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The selectivity with which a biomolecule can bind its cognate ligand when confronted by the vast
array of structurally similar, competing ligands that are present in the cell underlies the fidelity
of some of the most fundamental processes in biology. Because they collectively comprise one of
only a few methods that can sensitively detect the ‘encounter’ complexes and subsequent interme-
diate states that regulate the selectivity of ligand binding, single-molecule fluorescence, and partic-
ularly single-molecule fluorescence resonance energy transfer (smFRET), approaches have
revolutionized studies of ligand-binding reactions. Here, we describe a widely used smFRET strategy
that enables investigations of a large variety of ligand-binding reactions, and discuss two such reac-
tions, aminoacyl-tRNA selection during translation elongation and splice site selection during
spliceosome assembly, that highlight both the successes and challenges of smFRET studies of
ligand-binding reactions. We conclude by reviewing a number of emerging experimental and com-
putational approaches that are expanding the capabilities of smFRET approaches for studies of
ligand-binding reactions and that promise to reveal the mechanisms that control the selectivity
of ligand binding with unprecedented resolution.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The ability of a biomolecule to selectively bind its cognate
ligand when faced with the vast array of structurally similar near-
and non-cognate ligands present in the cellular environment is
critical for maintaining the fidelity of biological processes. Specific
examples include critical processes spanning all of biology: a tran-
scription factor binding a DNA promoter site, a small nuclear ribo-
nucleoprotein (snRNP) binding a precursor mRNA (pre-mRNA)
splice site, a microRNA binding a target mRNA, or a ribosome bind-
ing an aminoacyl-tRNA (aa-tRNA) substrate. Such specificity of
ligand binding is typically achieved through multistep, ligand-
binding reactions in which the first step encompasses the revers-
ible formation of a nearly non-specific, weakly interacting, tran-
sient, intermediate ‘encounter’ complex between the biomolecule
and a potential ligand [1]. Subsequent steps lead to the formation
of a final biomolecule–ligand complex [1,2]. Multistep ligand-bind-
ing reactions such as these are governed by free-energy landscapes
such as the one shown in Fig. 1, which depicts a minimal, two-step,
ligand-binding reaction. Regardless of the number of steps, forma-
tion of an encounter complex reduces the search that is required to
form the final biomolecule–ligand complex from three spatial
dimensions to two [1]. This results in a lowering of the consider-
ably large entropic barrier(s) that would otherwise separate the
unbound state of the biomolecule from the bound state and poten-
tially allows the search for the bound state to be guided along a pri-
marily enthalpic energy funnel [1–4]. As a consequence, formation
of an encounter complex significantly increases the rate with
which biomolecules can conformationally screen potential ligands.
In addition, the weakly interacting, transient, and reversible nature
of an encounter complex allows it to rapidly dissociate into its
component biomolecule and potential ligand. The reversibility
and selectivity of ligand-binding reactions can therefore be pre-
cisely regulated by coupling the identity of the ligand to the prob-
ability of dissociating versus the probability of proceeding along
the reaction pathway. Near- and non-cognate ligands will have a
higher probability of dissociating while cognate ligands will have
a higher probability of proceeding along the reaction pathway
and forming the final biomolecule–ligand complex. We note here
that more complex ligand-binding reactions encompassing three
or more steps allow additional opportunities for the ligand to dis-
sociate from the post-transition state (�EC-B in Fig. 1) intermediate
states [2]. This allows for editing mechanisms, such as kinetic
proofreading [5], kinetic enhancement [6], or double-feature selec-
tion [4], all of which can greatly increase the specificity of ligand
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Fig. 1. Schematic of a ligand-binding reaction studied by smFRET. The minimal,
three-state, energy landscape describes the energy of a ligand-binding reaction
along the reaction coordinate. The free biomolecule and ligand begin in the
unbound state, and may collide and cross an initial energy barrier (�U-EC) to form an
encounter complex. The encounter complex may then either dissociate to reestab-
lish the free biomolecule and ligand or cross a second energy barrier (�EC-B) to form
the final bound state. The energy landscape is projected onto a plane below it,
where the hypothetical trajectory of a single ligand-binding reaction is depicted
diffusing along the reaction coordinate (gray curved line). Below this trajectory, a
hypothetical signal versus time trajectory corresponding to the ligand-binding
reaction trajectory is shown, where the signal of the unbound state, encounter
complex, and bound state are denoted (red horizontal lines). The reaction is
initiated at t = 0, crosses �U-EC several times to transiently sample the encounter
complex, and ultimately crosses �EC-B to form the bound state.
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binding without significantly decreasing the rate of the ligand-
binding reaction.

Although they play a decisive role in ensuring that biomolecules
can rapidly and selectively bind their cognate ligands, the encoun-
ter complexes and, if present, subsequent intermediate states that
form during ligand-binding reactions have traditionally been very
difficult to experimentally observe and characterize [1]. This is
because the stochastic nature of ligand-binding kinetics and the
transient nature of the encounter complexes and subsequent inter-
mediate states that are formed give rise to a situation in which
such complexes and states comprise exceedingly low-population
states that are extremely difficult to detect using traditional,
ensemble biophysical techniques that report only on the average
behavior of the entire ensemble. Further exacerbating this situa-
tion is the fact that, due to their partially non-specific nature,
encounter complexes and, possibly, subsequent early intermediate
states, can exhibit significant heterogeneity in their structures and
other physical properties. Despite these challenges, the emergence
in the early 2000s of nuclear magnetic resonance (NMR) spectro-
scopic techniques, particularly paramagnetic relaxation enhance-
ment, that enable the detection of low-population states have
allowed the partial characterization of several encounter com-
plexes and/or subsequent intermediate states formed during
ligand-binding reactions [7–9]. Almost simultaneously, the advent
of single-molecule biophysical techniques, particularly single-mol-
ecule fluorescence approaches, has provided a powerful comple-
ment to NMR spectroscopic methods. Single-molecule techniques
allow stochastic transitions to rarely and transiently sampled
states to be directly observed, thereby allowing those states that
were difficult to detect in ensemble biophysical experiments to
be sensitively detected and comprehensively characterized [10].
Moreover, the observation of individual transitions to and from a
state of interest allows heterogeneities in the physical properties
of that state to be identified, sorted, and analyzed [11,12].

