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Abstract

Biophysics experiments performed at single-molecule resolution provide ex-
ceptional insight into the structural details and dynamic behavior of biolog-
ical systems. However, extracting this information from the corresponding
experimental data unequivocally requires applying a biophysical model. In
this review,we discuss how to use probability theory to apply these models to
single-molecule data. Many current single-molecule data analysis methods
apply parts of probability theory, sometimes unknowingly, and thus miss out
on the full set of benefits provided by this self-consistent framework.The full
application of probability theory involves a process called Bayesian inference
that fully accounts for the uncertainties inherent to single-molecule exper-
iments. Additionally, using Bayesian inference provides a scientifically rig-
orous method of incorporating information from multiple experiments into
a single analysis and finding the best biophysical model for an experiment
without the risk of overfitting the data. These benefits make the Bayesian
approach ideal for analyzing any type of single-molecule experiment.
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1. INTRODUCTION

The ability to observe and characterize the biophysical properties of individual biomolecules has
revolutionized the study of biological systems (38). Such single-molecule experiments avoid en-
semble averaging, which removes the need to experimentally synchronize molecules and enables
investigations of rare and transient molecular states. Consequently, single-molecule experiments
provide unique and powerful insights into the fundamental workings of biological processes (38).
Despite the mechanistically rich information contained within single-molecule data, such data
are typically challenging to analyze and require extensive scientific, mathematical, and computa-
tional effort. As is the case for all scientific experiments,models play a central role in the analysis of
single-molecule data. Indeed, data collected from any biophysics experiment have to ultimately be
modeled according to the physicochemical properties of the biomolecules being studied (e.g., the
molecular structure, the nature and kinetics of structural rearrangements). In the case of single-
molecule biophysics experiments, this modeling process is made significantly more complex by the
large uncertainties that necessarily accompany the observation of a small number of molecules for
a short period of time using techniques with a low signal-to-noise ratio (SNR).

Recently,methods that use probability theory in amanner called Bayesian inference have arisen
as powerful tools for tackling the challenges of scientific data analysis (24) and have made a sig-
nificant impact in the field of single-molecule biophysics (6). Bayesian inference formalizes the
application of the scientific method to the problem of data analysis, making it an approach that
naturally conforms with best scientific practices (14) (Figure 1). Additionally, Bayesian inference–
based data analysis methods require scientists to be rigorously explicit about the assumptions that
theymake whenmodeling data and to fully account for uncertainties in their conclusions when the
data are unclear—both important considerations when interpreting single-molecule experiments.

Perhaps the most enticing and exciting aspect of Bayesian inference–based methods is the
emerging possibility of using probabilities to rigorously performmodel selection.When analyzing
real experimental data, it is often the case that many different models are hypothetically consistent
with the data. In the case of modeling single-molecule data, this problem is exacerbated by the
large uncertainties inherent to the data. Bayesian inference allows one to calculate the probability
that each model is the best, given both the experimental data and previous biophysics knowledge
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Hypothesis Experiment Conclusion

Scientific method

Prior Likelihood Posterior

Bayesian inference

a b

Figure 1

The analogy between the scientific method and Bayesian inference. (a) The components of a single example of the scientific method
(top) show a one-to-one correspondence with those of Bayesian inference (bottom), revealing how the latter is just a formal extension of
the former to data analysis. (b) The analogy is reinforced by the ways in which repeated applications of the scientific method and
Bayesian inference extend the frontier of knowledge and certainty, respectively. The area in tan shows a scientist’s knowledge (or
certainty) gained by the latest application of the scientific method (or Bayesian inference), which itself is built upon previous
applications.

regarding the underlying biomolecular process. Using these probabilities to select the best model
and quantitatively characterize how much better it performs relative to the broader set of models
under consideration is the most rigorous way to analyze an experiment.

This review addresses the question of how information can be accurately and precisely ex-
tracted from single-molecule data in a manner consistent with the principles of the scientific
method.We begin by examining the role of models in the scientific investigation of a natural phe-
nomenon.We then describe how, within the framework of probability theory, Bayesian inference
uses Bayes’ theorem to extract information from experiments in a manner that is naturally con-
sistent with the scientific method. Subsequently, we consider the specific benefits that the various
terms in Bayes’ theorem (i.e., the prior, likelihood, posterior, and evidence) provide to the analy-
sis of single-molecule experiments and provide examples of current methods that leverage these
benefits. Finally, we argue for the development in the near future of methods in which Bayesian in-
ference is used to implement model selection and rigorously account for the uncertainties present
in single-molecule experiments.

2. THE ROLE OF MODELS IN SCIENCE

The role of models in science was summarized well by John von Neumann:

“To begin, we must emphasize a statement which I am sure you have heard before, but which must be
repeated again and again. It is that the sciences do not try to explain, they hardly ever try to interpret,
they mainly make models. By a model is meant a mathematical construct which, with the addition of
some verbal interpretations, describes observed phenomena.” (40, p. 492)

All scientific investigations involve some combination of creating, refining, and testing these
models of natural phenomena. In biophysics and related fields, for instance, one might create
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a structural model of a biomolecular complex or develop a mechanistic model of a biochemical
reaction.The role of modeling in scientific practice is compounded when one considers that (a) in-
terpreting experimental data designed to probe such phenomena requires use of additional models
to extract information that is necessary for the interpretation (e.g., models of spectroscopic signals
and noise), and (b) models are dependent on assumptions from associated models (e.g., structural
models assume that molecules are well-modeled by point particles and bonds). Thus, to success-
fully model experimental data, scientists need effective models for the phenomena that they study
(e.g., biophysical properties of molecules), for the signals that report on and noise that obscures
(e.g., detector signal and noise) these phenomena, and for the background knowledge on which
the phenomena are conditioned (e.g., quantum mechanics) (Figure 2).

