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Abstract 

Background 

Single-molecule techniques have emerged as incisive approaches for addressing a wide range 
of questions arising in contemporary biological research [1-4]. The analysis and interpretation 
of raw single-molecule data benefits greatly from the ongoing development of sophisticated 
statistical analysis tools that enable accurate inference at the low signal-to-noise ratios 
frequently associated with these measurements. While a number of groups have released 
analysis toolkits as open source software [5-14], it remains difficult to compare analysis for 
experiments performed in different labs due to a lack of standardization. 

Results 

Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed 
to accommodate a wide variety of computer programming languages, single-molecule 
techniques, and analysis strategies. To facilitate adoption of this format we have made two 
existing data analysis packages that are used for single-molecule analysis compatible with 
this format. 

Conclusion 

Adoption of a common, standard data file format for sharing raw single-molecule data and 
analysis outcomes is a critical step for the emerging and powerful single-molecule field, 
which will benefit both sophisticated users and non-specialists by allowing standardized, 
transparent, and reproducible analysis practices. 
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Background 

Single-molecule techniques have proliferated over the past decade. Despite the power of 
these techniques and their widespread use, critical assessment of single-molecule data 
remains challenging. While there are multiple reasons for this, principal among these are the 
inherent noise and stochasticity associated with single-molecule events, which contribute 
substantially to the analysis challenge. To help manage similarly complex data sets generated 
from a number of techniques used in modern biological research, other fields have adopted 
standard data file formats, repositories, and analysis approaches. Examples include the PDB 
file format for structural data; the RCSB PDB repository of biomolecular structures; the NIH 
GenBank, DDBJ, and EMBL ENA repositories of gene and genome sequences; the NCBI 
BLAST and Ensembl sequence alignment and analysis tools; and the CNSsolve biomolecular 



structure determination tool [15-24]. Standardization has been a key part of the development 
and advancement of these resources and techniques, facilitating data sharing and 
dissemination. In addition, the transparency of these formats, repositories, and tools 
encourages critical assessment of data. Individually the effect of these changes is difficult to 
assess, but cumulatively they contribute to increased reproducibility and reliability of 
measurements and, as a result, to the growth and widespread adoption of these techniques. 

These examples represent important successes that have arisen naturally. However, several 
institutions and scientific leaders have recently begun to insist on greater transparency in the 
dissemination and treatment of all types of scientific data [25,26]. While there are many 
reasons for this desire and need, a number of well-documented instances within the drug 
discovery industry where the reproducibility of scientific results has been questioned [27-30] 
has raised awareness that a lack of easy access to raw data (arising from many sources) and a 
lack of tools for the primary analysis of the data can undermine clear communication of 
scientific results and can contribute to erroneous conclusions. Such high-profile problems 
cannot be attributed to any single failing, but a contributing cause is likely a current lack of 
standardization and control across the numerous measurement techniques that are combined 
to support these multidisciplinary development efforts [31,32]. 

Currently there is no standardization in place to unify the common aspects of most single-
molecule data sets and to facilitate the use of the sophisticated analysis approaches that are 
continually being developed. We propose the single-molecule dataset (SMD) file structure as 
a general data format for storing and disseminating single-molecule data. Moreover, we take 
steps to facilitate this transition by making two previously established data-analysis packages 
created in independent labs compatible with this format. 

Implementation 

There are many commonalities in how single-molecule data are collected, stored, and 
analyzed. Figure 1A outlines three unifying relationships that form the basis of the SMD 
hierarchy. Most single-molecule datasets take the form of time series data (i.e., traces) that 
are acquired simultaneously from one or more channels during an experiment. While this is 
not always the rawest form of the data (e.g., a trace can be extracted from a movie recorded 
using a microscope that can simultaneously monitor many individual molecules), the single-
molecule trace unifies many different techniques. At the highest level, a set of single-
molecule traces (denoted as black rectangles in Figure 1A, top) are unified by the particular 
experiment that was used to generate them (denoted as a purple rectangle in Figure 1A, top). 
Finally, associated with each trace can be experimental information and quantities derived 
from the analysis of the raw single-molecule data (e.g., inferred kinetic and thermodynamic 
parameters from model fitting; denoted as orange rectangle in Figure 1A, bottom). The aim of 
SMD is to encapsulate this hierarchy in a file structure that is independent of any particular 
programming language, data acquisition platform, or data analysis tool and that is widely 
compatible with distinct techniques and analysis strategies. 