Despite the tremendous promise that single-molecule fluores-
cence approaches hold for studies of encounter complexes and
subsequent intermediate states formed during ligand-binding
reactions, these approaches are often limited by (i) data collection
throughput that can be too low for sufficient statistical analysis, (ii)
time resolutions that can be too slow to capture exceedingly tran-
sient states, (iii) limitations in spatial resolution that can make it
difficult to determine when a ligand is co-localized to a biomole-
cule, and (iv) the ‘concentration barrier’ generated by the back-
ground fluorescence from the relatively high concentrations of
fluorophore-labeled ligands that are required to observe ligand
binding events within the experimental observation time that
compromises the high signal-to-background ratio that is required
to sensitively observe the fluorescence from a single molecule
[13,14]. Notably, single-molecule fluorescence resonance energy
transfer (smFRET) approaches are particularly powerful for studies
of ligand-binding reactions [15–17], as they ameliorate several of
these limitations, and are able to directly report on both the spatial
localization as well as the conformational dynamics of biomole-
cules and/or ligands [18]. We begin this article by providing a brief
description of the basic experimental platform that is typically
used to investigate ligand-binding reactions using smFRET and
then highlight two representative examples of ligand-binding
reactions that have been studied using smFRET. We then close by
reviewing emerging experimental and computational develop-
ments that are expanding the capabilities of smFRET experiments
to characterize the encounter complexes and subsequent interme-
diate states that regulate the rate and specificity of ligand-binding
reactions at an ever-increasing level of detail. Given the large num-
ber of ligand-binding reactions that are the subject of ongoing
smFRET studies and of emerging techniques that are currently
being developed, we wish to apologize to those colleagues whose
work we were unable to review due to space constraints.

2. smFRET studies of ligand-binding reactions

2.1. General experimental platform

Fluorescence resonance energy transfer (FRET) is a dipole-
dipole interaction in which the excitation of a donor fluorophore
(e.g., Cy3) can be transferred to an acceptor fluorophore (e.g.,
Cy5) with an efficiency (termed the FRET efficiency, or EFRET) that,
among other variables, depends monotonically on the distance
between the fluorophores [19,20]. Thus, EFRET can be interpreted
as a ‘‘spectroscopic ruler’’ (over a fluorophore pair-specific range
of distances that is typically in the tens of Å) [21]. The EFRET of an
energy-transfer event can be quantified by directly exciting the
donor, measuring the fluorescence intensities of both fluorophores,
and calculating the EFRET using the relationship EFRET = IA/(IA + ID),
where IA and ID are the fluorescence intensities of the acceptor
and the donor, respectively. Perhaps the most common experimen-
tal platform for studying ligand-binding reactions using smFRET
(Fig. 2) involves tethering a biotin-derivatized, donor-labeled bio-
molecule of interest to the surface of a microfluidic, observation
flowcell via a biotin–streptavidin–biotin bridge formed with bio-
tin-derivatized polyethylene glycol (PEG) that has been used to
functionalize the surface of the flowcell [22,23]. Introduction of
an acceptor-labeled ligand into the imaging buffer within the flow-
cell and imaging using wide-field total internal reflection fluores-



Fig. 2. Schematic of a ligand-binding reaction studied by smFRET using a typical TIRF microscope. A laser excitation source is totally internally reflected (TIR) at the interface
formed between the surface of the quartz, microfluidic, observation flowcell to which the donor-labeled biomolecules are tethered and the aqueous imaging buffer in the
flowcell. The evanescent field that is generated by TIR propagates into the imaging buffer and decays exponentially as a function of increasing distance from the quartz–buffer
interface, thereby selectively exciting only those donors that are localized within �300 nm of the quartz–buffer interface (top left inset). Donor and acceptor fluorescence
emission is collected by an objective, separated by wavelength using dichroic mirrors, and detected using an electron-multiplying charge-coupled device (EMCCD) camera
(bottom left inset). The separated donor and acceptor fluorescence intensities reporting on the binding of acceptor-labeled ligands to individual, spatially resolved, donor-
labeled biomolecules can then be quantified and plotted as a function of time (bottom right inset). Figure and caption adapted from Ref. [174].
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cence (TIRF) microscopy [24–26] enables direct excitation of the
surface-localized donors and simultaneous observation of both
the donor- and acceptor fluorescence intensities originating from
hundreds of individual biomolecules [23,27]. In such experiments,
an anti-correlated donor- and acceptor fluorescence intensities
versus time trajectory that exhibits single-step fluorophore photo-
bleaching originating from diffraction-limited donor and acceptor
spots serves as unambiguous evidence for resonance energy trans-
fer arising from the encounter of a single, acceptor-labeled ligand
with a single, surface-tethered, donor-labeled biomolecule. Impor-
tantly, the acceptor will only fluoresce when it is within tens of Å
of the donor (i.e., when the ligand is bound to the biomolecule).
Thus, smFRET enables the detection of biomolecule–ligand
encounters in the presence of relatively higher, tens to one hun-
dred nM, concentrations of fluorophore-labeled ligand in the imag-
ing buffer than is possible with other single-molecule fluorescence
microscopy approaches – thereby partially alleviating the limita-
tions imposed by the concentration barrier described in Section 1
[28]. In addition to reporting on ligand–biomolecule encounters,
smFRET can also report on conformational changes of the biomol-
ecule and/or ligand that result in changes in the distance between
the positions of the donor and acceptor. In summary, because it is
able to simultaneously and sensitively report on hundreds of single
biomolecule–ligand encounters at fluorophore-labeled ligand con-
centrations that are higher than is possible with other single-mol-
ecule fluorescence approaches, as well as because it can report on
conformational changes that take place during the ligand-binding
reaction, the TIRF-based smFRET experimental platform has been
particularly successful for investigating the kinetic and thermody-
namic properties of ligand-binding reactions [10].
2.2. aa-tRNA selection during translation elongation

In all organisms, mRNAs are translated into proteins by the
ribosome, a 2.5–4.3 MDa [29,30] molecular machine that is com-
posed of two ribonucleoprotein subunits. During translation, aa-
tRNAs are delivered to the ribosomal aa-tRNA binding (A) site by
the guanine triphosphatase (GTPase) elongation factor Tu (EF-Tu)
as part of an EF-Tu(GTP)aa-tRNA ternary complex (TC) (Fig. 3A)
[31–35]. Despite the pool of 41–55 different aa-tRNA isoacceptors
that is found in cells [36], the ribosome is able to accurately select
the aa-tRNA whose anticodon correctly basepairs to the mRNA
codon at the A site (i.e., the cognate aa-tRNA), only misincorporat-
ing aa-tRNAs with one-base mismatches (i.e., near-cognate aa-
tRNAs) or with two-base or greater mismatches (i.e., non-cognate
aa-tRNAs) with a frequency of 1 in 103–104 [37–40]. Notably, this
level of fidelity greatly exceeds the maximum misincorporation
frequency of 1 in 102 that would be expected from just the thermo-
dynamic stability differences between the anticodon-codon inter-
actions formed by a cognate aa-tRNA and those formed by the
corresponding near-cognate aa-tRNAs [41–43]. Extensive studies
of the mechanisms through which the ribosome achieves the
observed high fidelity of aa-tRNA selection have led to the develop-
ment of a widely accepted, multistep mechanism [44,45] in which
kinetic proofreading [5,6,46–48] and induced fit [48,49] strategies
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Fig. 3. (A) Cartoon schematic of the mechanism of aa-tRNA selection during translation elongation. The EFRET values for the states that are observed by smFRET are denoted
below the corresponding states. The rate constants shown are likely composite rate constants that describe several events that occur during a step. Dashed arrows represent
steps believed to have exceedingly low probabilities of occurring. smFRET experiments have utilized both tRNA–tRNA and tRNA–ribosome donor–acceptor labeling schemes.
This mechanistic scheme is based on a similar scheme appearing in Ref. [35]. (B) Cartoon schematic of the mechanism of splice site selection during spliceosome assembly
and the subsequent splicing reaction that converts pre-mRNA into mRNA. Single-molecule fluorescence experiments have utilized numerous fluorophore labeling schemes
involving fluorophore-labeled U1, U2, U5, NTC, and/or pre-mRNA. Again, the rate constants shown are likely composite rate constants that describe several events that occur
during a step, and dashed arrows represent steps believed to have exceedingly low probabilities of occurring. This mechanistic scheme is based on a similar scheme appearing
in Ref. [175].
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are employed to increase the otherwise relatively low fidelity of
aa-tRNA selection that would be expected [33].