2.1. The Scientific Method: Experiments Yield Updated Models

The scientific method allows us to assess which models of a natural phenomenon to trust. Models
are never right or wrong. Instead, they each provide various degrees of predictive power. Our cer-
tainty in whether a model is appropriate depends upon assessing that predictive power. Through
this lens, a hypothesis can be thought of as a model; by performing experiments, we collect data
that allows us to assess its effectiveness at explaining the natural phenomenon of interest. Based
on those results, we can update the model to better represent the phenomenon in the future, or
move on to a different model.

Another way to think of the scientific method is to consider two separate models, say,M1 and
M2, that are the same except for the value of a single parameter. For example,M1 andM2 might
represent slightly different conformations of a biomolecule, and given our prior knowledge of this
biomolecule, our initial hypothesis of its conformation might be that bothM1 andM2 are equally
reasonable. By performing an experiment, we might determine thatM1 is better able to describe
the observed data than is M2. Thus, performing the experiment can be thought to have updated
our conformational model to favor M1, which has more predictive power. When we extrapolate
this process to models that differ by many parameters or that are conceptually distinct, it becomes
apparent how implementing the scientific method generally enables experiments to yield updated
models of natural phenomena (Figure 1).

2.2. Models in Single-Molecule Studies

Although single-molecule experiments are incredibly rich sources of data, observing and trying to
characterize the behavior of a set of individual molecules complicates the modeling process. This
is because, rather than using a single model to describe the average molecular behavior, as is done
in an ensemble experiment, the behavior of every individual molecule in a single-molecule experi-
ment must be separately modeled, and those individual models must then somehow be integrated
into a collective model that describes the overall behavior of the biophysical system.

Moreover, uncertainties originating from the sample, the instrumentation used to collect the
data, and the analysis of the collected data further compound the challenges associated with mod-
eling single-molecule data. Compositional and spatial heterogeneities in the sample, such as dif-
ferences in post-translational modifications and in the local molecular environment, respectively,
can make any one observed biomolecule different from the other observed biomolecules. Further-
more, samples using reporter molecules, such as fluorophores in single-molecule fluorescence
experiments, can exhibit heterogeneous signaling dynamics (e.g., photophysical effects such as
photoblinking or photobleaching). The presence of these heterogeneities across the individual
molecules complicates data modeling and, thus, the analysis process. Additionally, the SNR of
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Figure 2

The role of models in science. Representations of simulated data (left) and a corresponding model (right) for common single-molecule
studies, including (a) an electron micrograph probing the structure of a biomolecule (a ribosome) and the corresponding model of its
structure (PDB ID 6UZ7), (b) a current versus time trajectory probing the conformational dynamics of a biomolecule and the
corresponding model of its conformational transitions, (c) a force versus extension curve probing the unfolding of a biomolecule and
the corresponding model of its unfolding transitions, and (d) a single-particle track probing the diffusion of a biomolecule and the
corresponding model of the diffusion coefficient. The right side of the figure shows that, while scientists only directly investigate and
report on a portion of the model (red hexagon), the model is complex and includes noise as well as other background information (red
ovals). Abbreviations: CTF, contrast transfer function; PDB, Protein Data Bank.
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data from an individual molecule is generally low, despite the high sensitivity of the instruments
used to collect these data. Such low SNR makes it difficult to model data with a high degree of
confidence. These instruments also generally have limited observation times and/or throughputs,
both of which make it difficult to collect a statistically relevant amount of data. A further compli-
cation is that it remains theoretically unclear whether the data from a single molecule observed
over a long period of time are equivalent to the data from multiple individual molecules observed
over a shorter period of time (i.e., whether biological systems are ergodic), an assumption that is
implicit in many data analysis methods. Finally, the models used to appropriately describe the be-
havior of individual molecules are often not well-developed, and are themselves a subject of active
research (19).

Regardless of these complications, the data recorded from the individual molecules in a single-
molecule experiment have to be modeled for conclusions to be drawn about the biomolecular pro-
cess under investigation. Fortunately, the scientist often has prior knowledge of the biomolecular
system that can inform their modeling. For example, knowledge of the primary and/or secondary
structure of a molecule can inform tertiary structural modeling. In the following section, we show
how to use probability theory to apply a model and extract the relevant information in a mathe-
matically rigorous manner that accounts for all of the uncertainties in the modeling process while
making use of such prior knowledge.

3. USING PROBABILITY THEORY TO MODEL EXPERIMENTS

In 1946, Cox (5) showed how a probability, P, can be understood as an extension of formal logic
that quantifies the certainty in a scientific statement (see 14). A statement has P = 0 if false and
P = 1 if true. A fractional value of P between zero and one corresponds to the certainty that the
statement is true. For example, consider the model defined by the statement “every molecule in
the ensemble is in the same conformational state” (Msame). Even before performing an experiment
to test it, we know thatMsame corresponds to a system with extremely low entropy, and, according
to the second law of thermodynamics, it is very unlikely that Msame is true. Probability theory
allows us to write this as P(Msame) ≈ 0. Of course, this assessment is based on more than a century
of biophysics knowledge; thus, to be transparent about the scientific knowledge incorporated into
our certainty in that statement, we must write that it conditionally depends upon the model of our
biophysics knowledge (Mbiophysics). This conditional probability should thus be explicitly written
as P(Msame|Mbiophysics ) ≈ 0, where the vertical bar reads as the word given.