Figure 1 Structure of SMD. (A) Cartoon representation of the SMD hierarchy. (Top) Each 
experiment, represented by the purple rectangle, encompasses the raw data of many single-
molecule traces, each represented by a black rectangle. (Bottom) Representation of an 
individual single-molecule trace within the above experiment. Raw single-molecule data 
consist of time series data arising from one or more channels. In this example, we depict two 
channels containing raw data as well as one channel containing an idealized trajectory 



determined in post-processing. Associated with the raw data of each trace are attributes that 
are unique to that trace (depicted in orange), such as derived kinetic and thermodynamic 
parameters obtained from model fitting. (B) Representation of the SMD format in JavaScript 
Object Notation (JSON). The color scheme is used from the cartoon representation in panel 
(A). 

There are many file types that easily accommodate the hierarchy of SMD (HDF5, .MAT, 
XML, etc.). Indeed, in any high-level analysis package one of these formats is likely to be 
used. However, to ensure the maximum interoperability between analysis tools, a standard 
text-based description is advantageous because it allows for straightforward determination of 
the data fields in a file without any prior knowledge of the specific experiment, data 
acquisition platform, or data analysis tools used. For interoperability purposes, a SMD object 
is represented in the widely used JavaScript Object Notation (JSON) format, whose nested 
structure naturally accommodates the SMD hierarchy. 

Results and discussion 

The SMD format aims to strike a balance between defining enough structure to facilitate 
interoperability of software packages and exchange of data between groups and providing 
enough flexibility to accommodate data associated with different experimental techniques 
and analysis use cases. The most important assumption we make is that the dataset holds 
traces with a fixed set of channels (e.g., raw measurements, post-processed time series, 
inferred kinetic trajectories, etc.) that are annotated by some set of attributes (e.g., pre-
processing settings, fitted model parameters, etc.). The attributes may be quite specific to the 
type of experiment and analysis performed, but the channel values themselves should in 
general be suitable to visualization and analysis with different software packages. Figure 1B 
outlines how the three components of SMD are structured in the JSON notation (the top level 
is depicted in purple, raw data in black, and trace-specific parameters in orange). Each trace 
contains four fields. The values field stores the trace data where each data type is specified by 
a descriptive tag. The index field contains a list of row labels for the trace (typically 
measurement acquisition times). Any other trace-specific annotations (e.g., pre-processing 
settings, fitted model parameters, etc.) are placed in the attr field. Finally the id field is used 
to store a 32 digit hexadecimal number generated by running the MD5 algorithm on the data 
for each trace. The list of traces is itself stored in the data field of an outer top-level structure, 
which itself has a dataset-specific id (generated by running the MD5 algorithm on the entire 
data structure) field as well as an attr field that holds top-level annotations or summary 
statistics that apply to the dataset as a whole (e.g., experimental conditions, time and date of 
acquisition, averaged model parameters, etc.) and a desc field that contains a string describing 
the data set. Additionally, the dataset-specific types specifies the data type for each instance 
of data being stored in each set of values. A full description of the SMD specification is 
provided in the Supporting Material. 

To facilitate the design and adoption of SMD we made the ebFRET [13,14] and SMART [11] 
single-molecule data analysis packages and visualization tools compatible with the SMD file 
format. We note here that ebFRET is a descendent of the previously released vbFRET [10,12] 
data analysis package. We also provide a number of tools for the basic support and validation 
of SMD files in both Matlab™ and Python packages. Full documentation of SMD and these 
tools is available at https://smdata.github.io/. 



The collaboration that resulted in SMD enabled many details that are important for ensuring 
generality to be implemented. The ebFRET and SMART data analysis packages were 
developed independently from one another and as a result have significantly different 
functionalities and work flows. The ability of SMD to easily accommodate these packages 
with multiple graphical interfaces and distinct outputs provides a strong indication that SMD 
will be able to accommodate the needs of many researchers. 

Conclusions 

Adoption of SMD or, as needed, a different format that encapsulates generalities not 
anticipated at this time, is an important step for the realization of the full potential of single-
molecule measurements by and for a broad scientific community. Although it will require 
some discipline for researchers to abide by (or “follow”) a common set of standards, the 
potential long-term benefits are hard to overstate. Standardization will help facilitate the 
transfer of information among different labs by ensuring that a minimal structure and set of 
information are present. In turn, this information sharing will facilitate further critical 
assessment (e.g., data quality, error assessment, and reproducibility) and reanalysis of single-
molecule datasets, important steps in extracting the most from complex but information-rich 
single-molecule data. Moreover, adoption of a common data standard could help facilitate the 
creation of a repository for single-molecule data (analogous to the RCSB PDB repository of 
biomolecular structures), which would enable a high degree of transparency and would 
ensure that data obtained now yields further insights in years to come. We are hopeful that 
the flexibility of SMD can easily accommodate the needs of current researchers and that it 
will enable researchers to reap the benefits that accompany widely adopted standardization. 
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