Over the past decade, the mechanism of aa-tRNA selection has
been the subject of numerous smFRET studies [50–55]. Several
aspects of the experimental systems available for studying aa-tRNA
selection provide important advantages for designing, implement-
ing, and interpreting smFRET experiments. These advantages
include: (i) the involvement of interactions between only two
molecular subcomplexes, the TC and a ribosomal elongation com-
plex (REC); (ii) the availability of a reconstituted in vitro transla-
tion system composed of a full set of purified components that
allows individual components and steps of the reaction to be
manipulated (reviewed in Ref. [56]); (iii) the existence of a large
number of small-molecule inhibitors that enable inhibition of spe-
cific and well-defined steps of the reaction [57–59]; and, (iv) the
availability of a series of cryogenic electron microscopy (cryo-
EM) and X-ray crystallography structures that approximate the
structures of the initial and final states of the reaction, as well as
those of several intermediate states (reviewed in Refs. [31,35]).

smFRET studies of aa-tRNA selection are typically performed
using RECs that are biotinylated at the 50 end of the mRNA and that
have been labeled with a donor fluorophore either within the fMet-
tRNAfMet that is bound at the ribosomal peptidyl-tRNA binding (P)
site [50,60] or within ribosomal protein L11 [52,61]. RECs are then
tethered to the surface of a microfluidic, observation flowcell via
their 50-biotinylated mRNA such that they can be imaged with sin-
gle-molecule resolution using TIRF microscopy. Stopped-flow
delivery of a TC carrying an acceptor-labeled aa-tRNA to an REC
carrying a donor-labeled P-site tRNA and a cognate A-site codon
then yields acceptor- and donor intensities versus time trajectories
that are used to calculate pre-steady-state EFRET versus time trajec-
tories. EFRET versus time trajectories initiate at zero-EFRET and
evolve through transiently sampled low- and mid-EFRET states
before arriving at a high-EFRET final state that is consistent with
structures approximating the final state of the reaction in which
the aa-tRNA has been accommodated into the A site (Fig. 3A)
[50–55]. The mid-EFRET state has been assigned to a mixture of at
least two intermediate states that had been previously observed
in biochemical [48] and structural studies [62,63], and that corre-
spond to the conformations of the TC-bound REC that immediately
precede and immediately follow ribosome-catalyzed GTP hydroly-
sis by EF-Tu (Fig. 3A) [50]. The state that precedes GTP hydrolysis
can be biochemically ‘captured’ and stabilized using a non-hydro-
lyzable GTP analog [64] or a GTP hydrolysis-deficient EF-Tu mutant
[65]. Likewise, the state that immediately follows GTP hydrolysis
can be captured and stabilized using the EF-Tu-targeting antibiotic
kirromycin [66]. Such approaches allow the populations of these
ordinarily transient and low-population states to be increased such
that they can be easily studied using ensemble biochemical and
structural methods [31–33,35].

In contrast to the mid-FRET state, the low-EFRET state has been
assigned to a structurally novel intermediate state that has thus far
eluded capture and stabilization using mutations, biochemical ana-
logs, or small-molecule inhibitors, thereby precluding its direct
detection using ensemble biochemical or structural studies
(Fig. 3A). Nonetheless, the conformation of the TC-bound REC corre-
sponding to the low-EFRET state is a critical, codon-dependent inter-
mediate state during aa-tRNA selection. Experiments in which the
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TC is delivered to an REC carrying a non-cognate A-site codon, for
example, do not result in any detectable smFRET signals, including
even the detection of highly transient sampling of the low-EFRET

state. Analogous experiments using RECs carrying a near-cognate
A-site codon, on the other hand, result in the detection of a highly
transient low-EFRET state that corresponds to the formation of a
weakly interacting, transient TC-bound REC from which TC has a
much higher probability of dissociating from the REC than of pro-
gressing along the reaction pathway. In contrast, experiments using
RECs carrying a cognate A-site codon result the detection of a slightly
longer-lived low-EFRET state that corresponds to the formation of a
slightly more stably interacting, less transient TC-bound REC from
which the TC has a much higher probability of progressing along
the reaction pathway than of dissociating from the REC. Interest-
ingly, the precise EFRET values of the low-EFRET state differ for cognate
and near-cognate TC-bound RECs, indicating that the TC in a cognate
TC-bound REC is positioned in a manner that differs slightly from
how it is positioned in a near-cognate TC-bound REC. This suggests
that positioning of the TC within the low-EFRET TC-bound REC state
is an important, yet transient, structural response to the recognition
of a cognate codon at the A site of the REC.

Despite the success of smFRET in identifying and characterizing
the highly transient low-EFRET TC-bound REC state, it is important
to note that there are one or more states preceding this state in
the reaction pathway that play important roles during aa-tRNA
selection and that remain to be identified and characterized. For
example, the very first state resulting from the codon-independent,
initial binding of the TC to the REC, which is likely to have properties
that are similar or identical to those of an encounter complex, has yet
to be observed (Fig. 3A). In addition, the fact that the low-EFRET state
is not detected in smFRET experiments in which a TC is delivered to
an REC carrying a non-cognate A-site codon suggests that, either: (i)
the low-EFRET state is sampled too rarely to be detected due to cur-
rent experimental limitations (e.g., the low concentrations of accep-
tor-labeled TC that must be used to maintain the signal-to-
background required to observe single fluorophores, the rate with
which the donors on the RECs photobleach, etc.); (ii) the low-EFRET

state is sampled too transiently to be detected due to current limita-
tions on the time resolution of the experiments; (iii) non-cognate
TCs are recognized and discriminated against within a state that pre-
cedes and is physically distinct from the low-EFRET state, but in which
the distance between the donors and acceptors in the currently
available fluorophore labeling schemes are too far away to generate
a detectable EFRET; or (iv) a combination of these possibilities. Thus,
weakly interacting, highly transient states that are critical for fully
understanding the physical and molecular mechanisms underlying
aa-tRNA selection during translation remain to be identified and
characterized – representing an ongoing challenge for the field.