Although they are often not explicitly acknowledged, all scientific statements are condition-
ally dependent upon the scientist’s notions of background models (Figure 2). For instance, it is
generally true that all biophysicists’ analyses adhere to the laws of thermodynamics; thus, there is
little need to explicitly acknowledge that dependence in an analysis. Similarly, it is generally true
that all probabilities have conditional dependencies, but when those dependencies are obvious or
seem unimportant, there is little need to explicitly acknowledge them. Regardless of whether such
conditional dependencies are explicitly acknowledged in an analysis, every analysis is still depen-
dent upon them. However, to some, acknowledging the conditional dependence of an analysis
upon, for example, one specific scientist’s Mbiophysics is seen as incorporating a subjective, non-
scientific element into an analysis. It is important to note, however, that this merely reflects a
more general, though unfounded, criticism of the role of conditional dependencies in the scien-
tific method itself. Fortunately, while two scientists may have learned biophysics from different
sources, and thus technically have differentMbiophysics, the collective body of knowledge that defines
a field like biophysics compels two scientists with an equivalent exposure to the field to have effec-
tively equivalentMbiophysics. The proof of this is that two well-informed scientists endeavoring to
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Prior probability:
the probability that the
model parameters can
take up particular
values prior to
observation of the data

Posterior probability:
the probability that the
model parameters can
take up particular
values upon
observation of the data

Likelihood function:
the probability that the
data set was generated
by particular
parameter values
according to a given
model

perform the same experiment to test the same model undoubtedly reach the same conclusions to
a high enough precision that science is reproducible.

The most beneficial aspect of the correspondence between probabilities and scientific state-
ments is that probability theory can be used to quantify the effects of an experiment on our
certainty in a scientific statement. For example, consider a model, Mconformations, that attempts
to quantify the conformation of each biomolecule in a homogeneous ensemble. The set of pa-
rameters of Mconformations, {θ}, might be the Cartesian coordinates of all of the atoms in all of the
biomolecules in the ensemble. Given our Mbiophysics, we may have some idea before performing
an experiment about the particular values of {θ} that are reasonable (e.g., atoms are not closer
to each other than 1 Å). Thus, in the context of Mconformations, the probability that the ensem-
ble of biomolecules exists in one particular set of conformations is P({θ}|Mconformations,Mbiophysics ).
Because P({θ}|Mconformations,Mbiophysics ) can be formulated before an experiment is performed, it
is called a prior probability. After performing an experiment that is designed to probe the con-
formations of the biomolecules [e.g., measuring fluorescence resonance energy transfer (FRET)
efficiencies (EFRET) with a single-molecule FRET (smFRET) experiment], the set of data,
{D}, that was collected and processed using a model of the experiment, Mexperiment, will up-
date the prior probability of a particular {θ} to a posterior probability value, which is written
P({θ}|{D},Mexperiment,Mconformations,Mbiophysics ). This posterior probability is also the probability of
a particular {θ} but is conditionally dependent upon the newly observed, experimental data ob-
tained and processed according to Mexperiment [e.g., observed EFRET values are assigned to partic-
ular conformational states using a separate experiment, such as a cryogenic electron microscopy
(cryo-EM) study]. In this section, we discuss exactly how {D} is used to update a prior probability
into a posterior probability.

3.1. Bayesian Inference: Applying the Scientific Method to Data Analysis

Bayesian inference is the process of using probability theory to model and analyze experimental
data. Specifically, it is the application of Bayes’ theorem to estimate the posterior probability for
the values of a set of model parameters, {θ}, conditionally dependent on experimental data, {D},
for a particular scientific model,M. The goal of any analysis is to find the best {θ} for the M to
describe the natural phenomenon and to judge this using the observed {D}. Practically, it is often
the case that many different values of {θ} will yield a reasonable version ofM, and this is especially
true if {D} contains significant statistical uncertainty. The solution is to use Bayes’ theorem to
calculate the posterior probability, P({θ}|{D}, M ), of every possible instance of {θ}:

P({θ}|{D},M ) = P({D}|{θ},M ) P({θ}|M )
P({D}|M )

. 1.

As explained above, obtaining the posterior probability distribution, sometimes simply called the
posterior, is the goal of this inference process. In the numerator, the term P({D}|{θ},M ) is called
the likelihood function, or simply the likelihood, and P({θ}|M ) is the prior probability distribution,
or simply the prior. In the denominator, P({D}|M ) is called the evidence function, or simply the
evidence. The evidence may be rewritten as

P({D}|M ) =
∫
P({D}|{θ},M ) P({θ}|M )d{θ}, 2.

where the integral is taken over all possible values of the set of {θ}. This type of integration is called
marginalization because it removes the dependence on {θ}. Thus, the evidence can be interpreted
as the probability of observing the {D} regardless of the exact values of {θ} for the M; because
of this interpretation, the evidence is sometimes called the marginal likelihood. This means that

www.annualreviews.org • Bayesian Analyses of Single Molecules 197

, .•
·�-

Review in Advance first posted on 
February 3, 2021. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

04
/0

4/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BB50CH09_Gonzalez ARjats.cls January 25, 2021 16:21

Equation 1 involves only the prior and the likelihood, and that Bayesian inference is performed
by choosing the M (which involves defining the prior) and then collecting the {D}—after which
the resulting posterior yields insight into the phenomenon being modeled byM.

