There are dynamic [16—18]
tial decay that Is due to a static distribution of local envi- o4 gratic [18,19] disorder models which predict stretched

ronments in the system from nonexponential decay that ig, onential relaxation witi8 = 1/2, but the connection
due to dynamically fluctuating local environments. What ¢ 0.\ work to these models is not yet clear

the cage correlation functiodoesprovide is a direct ob- ¢ gigtribution of rates provides a statistical view of
servation of t.he dynamics of the hopping between bas'lnﬁhe hopping dynamics in the low-temperature Lennard-
In the defective crystal, these hops are not characterizegy,oq gystems. It is also a useful tool to obtain averaged
by uniform jumps that give rise to a simple exponentialy o o ries such as the self-diffusion constant. To the
relaxation behavior. We note that the analysis of the vaR,;ent that the zwanzig model for self-diffusion is valid
Hove correlation function provides a very similar picture ¢o. +his kind of system [1], we can make the assumption

;or binaryd_mixtlure Lennardr:]ohnes _glasbses [8*1g]’ but ithat the nonexponential decay has static origins, and
oes not directly measure the hopping between basins. i the self-diffusion constant by integrating Zwanzig’s

If we make a simplifying assumption that the stretchedy, o ssion for the diffusion constant over the distribution
behavior has only static causes [12], the cage correlation

functions that were fit to the Kohlrausch-Williams-Watts
law [EqQ. (2)] can be used to obtain the distribution
of rates by inverting the integrated expression for ther ABLE |

(k), is shown in Fig. 4 for three different temperatures.
Table I, we show the best-fitting values for assum-
Iilng the Kohlrausch law witt8 = 1/2.
The origin of this value fo3 in the single-component

Best fits of the parameters in the Kohlrausch law

correlation function, [Eq. (2)] to the decay of the cage correlation function for three
s * i different temperatures of the defective crystals.
Cagel) = = [ “akpwre . @ ——
0 Reduced v (ns) Full nonlinear fit
i i = —1
wherep (k) is the distribution of rates. Fg8 = 1/2, this ~ {emperature (fit with3 = 0.5) B y (ns”)
distribution of rates is known analytically [13], 0.5 1.9 0.49 1.9
1 5 0.41 0.83 0.50 0.83
- [T
p(k) = YRR v/4k (4) 0.33 0.43 0.49 0.43
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TABLE 1l. Comparison of diffusion constants measured via relation function approach to a simple monatomic system

molecular dynamics with those calculated using Eq. (B}ax  that forms amorphous glasses [20].

has been set t6.39 ps™! for all of these calculations, and the The authors would like to thank C. Austen Angell
g ; ; .t .

diffusion constants reported are in units of s . and Frank Stillinger for a critical reading of an earlier

Reduced Diffusion constant incarnation of this note. E.R. thanks David Reichman for
temperature Einstein relation Cage correlation giscussions, and the Rothschild and Fulbright foundations
0.5 0.66 0.74 for financial support. This work was supported by a grant
0.41 0.52 0.42 to B. J. B. from the National Science Foundation.
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