Towards these goals, emerging technologies hold great promise
for ongoing investigations of the mechanism of aa-tRNA selection.
Recent single-molecule fluorescence co-localization microscopy
experiments that use next-generation, nanofabricated, microflu-
idic, observation flowcells to overcome the concentration barrier
(see Section 3.3), for example, have demonstrated that fluoro-
phore-labeled TCs do indeed transiently co-localize with fluoro-
phore-labeled RECs carrying non-cognate A-site codons. Although
these were not smFRET experiments in which the measured EFRET

could be compared to what is observed in RECs carrying near-cog-
nate or cognate A-site codons, they represent an important step
towards understanding where in the pathway and how RECs dis-
criminate against non-cognate TCs [67].

2.3. Splice site selection during spliceosome assembly

In eukaryotes, transcription of the genomic DNA often produces
pre-mRNAs that must be spliced in order to excise the non-coding
intronic sequences and ligate the coding exonic sequences, ulti-
mately yielding mature mRNAs that can be translated by the ribo-
some. Pre-mRNA splicing is carried out by the spliceosome, a 2–
3 MDa molecular machine that is composed of five RNA-protein
complexes known as snRNP complexes and dozens of additional
protein factors (Fig. 3B) [68–72]. During splicing, the spliceosome
must assemble de novo across each pre-mRNA intron. Assembly
often begins with binding of the U1 snRNP to the junction of the
intron with the 50 exon (i.e., the 50 splice site) and one or more pro-
teins to the short sequence that specifies the 20-OH for nucleophilic
attack of the phosphodiester bond at the 50 splice site during the
first chemical step of splicing (i.e., the branchsite). Some of these
branchsite-binding proteins (Branchpoint Bridging Protein in yeast
or SF1 in humans) are then displaced by binding of the U2 snRNP.
This is then followed by binding of the U4/U6.U5 tri-snRNP and the
protein-only nineteen complex (NTC), an event that ultimately
triggers the release of the U1 and U4 snRNPs and activates the
spliceosome for catalysis [68,69,72,73]. Despite the fact that the
50 splice site, the junction of the intron with the 30 exon (i.e., the
30 splice site), and the branchsite are comprised of short consensus
sequence elements that, at least in metazoans, are very poorly con-
served [73–75], the spliceosome is able to accurately recognize and
select these sequence elements in order to generate the proper
mRNA with an error rate for splicing of 1 in 102 to only 1 in 105

[73,76–78]. Similar to aa-tRNA selection, the unexpectedly high
fidelity of splice site selection by the spliceosome has been attrib-
uted to multistep mechanisms for spliceosome assembly, activa-
tion, and catalysis in which kinetic proofreading [5,6] strategies
are employed to increase the low fidelity of splice site selection
that would otherwise be predicted [73,75].

Although studies of splice site selection during spliceosome
assembly would ideally be performed using smFRET [69], the
experimental systems available for studying splice-site selection
during spliceosome assembly present several important challenges
for designing, implementing, and interpreting smFRET experi-
ments. These challenges include, (i) the fact that even a minimal
version of the reaction involves the interaction of numerous
molecular subcomplexes; (ii) the unavailability of a reconstituted
in vitro splicing system such that experiments must be performed
in whole cell or nuclear cell extracts, making it difficult to manip-
ulate individual components and steps of the reaction [79]; (iii) the
existence of only a few small-molecule inhibitors that enable inhi-
bition of specific and well-defined steps of the reaction [80,81];
and (iv) the availability of only a very limited number of cryo-EM
and/or X-ray crystallography structures (reviewed in Ref. [82])
for designing donor–acceptor labeling schemes. Due to these chal-
lenges, few smFRET studies of the spliceosome have been per-
formed, and these either focus on structural rearrangements of a
donor- and acceptor-labeled pre-mRNA upon binding of the indi-
rectly detected, fluorophore-free spliceosomal components
[83,84] or on structural rearrangements of protein-free, RNA com-
ponents of the snRNPs [85,86]. Notably, smFRET studies reporting
on the dynamics of spliceosome assembly and how these dynamics
are modulated by the identities of the 50- and 30 splice sites and the
branch point sequence have not been reported. Recently, however,
a combination of chemical biology approaches for systematically
and orthogonally fluorophore-labeling sets of spliceosomal sub-
complexes within Saccharomyces cerevisiae (S. cerevisiae) whole cell
extracts (WCEs) and single-molecule fluorescence co-localization
microscopy experiments have been used to investigate the dynam-
ics of spliceosome assembly. Notably, this approach enabled the
authors to demonstrate how these dynamics are modulated by
the unique splice-site features of specific pre-mRNA introns
[79,84].

WCEs for single-molecule fluorescence co-localization micros-
copy experiments were prepared from S. cerevisiae strains in which
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the C-termini of specific proteins that are associated with sets of
well-defined spliceosomal subcomplexes had been fused to either
a ‘DHFR’ tag (a variant of Escherichia coli dihydrofolate reductase)
or a ‘SNAP’ tag (a variant of human alkylguanine S-transferase)
[79,84]. DHFR- and SNAP fusions are then differentially fluoro-
phore labeled using fluorophore-labeled trimethoprim analogs
that bind DHFR very tightly, with an equilibrium dissociation con-
stant of <1 nM [87], or benzyl-guanine derivatives that covalently
modify the active site cysteine of SNAP [88]. Single intron-contain-
ing pre-mRNAs to be used for single-molecule fluorescence colo-
calization microscopy were fluorophore labeled near the 30 end,
biotinylated at the 30 end, and then tethered to the surface of a
microfluidic, observation flowcell via their 30 biotin. In this manner,
they could be imaged using TIRF microscopy and their spatial loca-
tion in the field-of-view could be determined to within single-mol-
ecule resolution [89]. Introduction of a WCE containing a set of
fluorophore-labeled spliceosomal subcomplexes into such a flow-
cell then allows binding of each subcomplex to the fluorophore-
labeled and surface-tethered pre-mRNA to be monitored via their
spatial co-localization with the pre-mRNA.

Collectively, these studies have revealed that, depending on the
identity of the pre-mRNA, spliceosome assembly preferentially fol-
lows one of two pathways that differ in the order in which the U1
and U2 snRNPs are observed to co-localize to the pre-mRNA
(Fig. 3B). Thus, the first steps of the assembly reaction may be
either U1 ? U2 ? U4/U6.U5 ? NTC or U2 ? U1 ? U4/U6.U5 ?
NTC. In addition, these studies revealed that no single step is rate
limiting for the overall assembly reaction. Perhaps most interest-
ing, these experiments have demonstrated that, for all pre-mRNAs
tested thus far, binding of each subcomplex is highly reversible and
transient on the timescale of the experiments. This result suggests
that introns are not irreversibly committed to splicing during the
early steps of spliceosome assembly. Instead, commitment to splic-
ing increases with the binding of each successive subcomplex and
can possibly be regulated by modulating the stabilities of the
bound subcomplexes during spliceosome assembly. Indeed, the
set of pre-mRNAs that have been tested thus far differ in, among
other respects, the sequences of their 50 and 30 splice sites, suggest-
ing that differences in the order in which the U1 and U2 snRNPs are
observed to co-localize to the different pre-mRNAs may arise from
pre-mRNA sequence-dependent differences in the stabilities with
which U1 and/or U2 snRNPs bind to each pre-mRNA. Consistent
with this possibility, more extensive scrambling of the 50 splice site
results in a loss of detectable U1 snRNP binding in both ensemble
[90–92] and single-molecule fluorescence [79] experiments,
strongly suggesting that the stability of U1 snRNP binding is highly
dependent on the identity of the 50 splice site.