One of the most powerful aspects of using Bayesian inference to analyze an experiment is that
it is analogous to using the scientific method (see Section 2 and Figure 1). Forming a hypoth-
esis to test with the scientific method is equivalent to choosing a model and defining the prior
for Bayesian inference. Analyzing the results of an experiment to reach an updated conclusion
about the hypothesis is equivalent to using the likelihood to obtain the posterior. In this sense,
Bayesian inference allows scientists to rigorously extend the scientific method into the realm of
analysis of their data, and vice versa. In addition, the scientific method relies upon multiple, in-
terconnected models to investigate a natural phenomenon (see above), and Bayesian inference
explicitly details how the analysis of an experiment depends on those models. This mirroring of
the scientific method is what makes Bayesian inference such a powerful analytical tool. In the fol-
lowing sections, we discuss the various terms in Bayes’ theorem, the contributions that they make
to Bayesian inference, and the distinct benefits that they provide to the analysis of single-molecule
experiments. In each section, we highlight specific examples of analytical tools, algorithms, and/or
software packages in which the term described in that particular section has been used to great
effect in the analysis of single-molecule data. Given that we are only able to highlight a limited
number of specific examples, we point the interested reader to additional specific examples in the
Related Resources.

3.2. The Prior: Quantifying the Hypothesis

Before performing an experiment, a scientist generally has prior knowledge about the natural
phenomenon under investigation that led them to develop the hypothesis that they are testing.
The prior,P({θ}|M ), quantifies this knowledge about {θ} for theM being tested.For instance,when
trying to determine the rate constant for a biomolecular conformational change, a very reasonable
prior based on ourMbiophysics would be to stipulate that the rate constant has a nonzero probability
of being in the range between 3.2 × 10−8 s−1 (less than a year) and 1014 s−1 (more than a bond
stretching time) and zero probability of being outside that range. In practice, our prior knowledge
about a particular biomolecular system often allows us to specify priors with more information
than the very loose range in this example.

The use of a prior provides many benefits to the analysis of single-molecule experiments, but
two of them are particularly powerful. First, the use of priors enables precise analysis of very
small amounts of data. This is because any amount of collected data, even a single data point,
will update the prior into the posterior. This is extremely advantageous for the analysis of single-
molecule experiments, which frequently yield relatively small data sets. Second, priors provide
a coherent, mathematical framework for incorporating information from previous experiments
into the current analysis—even if those experiments were performed with different experimental
techniques [e.g., refinement of a cryo-EM structure using structural homology (11, 20)].

Just as a well-founded application of the scientific method depends on the formulation of a
sound hypothesis, so does a well-founded application of Bayesian inference depend on the choice
of an appropriate prior. For example, priors that describe years of knowledge about the signals,
noise, and transition kinetics that are typical of the EFRET versus time trajectories (EFRET tra-
jectories) recorded in smFRET experiments are used in the Bayesian inference–based smFRET
analysis methods vbFRET, VB-HMM-TS-FRET, ebFRET, bl-ICON, and hFRET (2, 13, 29, 34,
39). Notably, the use of a prior for the transition kinetics in these methods ensures that a posterior
quantifying the transition kinetics exists, even if no transitions occur in the EFRET trajectory being
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Maximum likelihood
estimation (MLE):
a model-fitting
algorithm in which a
data set is modeled
using the maximum of
the likelihood as a
point estimate

analyzed. Essentially, the absence of any observed transitions is able to provide an upper-limit for
the transition rate; non–Bayesian inference–based methods cannot reach this conclusion.

Similarly, in the Bayesian inference–based cryo-EM single-particle analysis (SPA) method
RELION, priors are used for the Fourier components (i.e., the coefficients of the spatial frequen-
cies) in the density map reconstructed from electron micrograph images (33). By using Gaussian
distributions centered at zero for these Fourier components, the use of priors in RELION enables
high-resolution mapping of the electrostatic potential of a molecule while simultaneously avoid-
ing spurious noise from the high spatial frequencies where there is little structural information
present in the raw data. Work to incorporate more information into these priors is underway, for
instance by including information about the inherent spatial frequencies found in all biomolecular
structures (17).

Once a prior is specified, an experiment can be thought of as acting via the likelihood to redis-
tribute the probability of {θ} specified by the prior to where it is most consistent with the collected
data; this new, updated distribution is the posterior. Importantly, the amount of data collected in
an experiment typically overwhelms the information content in the prior and dominates the pos-
terior result; otherwise, it would be unclear why the scientist thought the particular experiment
should have been performed in the first place [an idea explored in Bayesian experimental design
(3) but beyond the scope of this review]. Moreover, the incorporation of incorrect knowledge or
bad information into the prior does not pose a major concern because, beyond the transparency
requirement of specifying the actual background information used in the analysis as a conditional
probability, Bayesian inference–based model selection should be used to simultaneously test mul-
tiple models (see Section 4). Such an approach should quickly eliminate models with bad prior
choices and yield the best description of the natural phenomenon being investigated.