Despite the success of the single-molecule fluorescence co-
localization experiments described in the previous paragraph,
additional studies in which the 50 splice site, the 30 splice site,
and the branch point sequence are systematically mutagenized
will be needed to determine how the transient binding of individ-
ual subcomplexes during spliceosome assembly across introns is
modulated. In addition, the fact that extensive scrambling of the
50 splice site results in a loss of detectable U1 snRNP binding to
the 50 splice site suggests that the encounter complex between
U1 snRNP and the pre-mRNA and, possibly, subsequent U1
snRNP-bound pre-mRNA intermediate states during which U1
snRNP recognizes and selects the 50 splice site, have yet to be
observed. Ultimately, it will be important to extend such experi-
ments so as to investigate the hypothesis that early interactions
between U1 snRNP and the C-terminal domain of the large subunit
of RNA polymerase II (and potentially chromatin [93]) serve to co-
transcriptionally recruit U1 snRNP to nascent pre-mRNA tran-
scripts [94–101]. Likewise, it will ultimately be important to
extend these types of experiments to investigate recognition and
selection of the 30 splice site by a subunit of the U2 auxiliary factor
(U2AF) [102–104] and the branchsite sequence by SF1 and U2
snRNP [105] during the early steps of spliceosome assembly. Thus,
numerous, weakly interacting, highly transient states that are crit-
ical for fully understanding splice site selection during spliceosome
assembly remain to be identified and characterized, representing
an ongoing challenge for the field.

3. Emerging experimental advances for smFRET studies of
ligand-binding reactions

3.1. Microscopy developments

As described in Section 1, one of the current limitations in sin-
gle-molecule fluorescence studies of ligand-binding reactions is
the concentration barrier that is created by the relatively high con-
centrations of fluorophore-labeled ligands that are required to be
present in the imaging buffer in order to detect ligand-binding
events within the experimental observation time [14]. Because
an acceptor will only be efficiently excited via FRET when it is
within tens of Å of a donor that is directly excited by an excitation
light source (e.g., a laser), smFRET experiments in which a donor-
labeled biomolecule of interest is tethered to the surface of the
microfluidic, observation flowcell and an acceptor-labeled ligand
is supplied in the imaging buffer greatly ameliorate the limitations
imposed by the concentration barrier [28,106]. Despite this advan-
tage of smFRET experiments, acceptors can still be directly, albeit
inefficiently, excited by the laser that is used to directly excite
the donor fluorophore – a low probability event known as excita-
tion crosstalk [10]. At high enough concentrations of acceptor-
labeled ligands in the imaging buffer (typically well below the
equilibrium dissociation constants of weakly interacting biomole-
cule–ligand complexes), excitation crosstalk becomes a major
source of background fluorescence noise in such experiments, a sit-
uation that can ultimately prevent the detection of fluorescence
from individual molecules [14].

By preventing the excitation source from penetrating deeper
than �200–300 nm into the imaging buffer in the flowcell, wide-
field TIRF microscopy-based smFRET experiments minimize the
total amount of noise from excitation crosstalk of acceptor-labeled
ligands in the imaging buffer. Unfortunately, the major disadvan-
tage of this approach is that the electron-multiplying charge-cou-
pled device (EMCCD) cameras that are used as detectors in TIRF
microscopy-based smFRET experiments operate at time resolu-
tions that are typically too slow to capture the weakest and most
transient intermediate states (typically limited to �30 ms per a
full-resolution frame [107]). This tradeoff between lower back-
ground noise and faster time resolution is a fundamental limitation
of using wide-field smFRET to study encounter complexes. Using a
confocal fluorescence microscope with an avalanche photodiode
(APD) or a single-photon avalanche diode (SPAD) detector, rather
than a TIRF microscope with an EMCCD camera detector, affords
significant increases in the sensitivity, signal-to-background ratio,
and time resolution (typically �1 ms per data point) of smFRET
experiments [10,108]. Unfortunately, however, this increase in
the time resolution comes at the cost of a significant decrease in
throughput, as the confocal fluorescence microscopy-based
approach can only image one biomolecule at a time, whereas the
TIRF microscopy-based approach can simultaneously image hun-
dreds of surface-tethered biomolecules at a time. Such low
throughput can be particularly difficult to overcome when
attempting to detect weakly interacting, transient biomolecule–
ligand complexes and/or conformational states that are rarely-
populated. In the ideal setup, one would be able to couple a TIRF
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microscope with an APD- or SPAD-array detector [107,109]. Such
an approach would allow wide-field detection with APDs or SPADs,
thereby allowing the high throughput associated with using a con-
ventional TIRF microscope, but with the high time resolution that
is associated with using a confocal fluorescence microscope.
Towards this goal, smFRET was recently demonstrated using linear
arrays of 8 SPADs [110], and so, with further development, com-
mercially available products composed of tens of thousands of
SPADs will likely constitute an important future development in
the field of single-molecule fluorescence microscopy [109].

An alternative approach to minimizing the excitation crosstalk
of acceptor-labeled ligands and improving the signal-to-back-
ground ratio of conventional TIRF microscopy-based smFRET
experiments without compromising throughput is to remove
excess ligand from the excitation volume without changing the
local concentration of the ligand in the vicinity of the biomolecule.
This can be achieved by locally confining ligands and the biomole-
cule of interest into spatially resolved regions of the flowcell that
are smaller than the excitation volume associated with the detec-
tion of single, diffraction-limited spots in the field-of-view. Notable
approaches include electrostatic and physical traps [111,112] as
well as encapsulation of the biomolecules and ligands in aqueous
drops in oil [113]. Perhaps the most promising and physiologically
compatible method of local confinement for smFRET experiments
is to encapsulate ligands and individual biomolecules in surface-
tethered liposomes [114]. These lipid vesicles not only encapsulate
ligands with individual biomolecules and confine them to spatially
resolved regions on the surface of the microfluidic flowcell, but,
because the biomolecule is free to diffuse within the surface-teth-
ered liposome, they also serve to further reduce the interactions
that a biomolecule of interest might have with the PEG-passivated
surface of the microfluidic flowcell [115]. In addition, since their
introduction in 2001 [116], liposomes have been optimized to
allow for the free diffusion of small molecules into and out of the
liposome [117].

3.2. Fluorophore developments

Although much work has gone into developing robust donor
and acceptor pairs with well-behaved photophysics for smFRET
studies [118], photobleaching and ‘blinking’ of fluorophores con-
tinues to impose limitations on smFRET studies of biomolecular
systems [119,120]. The irreversible photobleaching of a fluoro-
phore effectively brings the smFRET experiment, at least for that
fluorophore, to an end, thereby limiting the experimental through-
put. The reversible blinking of a fluorophore similarly limits the
throughput of smFRET experiments and, in addition, can convolute
the subsequent analysis of the data (e.g., it is often difficult to dis-
tinguish whether changes in EFRET that are observed arise from
bone fide changes in the distance between the donor and acceptor
or from blinking of the donor or acceptor) [119,120]. The limita-
tions imposed by photobleaching and blinking are particularly
challenging for smFRET studies of ligand-binding reactions. Rare
events such as the formation of a particularly long-lived complex
formed by the generally weak, transient binding of an acceptor-
labeled ligand to a surface-tethered, donor-labeled biomolecule
of interest, for example, are exceedingly difficult to observe within
the limited observation times that are imposed by photobeaching
and blinking of the donor fluorophore. The continued development
of longer-lived, brighter, and more stable fluorophores, such as
Cy3B [121], is therefore an important area of research, as these
enhanced fluorophores enable longer and more stable observation
times in smFRET experiments [118,122].

Complementing the development of longer-lived, brighter, and
more stable fluorophores, considerable work has also gone into
optimizing buffer conditions that minimize photobleaching and
blinking [119]. Often, photobleaching is mediated via a photo-
chemical reaction between a fluorophore in its electronically
excited state and molecular oxygen. As a consequence, oxygen
scavenging systems, including mixtures of glucose, glucose oxi-
dase, and catalase or of protocatechuic acid (PCA) and protocatech-
uate-3,4-dioxygenase (PCD), are often added to experimental
buffer systems to extend fluorophore survival times [123,124]. As
early as 1988, b-mercaptoethanol (BME) was being added to buffer
systems for single-molecule fluorescence microscopy experiments
in order to suppress the blinking of tetramethyl-rhodamine, pre-
sumably by quenching a dark triplet-state of the fluorophore
[123]. Since then, triplet-state quenchers, including mixtures of
cyclooctatetraene (COT) [23], 4-nitrobenzyl alcohol (NBA) [23],
and/or Trolox (a water-soluble analog of vitamin E) [125] have
become standard additives in smFRET experiments [126]. Recently,
direct, covalent conjugation of triplet-state quenchers such as COT,
NBA, or Trolox to the entire class of cyanine dye fluorophores,
including Cy3 and Cy5, was shown to significantly enhance the
photostability of these fluorophores [127,128]. Although these
new fluorophore–quencher conjugates represent a breakthrough
in fluorophore development, caution should be exercised in their
use, as these conjugates are necessarily larger than the traditional
fluorophores on which they are based and are therefore more likely
to sterically perturb the biomolecules or ligands to which they are
attached.

In addition to the development of fluorophores and/or buffer
conditions that resist photobleaching and blinking, the develop-
ment of fluorophores that enable selective excitation is another
promising area of current research [120]. Indeed, one of the major
advantages of smFRET is that the acceptor is excited selectively
(i.e., only when it is within tens of Å of a donor). Similarly, highly
enzyme-specific fluorogenic substrates that fluoresce exclusively
upon being enzymatically modified can be used to conduct sin-
gle-molecule fluorescence microscopy studies of the mechanisms
of action of enzymes for which fluorogenic substrates have been
developed [12,122]. This strategy, however, is difficult to general-
ize to all, or even many, enzymes and even more so to non-enzy-
matic biomolecules. In addition, to our knowledge, fluorogenic
strategies have not yet been utilized in smFRET studies. As an alter-
native to the use of fluorogenic substrates, selective excitation can
be achieved through the use of photoswitchable fluorophores
[120]. For example, in the PhADE technique, an imaging buffer con-
taining high concentrations of a photoswitchable fluorophore-
labeled ligand is activated with a laser pulse and these are allowed
to diffuse out of the imaging volume. This effectively removes all of
the photoactivated ligands other than those that are bound to the
surface-tethered biomolecules from the flowcell, thereby removing
much of the background fluorescence that would otherwise arise
from photoactivated ligands in solution [129]. Unfortunately, this
strategy works only for relatively long-lived, weakly interacting
biomolecule–ligand complexes, and, to our knowledge, has not
yet been used in smFRET experiments.

Perhaps the most promising recent development in smFRET
studies of biomolecular systems is the use of FRET-based quench-
ers as acceptors for smFRET experiments [130]. By returning from
the excited state to the ground state without emitting a photon,
quenchers not only free the optical spectrum for the use of addi-
tional fluorophores (e.g., for colocalization experiments), but, of
particular importance for smFRET studies of ligand-binding reac-
tions, also allow smFRET experiments to be performed under con-
ditions in which very high concentrations of quencher-labeled
ligands can be included in the imaging buffer without significantly
increasing the fluorescence background. This is because a quencher
that is excited by excitation crosstalk will not fluoresce, thereby
minimizing the contribution of excitation crosstalk to the fluores-
cence background. Only a few researchers have thus far used FRET-



Fig. 4. (A) Schematic of a newly developed nanoaperture array for use in nanoaperture fluorescence microscopy. The gold surfaces in an array of nanoapertures (i.e.,
nanoscopic wells fabricated onto a gold film that has been deposited on a quartz substrate) is passivated using self-assembled monolayers of thiol-derivatized PEG (PEG-SH
SAMs) to protect against non-specific adsorption of acceptor-labeled ligands. Likewise, self-assembled monolayers of a mixture of silane-derivatized PEG and silane-/biotin-
derivatized PEG (PEG-Si SAMs) are used to protect against non-specific adsorption of acceptor-labeled ligands and enable tethering of donor-labeled biomolecules using a
biotin–streptavidin–biotin bridge, respectively. Because light from the laser excitation source is confined to an exceedingly small volume at the very bottom of the
nanoaperture, the excitation crosstalk of acceptor-labeled ligands is significantly minimized relative to the excitation crosstalk produced by the standard TIRF-based
microscopy setup depicted in Fig. 2. Figure adapted from Ref. [106]. (B) Graphical model of the coupled Bayesian HMM used in ebFRET and vbFRET. Two representative signal
versus time and state occupancy versus time trajectories in an experiment (left insets). Graphical model showing an HMM for N trajectories with K states. The parameters
describing each trajectory (light blue circles) are distributed according to a probability function that depends on a set of hyperparameters (light pink circles). Maximum
likelihood methods use a non-Bayesian variant of this HMM, which omits the hyperparameters.
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based quenchers to address biological systems using smFRET [130–
134]. Notably, a FRET-based quencher was used to report on the
large-scale conformational dynamics of the ribosome during trans-
lation elongation [135,136], although this approach was used to
free the optical spectrum and expand the number of fluorophores
that could be simultaneously detected, rather than to use FRET-
based quencher-labeled ligands to overcome the concentration
barrier.