An occasional criticism of Bayesian inference, and particularly priors, is that it can introduce a
nonscientific bias into an otherwise objective analysis. The use of priors does not introduce bias
into a scientific model, however; it is instead part of the mathematical statement of the biases
that already exist in the scientific investigation (see above); all analysis methods, Bayesian or not,
include such biases. In fact, it is possible to employ priors in a Bayesian method that express the
biases inherent to non-Bayesian methods, such as maximum likelihood estimation (MLE) (see
Section 3.3). By ignoring the existence of the prior, as well as the posterior and evidence, such
non-Bayesian methods do not fully enjoy the benefits of probability theory, including the abilities
to mathematically adhere to the tenets of the scientific method (Section 3.1), properly quantify
the uncertainty in the model of the experiment (Section 3.4), and perform model selection to
determine the best model and avoid overfitting (Section 4).

3.3. The Likelihood: How an Experiment Relates to a Model

The likelihood function, P({D}|{θ},M ), can be thought of as the mathematical equivalent of the
experiment used to testM (Figure 1). Assuming thatM is the true representation of the natural
phenomenon being studied, the likelihood is the probability of observing a particular {D} in the
experiment, given that {θ} comprises the true parameters ofM. For the analysis of single-molecule
experiments, it can be quite challenging to devise and write down the likelihood function, because
its mathematical form must encapsulate the model itself. Identifying and deriving suitable like-
lihoods that capture the complex and/or heterogeneous behavior of an individual molecule for
the many different experimental single-molecule techniques is often the limiting factor in the
Bayesian inference–based analysis of single-molecule experiments and is often itself the subject of
intense theoretical study (10). For instance, the method BIASD is used to analyze time series data
from single-molecule experiments where the underlying molecular dynamics are faster than the
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Point estimate:
a location in parameter
space used as the best
guess of the model
parameters (e.g., the
maximum of the
posterior)

Maximum a
posteriori (MAP)
estimation: a Bayesian
algorithm in which a
data set is modeled
using the maximum of
the posterior as a point
estimate

instrumental time resolution (18), hFRET is used to analyze time series data from single-molecule
experiments where the molecules exhibit heterogeneous kinetics (13), and bioEM is used to ana-
lyze structural data from cryo-EM experiments where the molecules exhibit heterogeneous con-
formations (4). All of these examples of Bayesian inference–based methods use specialized likeli-
hood functions to overcome the complexities present in single-molecule data.

It should be noted that the likelihood is also used extensively in non–Bayesian inference–based
data analysis methods—particularly in MLE-based methods. In MLE-based methods, the {θ} that
yields the highest value of the likelihood for the observed {D} is used as a point estimate of the
model of the underlying phenomenon. Because MLE does not acknowledge the uncertainty in
{θ}, MLE-based methods suffer from severe overfitting (1, p. 434) and can be inappropriate for
analyzing data from single-molecule experiments, in which the uncertainties can be quite large.
Additionally, while the likelihood function is the conditional probability of {D} based on a partic-
ular {θ}, the objective of modeling a natural phenomenon according to the scientific method is to
determine the optimal {θ} based on {D}. Thus, MLE-based data analysis methods address the re-
verse problem to what the scientific method aims to solve. It is worth noting that, with a prior that
is independent of {θ} (i.e., a flat prior), the posterior is proportional to the likelihood. In this case,
the maximum of the posterior, which can be found using a Bayesian technique called maximum a
posteriori (MAP) estimation, is numerically the same value as the point estimate found withMLE.
Nonetheless, non-Bayesian methods such as MLEmiss out on all the benefits that using Bayesian
inference provides for single-molecule data analysis (see Sections 3.2–3.5, 4).

3.4. The Posterior: Updating the Model After Performing the Experiment

The posterior, P({θ}|{D}), can be thought of as the quantification of how the experimental {D}
updates our certainty of the initial hypothesis (i.e., the prior) in terms of the model parameters
in {θ}. In essence, all data analysis methods that are consistent with the scientific method strive
to obtain the posterior—regardless of whether they acknowledge it or not. While some analysis
approaches simply attempt to estimate the single best {θ} to explain the experimental data (e.g.,
MAP), the posterior provides the probability for all possible values of {θ}. As such, this makes the
reporting of the entire posterior tedious or, if it has no analytical form, impossible. Thus, common
approaches to reporting posteriors include providing the credible interval, which describes the
range of {θ} that contains a certain percentage (e.g., 95%) of the posterior probability. It can also
be useful to provide summary statistics of the posterior, such as expectation values and variances
of {θ} from the posterior.

Despite the benefits it provides to the analysis of single-molecule experiments, fully imple-
menting Bayesian inference has historically been quite difficult in practice. Specifically, this is
because of the mathematical challenge of deriving analytical equations for the posterior and the
computational cost of evaluating numerical solutions for posteriors without analytical solutions
(1, 24). There are several approaches that directly address these challenges. One approach is to
only consider models that yield analytical solutions. However, this approach limits the variety of
priors and likelihood functions that can be used, which may limit the ability to represent the actual
scientific knowledge used to create themodel. Instead, givenmodern computational resources, the
more appropriate approach of numerically calculating the posterior is now easily achievable. The
standard approach is to use a Markov chain Monte Carlo (MCMC) sampling variant (8, 9, 12,
25), which will yield the full posterior and is exact to an arbitrary precision that depends on the
amount of sampling (1).