3.3. Optical engineering developments

A general strategy for increasing the sensitivity of single-mole-
cule fluorescence experiments is to enhance the fluorescence sig-
nal from the molecules of interest. Perhaps the most widely used
approach for accomplishing this is plasmon-mediated enhance-
ment, which has traditionally been used to enhance optical spec-
troscopies (e.g., surface plasmon-enhanced Raman spectroscopy)
and, in single-molecule fluorescence applications, can be used to
decrease illumination volumes and increase fluorescence signals
[137]. Nanofabricated plasmonic bowties [138] and plasmonic
nanoantennas [139–141] have both been shown to dramatically
increase signal-to-background ratios in single-molecule fluores-
cence applications. Of particular importance for single-molecule
fluorescence studies of ligand-binding reactions, the ‘antenna-in-
a-box’ platform has used plasmon-based enhancement to permit
the observation of single-molecule fluorescence in the presence
of micromolar concentrations of fluorophore in the imaging buffer
[142]. Unfortunately, few of these platforms have thus far demon-
strated their applicability with smFRET [139] and, while these
technologies show promise, the fact that highly specialized facili-
ties, equipment, and technical skills are required to nanofabricate
the plasmon-producing structures (e.g., the bowties and antennas)
onto the surface of the microfluidic flowcells that are used in sin-
gle-molecule fluorescence experiments has thus far hindered
widespread adoption by the community.

Another general strategy for attaining higher signal-to-back-
ground ratios in single-molecule fluorescence studies is to
decrease the fluorescence background by reducing the excitation
volume. For this purpose, arrays of nanoapertures – nanoscopic
wells that have been fabricated into a thin metallic layer that has
been deposited onto the surface of a microfluidic flowcell
(Fig. 4A) – have proven themselves very useful. Popularized as
‘‘zero-mode waveguides’’ (ZMW), the geometric confinement of
light in the nanoaperture leads to a zeptoliter excitation volume
at the very bottom of the nanoaperture. This permits the sensitive
observation of a single, fluorophore-labeled molecule that has been
tethered or otherwise localized to the bottom of the nanoaperture
in a background of micromolar concentrations of fluorophore-
labeled molecules in the imaging buffer [143]. Nanoaperture arrays
are used in Pacific Biosciences’ next-generation, single-molecule
real-time (SMRT) DNA sequencing technology (http://www.pacif-
icbiosciences.com). There, a single DNA polymerase is tethered to
the bottom of each nanoaperture, and a nucleotide-specific, sin-
gle-molecule fluorescence signal is observed as the polymerase
incorporates each nucleotide into the nascent DNA molecule that
is being synthesized [144].

Unfortunately, in the more than ten years since nanoaperture
arrays were first introduced for single-molecule fluorescence
applications [143], only a handful of biomolecular systems beyond
DNA replication have been investigated using this technology
[67,136,145–147]. Notably, studies of all but one of these biomo-
lecular systems have been investigated in collaboration with Paci-
fic Biosciences and only one of these studies has used nanoaperture
arrays in an smFRET application. As is the case with plasmon-based
enhancement technologies, widespread adoption of nanoaperture-
array technology has likely been hindered by the limited availabil-
ity of the resources required for nanofabrication. In addition, the
non-specific adsorption of biomolecules to the metallic and glass
surfaces of the nanoapertures has likely limited their applications.
Non-specific adsorption not only alters working concentrations by
sequestering molecules from solution, but it also compromises sin-
gle-molecule resolution by non-specifically localizing multiple,
fluorophore-labeled, molecules to the surfaces near the bottom of
the nanoapertures. In the case of SMRT sequencing via DNA repli-
cation, a very successful polyvinyl phosphonic acid-based, nanoap-
erture-surface passivation scheme was developed that minimizes
the non-specific adsorption of small, negatively charged nucleotide
triphosphates to the surface of aluminum-based nanoapertures

http://www.pacificbiosciences.com
http://www.pacificbiosciences.com
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[148]. Given the negatively charged nature of the polyvinyl phos-
phonic acid passivation layer, however, it is likely that this passiv-
ation scheme will not be generally applicable to other
biomolecules (e.g., positively charged globular proteins).

More recently, an alternative passivation scheme has been
reported that uses thiol-based self-assembled monolayers (SAMs)
of PEG to robustly passivate gold-based nanoapertures [106]. Given
the widespread success of PEG-based passivation schemes in sin-
gle-molecule fluorescence studies, we anticipate that PEG-passiv-
ated nanoaperture arrays will provide a more general solution to
the problem of non-specific adsorption of biomolecules to the
nanoaperture surfaces and will thereby enable studies of a wide-
range of biomolecular systems using nanoaperture arrays
(Fig. 4A). Perhaps most excitingly, the use of gold-based nanoaper-
tures such as the PEG-passivated, gold based nanoapertures
described by Kinz-Thompson et al. [106] also allows the surface-
plasmon of the gold to be used for plasmon-based enhancement
of the fluorescence signals at the bottom of the nanoapertures,
an approach that has been recently demonstrated [149,150] and
that could potentially facilitate the use of nanoaperture arrays
for smFRET applications.

4. Emerging computational advances for smFRET studies of
ligand-binding reactions

4.1. Review of single-molecule kinetics

In order to discuss recent improvements in the analysis of
smFRET data, it is useful to begin with a brief, general review of
how kinetic information is obtained from single-molecule experi-
ments and, more specifically, smFRET experiments. Traditional
treatments of chemical kinetics are insufficient to describe systems
where fluctuations from the average behavior are important, such
as systems with small numbers of molecules [151]. Instead, alter-
native approaches that treat molecules as independent, stochastic
entities are used [152]. To interpret the kinetic data yielded by a
single molecule from a smFRET experiment, a framework is used
which describes the distribution of times that the molecule spends
dwelling in a particular state [151–157]. To extract these dwell
time distributions from single-molecule EFRET versus time trajecto-
ries, dwell-time histograms are built from the results of analyzing
the data using methods, such as hidden Markov models (HMM)
(see Section 4.2, below), change point analysis, or wavelet analysis
[158], that detect the time points at which switching between dis-
tinct EFRET states occurs. It is worth noting that a complete theoret-
ical description has been developed that allows high-resolution
information about the conformational dynamics of a biomolecular
system to be extracted from the joint distribution of EFRET values
and fluorescence lifetimes determined from experimentally
observed photon bursts [159,160]. Although the joint distribution
provides more information regarding the conformational dynamics
of the biomolecular system than the distribution of EFRET values
does alone, this approach is not generally applicable in traditional,
wide-field, TIRF microscopy-based smFRET experiments, as these
experiments do not monitor photon arrival times.