Another general and computationally feasible approach is to use methods that yield tractable
approximations of the posterior. Of these, the standard is the Laplace approximation, where the
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posterior is assumed to be a multivariate Gaussian distribution centered at the maximum of the
posterior (i.e., theMAP point) with a variance calculated from the curvature of the posterior at that
point (1)—a very reasonable approximation as a consequence of the central limit theorem when
there is enough data in {D}. Importantly, the Laplace approximation is not much more compu-
tationally intensive than finding the MAP point, but still provides a full, although approximate,
posterior. This suggests that using flat priors, finding the MAP point, and then calculating the
Laplace approximation of the posterior will easily allow any MLE-based method to be converted
into a Bayesian inference–based method. Thus, the Laplace approximation allows both current
MLE- and MAP-based methods to be easily extended to obtain an approximate posterior and,
consequently, the evidence (see Section 3.5).

In cases where the Laplace approximation provides a poor approximation of the posterior (e.g.,
single-molecule experiments with a small number of data points), more mathematically rigorous
approximationmethods, such as a variational approximation, can be used.The variational approxi-
mation used in variational Bayesian (VB) inference is the same as that used in quantummechanics.
This approach depends on the fact that any approximation of the true posterior will have an ev-
idence value that is a lower bound for the true evidence value [i.e., the evidence lower bound
(ELBO)], achieving equality when the approximate posterior is equivalent to the true posterior
(1).Thus, in VB inference, the best approximations of the true posterior are found by searching for
the maximum value of the ELBO.The first use of VB inference in single-molecule biophysics was
with vbFRET, which uses VB inference to yield a tractable, analytical form of the posterior for a
hiddenMarkov model (HMM) to model the EFRET trajectories recorded in smFRET experiments
(2). Because the VB inference approach is both accurate and efficient, it has found widespread use
in many single-molecule biophysics methods such as ebFRET (39), hFRET (13), vbSPT (30),
VB-HMM-TS-FRET (29), and others (15, 36). In addition to these benefits, the real power of
VB inference methods is that they also provide an estimate of the true evidence (in the form of
the ELBO). Thus, they can be used to perform model selection (Section 4).

3.5. The Evidence: Evaluating the Effectiveness of a Model

The evidence, P({D}|M ), is perhaps both the most powerful and the most overlooked term in
Bayesian inference. It provides the probability that the observed {D} could have come from theM
being tested, regardless of the specifics concerning {θ}. As discussed in Section 3.1, the evidence
is obtained by marginalizing out every possible value of {θ} and thus can be thought of as being
agnostic toward the true value. Interestingly, because this marginalization is an integration per-
formed over all of the model parameters, the more parameters that are included in a model, the
more the predictive power of the model is diminished. The intuition behind this mathematical
phenomenon comes from the fact that, while a model with a large number of parameters may
describe the particular observed data set very well, it is also flexible enough to account for a large
number of other possible data sets. In this sense, the overall probability that the observed data set
originated from the model in question (i.e., the evidence) is diluted by the existence of the large
number of plausible data sets that could have been generated by the model (1). Thus, the evidence
protects against overfitting by balancing the ability of a model to explain the observed data and
its ability to generate only the observed data, thereby favoring models with the highest predictive
power and simultaneously the fewest parameters. This is a very attractive property for scientists,
as it is mathematically analogous to Occam’s razor, which states that the most parsimonious model
is the best model.

Unfortunately, just as with the posterior (see Section 3.4), the evidence is often difficult or
impossible to directly calculate. As such, it is often ignored in many data analysis methods. For
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instance, it is unimportant when finding theMAP solution of a posterior (i.e., the point estimate of
the location of the maximum of the posterior) because the value of the evidence is independent of
{θ} and thus will not change the location of the maximum.Nonetheless, just as with the posterior,
there are a number of methods available for approximating the evidence.When using the Laplace
approximation (see Section 3.4), for example, the evidence has the analytical form corresponding
to a multivariate Gaussian posterior (1). Similarly, when using VB inference (see Section 3.4), the
ELBO provides a measure of the true evidence. In particular, if great care is taken to find the best
possible variational approximation of the posterior, the ELBO will achieve the true value of the
evidence to within arbitrary precision. Thus, in contrast to an approximation of the evidence that,
by construction, will never be correct, if properly treated, the ELBO can be used as an estimate
of the true value of the evidence.

A further, very rough approximation of the evidence is the Bayesian information criterion
(BIC), in which the Laplace approximation is itself approximated in the asymptotic limit where
there are so many data points that both the prior and the variance of the posterior can simply be
ignored. Considering the relatively limited number of data points in single-molecule experiments
and the correlations present in {θ}, the assumptions that lead to the BIC [or the conceptually
similar, but ad hoc, Akaike information criterion (AIC)] should not be used for single-molecule
data analysis (2). The full Laplace approximation outperforms the BIC in model selection,
captures the correlations in {θ}, and only requires minimal additional computation beyond the
MAP solution (1, 26). It is worth noting, however, that rather than obtaining an approximation
of the evidence, it is possible, albeit computationally expensive, to numerically calculate the exact
value of the evidence using MCMC sampling with a method called thermodynamic integration
(21).

Because of the large uncertainties associated with single-molecule experiments, the evidence
is a particularly powerful tool for analyzing experiments performed at single-molecule resolution.
By marginalizing out all of the possible {θ} from M, the evidence quantifies how consistent the
observed single-molecule data are with M. For instance, vbFRET (and other similar methods)
(13, 29) models an EFRET trajectory collected in a smFRET experiment with a series of HMMs
employing an increasing number of hidden states (2). Of these, the HMMwith the largest ELBO
corresponds to the most parsimonious model appropriate for the observed EFRET trajectory, and
is taken to be best model for that EFRET trajectory. By using the evidence, HMMs with more
hidden states than are required to explain the data are penalized, which allows this maximum
evidence approach to avoid overfitting (Figure 3). Similarly, the maximum evidence approach is
routinely used in single particle tracking (SPT) experiments to choose between competing models
of diffusion based on particle trajectories of limited length (27, 28, 31, 35, 37).

When modeling any biophysical process, it is worth mentioning that the models developed do
not account for every possible experimental complication found in the data. In such cases, one
often finds that the maximum evidence approach is difficult to implement. For instance, there
might be several models with evidences that are probabilistically too close to each other to choose
any of them as having the largest evidence. In Section 4, we discuss how to determine the best
model indicated by the evidence using probability theory to account for the uncertainty present
in the data and models.

4. MODEL SELECTION: DETERMINING THE BEST MODEL USING
PROBABILITY THEORY

The goal of the scientific method is to perform experiments to test a hypothesis that, on some
level, will ultimately inform on more than the experiment itself. For instance, an understanding
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Bayesian model
selection (BMS):
Bayesian inference
performed on the
evidence of different
models to determine
the probability that
each model is the best
model

Evidence: the
probability that the
data set was generated
by the given model
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Figure 3

Bayesian model selection. (a) Representation of a typical EFRET trajectory (top) and the corresponding
two-state (middle) and three-state (bottom) HMMs for the trajectory, as analyzed by vbFRET. (b) The log of
the ELBOs for HMMs with increasing numbers of states (as calculated by vbFRET) shows a peak at the
three-state model (top) and decays slowly as more states are added. Upon using these ELBOs to calculate the
posterior probability for these models (bottom), it is clear that the three-state model is overwhelmingly more
probable than the others. Abbreviations: EFRET, fluorescence resonance energy transfer efficiency; ELBO,
evidence lower bound; HMM, hidden Markov model.

of the role that the conformational dynamics of a biomolecule plays in a particular biochemical
reaction informs more broadly on biomolecular function in general. Practically, this means that,
at some point during an investigation, a decision must be made about what the best model for the
phenomenon being studied should be to inform on other phenomena. In Section 3.5, we discuss
how the evidence, P({D}|M ), quantifies the predictive power of a model and show how Bayesian
inference–based methods, including vbFRET (2) and others (13, 15, 27–31, 35–37), can utilize
the maximum evidence approach to choose the best model for the data. The maximum evidence
approach, however, fails to account for the uncertainty resulting from the limited amount of data
collected during an experiment, a failure very similar to the shortcomings of the MLE approach.
For instance, how does one select, as one often must do in single-molecule experiments, between
models with effectively the same evidence value? The answer is to take the ideas developed in
the sections above one step further and make this determination in a manner consistent with
probability theory by again using Bayesian inference.

Bayesian model selection (BMS) essentially entails performing a second round of Bayesian in-
ference in which the evidences for each model are used as likelihoods to calculate a posterior
probability for the models themselves (1). In practice, a scientist can assign a model prior proba-
bility to each model under consideration that it is the true model as P(Mi|Mbiophysics ), whereMi is
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the ith model under consideration, such that
∑

i P(Mi|Mbiophysics ) = 1. If there is no reason to favor
anyMi over the others, then these model priors should all be equal; models not considered or not
imagined, given a scientist’s Mbiophysics, can be thought of as having a model prior probability of
zero. Using the evidences for each model, P({D}|Mi,Mbiophysics ), the model posterior probability
forMi, P(Mi|{D},Mbiophysics ), can then be calculated as

P(Mi|{D},Mbiophysics ) = P({D}|Mi,Mbiophysics )P(Mi|Mbiophysics )∑
j P({D}|Mj ,Mbiophysics ) P(Mj|Mbiophysics )

for j ∈ {1, . . . ,N}. 3.

Comparing Equation 3 to Equation 1 demonstrates that BMS is a form of Bayesian inference,
and thus all of the benefits of using priors, likelihoods, and posteriors detailed in Section 3 also
apply in this case.

The model posterior is the object of BMS, as it eliminates the difficulties of trying to arbitrarily
assess whether the evidences for two models are effectively the same or not; this also addresses
the issue of plateauing evidences often found in maximum evidence methods such as vbFRET (2).
There are two approaches to deciding which model to use after performing model selection and
calculating the model posterior. First, the model with the largest model posterior value can be
chosen. Second, a probability threshold can be used (and set before performing the experiment),
in which the scientist can decide that the experiment is ambiguous if none of the models surpass
the threshold (e.g., greater than 0.95). If no model surpasses the threshold, then a subsequent
experiment would have to be performed, perhaps with a different technique to provide distinct
information or with more data to be collected, to distinguish between the models. Thus, the un-
certainty quantified with the posterior in BMS allows the scientist to assess the effectiveness of
the experiment and subsequent analysis.