4.2. Hidden Markov model developments

One of the most popular approaches to analyzing single-mole-
cule EFRET trajectories has been the application of hidden Markov
models (HMMs), which yield the probabilities of transitioning
between states as well the ‘idealized’ path between states. HMMs
were first used in biology for analyzing conductance time series in
single channel ion recordings [161], and first suggested for use
with smFRET data in 2003 [162]. Since then, a number of software
packages for HMM analysis of smFRET data have been published
[163–168]. Although HMM analysis of smFRET data can provide
the desired information necessary to develop mechanistic models
of biomolecular function, HMM analysis approaches and software
packages that use maximum likelihood methods to estimate
HMM parameters (e.g., HaMMy [163], QuB [169], and SMART
[164]) can result in overfitting of the smFRET data (i.e., overesti-
mating the number of states that can be confidently ascribed to
the data), as the value of the likelihood function that is being max-
imized will always increase with the number of states included in
the analysis. This overfitting problem has been recently addressed
by HMM analysis approaches and software packages that use
Bayesian inference methods to estimate HMMs (e.g., vbFRET
[165,166] and ebFRET [167,168]). Despite the success of HMMs
for the analysis of smFRET data, however, it is important to note
that HMMs are ill-suited for modeling EFRET trajectories containing
rapid transitions such as those into and out of energetically unsta-
ble, transiently sampled states (e.g., weakly interacting biomole-
cule–ligand complexes with rapid rates of association and
dissociation) and are inappropriate for modeling non-Markovian
data (e.g., data exhibiting ‘dynamic disorder’ where the probability
of a transition changes with time) [165–168].

4.3. Bayesian inference developments

Perhaps the most promising computational approaches for ana-
lyzing smFRET data from weakly interacting, transient biomole-
cule–ligand complexes employ Bayesian inference, and in doing
so they are able to ‘learn’ from the data [170]. Bayesian inference
approaches have been used in the analysis of smFRET data by
removing noise from EFRET trajectories [171] and by analyzing pho-
ton bursts [172,173]. Perhaps the most powerful applications,
however, are those that use Bayesian inference methods to esti-
mate the HMM parameters that are used to analyze EFRET trajecto-
ries [165–168]. The vbFRET software package, for example, uses
Bayesian inference on an HMM to select the number of states
and rates of transitions between states (i.e., the kinetic model) that
best describes each individual EFRET trajectory. This minimizes the
overfitting problem faced by approaches and software packages
that use maximum likelihood methods to estimate HMMs and sub-
sequently rely on the user or on an ad hoc metric, such as the
Bayesian- or Akaike information criteria, to select the kinetic
model that best describes the data [165,170]. Moreover, vbFRET
shows promise at detecting transiently sampled intermediate
states that maximum likelihood approaches for estimating HMMs
might otherwise miss, an extremely useful ability when studying
weakly interacting, transient biomolecule–ligand complexes using
smFRET [165].

One of the major limitations of all HMM-based approaches for
smFRET data analysis is that these approaches provide a separate
and unique kinetic model for each individual EFRET trajectory. Ulti-
mately, it is left up to the user to determine which single, consen-
sus kinetic model best describes the entire population of kinetic
models provided by the HMM-based analysis of the ensemble of
EFRET trajectories that are typically obtained from a single smFRET
experiment. Recently, van de Meent and coworkers have addressed
this problem by expanding on the vbFRET framework and creating
ebFRET. ebFRET uses a Bayesian inference method to estimate
HMM parameters that is analogous to the one that vbFRET uses,
but does so on entire populations of EFRET trajectories rather than
on individual EFRET trajectories, thereby using all of the EFRET trajec-
tories to learn the single, consensus kinetic model that best
describes all of the available data (Fig. 4B) [167,168]. Because it
uses all of the EFRET trajectories, ebFRET has an enhanced and sta-
tistically robust ability to detect rarely and transiently sampled
states that might appear in some, but not all, of the EFRET trajecto-
ries associated with a single smFRET experiment. In addition,
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ebFRET can distinguish between states that have the same EFRET

but differ in their lifetimes. For example, ebFRET has been used
to distinguish between two structurally similar states of a biomol-
ecule that yield the same EFRET but that differ in the lifetime of that
state due to the presence or absence of a bound ligand [168] – a
development that dramatically extends the resolution of smFRET
experiments.

One of the major challenges for HMM analyses of data collected
from smFRET studies of weakly interacting, transient biomolecule–
ligand complexes is that the encounter complexes and many of the
intermediate states that are sampled are simply too energetically
unstable and too transiently sampled to be reliably modeled with
a HMM [165]. This is only likely to become more challenging as
ever more sensitive and higher time resolution single-molecule
biophysical techniques are developed that increasingly render
the most weakly interacting and transient biomolecule–ligand
complexes accessible to study. Recently, however, a non-HMM-
based Bayesian inference approach called BIASD has been devel-
oped that, assuming a two-state model (e.g., the ligand-bound
and ligand-free states of a biomolecule), is able to learn both the
EFRET values and rates of transitions into and out of transiently
sampled states (e.g., the rates of ligand association and dissociation
from a biomolecule) in cases where the rates of transitions are on
the order of, or even faster than, the experimental time resolution
[Kinz-Thompson in preparation]. This method should therefore
prove extremely useful in ongoing efforts to study weakly interact-
ing, transient biomolecule–ligand complexes using smFRET.

5. Conclusion

While space constraints necessarily limited the focus of the
present article to intermolecular ligand-binding reactions, we note
that many of the concepts, experimental techniques, and computa-
tional approaches discussed in this article apply equally well to
studies of the weakly interacting, transient intermediate states
that are sampled during intramolecular biomolecular folding reac-
tions and intramolecular structural rearrangements that are asso-
ciated with function. Regardless, understanding the origins of
specificity in ligand-binding reactions is at the core of many
research investigations and, as such, there is a great need to
develop technologies that enable such reactions to be investigated
at an ever increasing level of detail, a need that single-molecule
fluorescence and, specifically, smFRET approaches are uniquely
positioned to address.

By initially forming an encounter complex with a potential
ligand and subsequently proceeding to form other weakly interact-
ing, transient intermediate states prior to forming a final, stably
bound biomolecule–ligand complex, biomolecules can rapidly
and efficiently screen potential ligands and control the specificity
of binding during ligand-binding reactions. Although space con-
straints limited us to highlighting only two, aa-tRNA selection by
the ribosome and splice site selection during spliceosome assem-
bly, there are now many examples of ligand-binding reactions that
are being actively investigated using single-molecule fluorescence
colocalization approaches and, at higher resolution, using smFRET
approaches [15–17].

Despite the promise and success of smFRET approaches for
studies of ligand-binding reactions, there remain several experi-
mental and computational challenges that must be overcome in
order to increase the information content of such smFRET studies.
In this article, we have reviewed a number of emerging experimen-
tal and computational approaches that we consider will be impor-
tant for overcoming these challenges. We fully anticipate that
further development of these approaches, as well as the develop-
ment of entirely new, currently unforeseen approaches for
overcoming these challenges, will enable encounter complexes
and other weakly interacting, transient intermediate states to be
investigated at an ever increasing level of detail. Such studies
promise to reveal the mechanisms that control the selectivity of
ligand-binding reactions at unprecedented resolution – knowledge
that will allow us not only to understand, but also to modulate,
some of the most important processes in all of biology.
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