We believe that single-molecule experiments are best analyzed in this manner because the
extensive use of probability theory enables scientists to easily deal with the statistical uncertainty
and other related problems faced in single-molecule experiments (see Section 2.2) with a unified
and comprehensive framework.Single-molecule analysismethods that currently employ evidences
(or ELBOs, for VB approaches) can be easily extended to perform BMS by using those evidences
with Equation 3 (Figure 3). Thus, BMS can be used to extend current methods to determine the
number of hidden states in an smFRET study, the best structural model for each conformational
class in a cryo-EM study, the best model for diffusion dynamics, etc. (see Section 3.5). Currently,
BMS is used to determine the presence of a change-point in a signal-versus-time trajectory (7),
the best force field to use in the construction of structural models (10), and even whether a noisy
fluorescent image corresponds to the molecule of interest or is junk (32). The list of models that
can be imagined to analyze single-molecule experiments is nearly endless, and thus, so too is the
number of applications for BMS in single-molecule biophysics.

5. CONCLUSION

It is clear that implementing Bayesian inference, even approximately, is extremely powerful for
single-molecule data analysis and has enabled deep insight into biomolecular systems through the
rational and judicious use of priors, likelihoods, posteriors, and evidences. Not only is Bayesian
inference incredibly effective as an analysis tool for single-molecule experiments, but it is also the
most optimal tool, as it enables a scientist to account for the large uncertainty in single-molecule
data. Additionally, it allows a scientist to do so in a way that is rigorously consistent with the sci-
entific method, to be transparent about the underlying assumptions used in the modeling, and,
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most importantly, to select the best model of a phenomenon in a quantitative, scientific manner. It
is worth noting that, while we have focused our attention on the analysis of single-molecule bio-
physics experiments, data from experiments in practically all scientific fields exhibit a finite SNR
and are composed of a finite number of data points (see Section 2.2). The universal applicability
of the Bayesian approach to analyzing data therefore promises to benefit scientific exploration in
virtually all fields.

Unfortunately, despite the great advantages that they offer, many of the Bayesian inference–
based methods described above have not yet been widely adopted. While this may be at least
partly due to the misconception that Bayesian inference, and particularly the use of priors, might
introduce nonscientific bias into an analysis (see Section 3.2), it is clear that further work is still
required to make Bayesian inference–based methods more accessible, computationally efficient,
and capable of modeling more complex single-molecule data. Fortunately, recent progress in the
field demonstrates that addressing these shortcomings is a very active area of research (13, 16,
22, 23, 41). Implementation of the BMS approach, as we describe in Section 4, makes use of all
of the benefits that probability theory affords and is an exciting avenue to explore for single-
molecule analysis methods under current or future development. It is our hope that this review
will encourage others to use currently available Bayesian inference–based methods in their single-
molecule data analysis pipelines and inspire them to develop new, creative, and powerful single-
molecule analysis methods that fully benefit from probability theory and consistency with the
scientific method.

SUMMARY POINTS

1. In accordance with the scientific method, any analysis of a natural phenomenon requires
the application of a model, along with its associated assumptions. The models used to
analyze single-molecule biophysics experiments must account for behavior of individual
molecules, molecular heterogeneity, and noisy signals.

2. Bayesian inference is the best way to perform the modeling of a single-molecule ex-
periment because it is most consistent with the scientific method and accounts for the
uncertainties present in all aspects of the experiments.

3. The use of a prior probability allows the quantitative incorporation of information from
previous experiments and theories into the current analysis. It is an integral part of the
model and thus should not be dismissed, as is the case in non–Bayesian inference–based
methods.

4. Likelihood functions, although integral in relating the model to the observed data, can-
not by themselves be used for inference. Using likelihoods alone, such as in MLE ap-
proaches, addresses the reverse of the problem that the scientific method aims to solve.

5. The posterior probability can be thought of as an update of the model after performing
an experiment. It is the objective of all analysis methods and captures the uncertainty in
our knowledge of model parameters.

6. Analyses of single-molecule experiments that use BMS are able to calculate the proba-
bility that a particular model is the best model of the underlying natural phenomenon
and therefore allow researchers to quantitatively evaluate hypotheses in a manner that
would not otherwise be possible.
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FUTURE ISSUES

1. Wider adoption of existing Bayesian inference–based data analysis methods could greatly
benefit the field of single-molecule biophysics. Moreover, wider engagement by the
single-molecule biophysics community in extending existing Bayesian inference–based
methods and creating new methods would could be transformative to the field.

2. Many of the complexities of single-molecule behavior and data remain inaccessible to
current analysis methods due to the absence of suitable models to describe them.Models
capable of describing these behaviors and data, and the experimental techniques used to
observe them, need to be developed.

3. Several currently available Bayesian inference methods are prohibitively expensive in
terms of ease of use and/or computational resources required for implementation.More
accessible and efficient Bayesian methods need to be developed.

4. Analyses of single-molecule experiments often use Bayesian inference in a piecemeal
manner—either for some parts of a larger analysis and/or in a way that has been op-
timized for a specific type of biomolecule or signal. General Bayesian inference–based
computational frameworks that encompass every part of a single-molecule experiment
and are capable of incorporating information frommultiple experimental sources to yield
a comprehensive picture of the biomolecular process under investigation remain elusive
and need to be developed.
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