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ABSTRACT Single-molecule kinetic experiments allow the reaction trajectories of individual biomolecules to be directly
observed, eliminating the effects of population averaging and providing a powerful approach for elucidating the kinetic mecha-
nisms of biomolecular processes. A major challenge to the analysis and interpretation of these experiments, however, is the
kinetic heterogeneity that almost universally complicates the recorded single-molecule signal versus time trajectories (i.e., signal
trajectories). Such heterogeneity manifests as changes and/or differences in the transition rates that are observed within indi-
vidual signal trajectories or across a population of signal trajectories. Because characterizing kinetic heterogeneity can provide
critical mechanistic information, we have developed a computational method that effectively and comprehensively enables such
analysis. To this end, we have developed a computational algorithm and software program, hFRET, that uses the variational
approximation for Bayesian inference to estimate the parameters of a hierarchical hidden Markov model, thereby enabling
robust identification and characterization of kinetic heterogeneity. Using simulated signal trajectories, we demonstrate the ability
of hFRET to accurately and precisely characterize kinetic heterogeneity. In addition, we use hFRET to analyze experimentally
recorded signal trajectories reporting on the conformational dynamics of ribosomal pre-translocation (PRE) complexes. The re-
sults of our analyses demonstrate that PRE complexes exhibit kinetic heterogeneity, reveal the physical origins of this hetero-
geneity, and allow us to expand the current model of PRE complex dynamics. The methods described here can be applied to
signal trajectories generated using any type of signal and can be easily extended to the analysis of signal trajectories exhibiting
more complex kinetic behaviors. Moreover, variations of our approach can be easily developed to integrate kinetic data obtained
from different experimental constructs and/or from molecular dynamics simulations of a biomolecule of interest.
INTRODUCTION
The kinetic mechanism of a biomolecular process is typi-
cally described by specifying the number of states that the
biomolecular system samples, the order in which these
states are sampled, and the rates of transitions between the
sampled states. Over the past 20 years, single-molecule ki-
netic experiments have emerged as a powerful tool for eluci-
dating such mechanisms (1,2). This is because the signal
versus time trajectories (i.e., signal trajectories) that are re-
corded in such experiments report on the real-time transi-
tions between the states sampled by an individual
biomolecule and are therefore free of the population aver-
aging that frequently confounds the analysis of ensemble ki-
netic experiments. Despite the mechanistically unique and
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valuable information they provide, single-molecule signal
trajectories generally exhibit kinetic heterogeneity, a phe-
nomenon that complicates trajectory analysis and can result
in elucidation of incomplete or incorrect kinetic mecha-
nisms (2–4). Kinetic heterogeneity in a single-molecule ki-
netic experiment manifests as stochastic, abrupt changes in
the rates of transitions observed in individual signal trajec-
tories (i.e., dynamic heterogeneity) and/or as differences
in the rates of transitions observed between distinct subpop-
ulations of signal trajectories (i.e., static heterogeneity)
(3,5–12). These effects arise because the signal trajectories
recorded in a typical single-molecule kinetic experiment
directly detect transitions along only one dimension (i.e.,
the directly detected dimension) of the complex, multidi-
mensional, free-energy landscape that generally governs a
biomolecular process (13). Consequently, transitions along
dimensions other than the directly detected dimension
(i.e., the indirectly detected dimensions) are projected
onto the directly detected dimension, where they materialize
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indirectly as changes and/or differences in the rates of tran-
sitions that are observed in the signal trajectories (Fig. 1).

Detecting the presence of transitions along the indirectly
detected dimensions of a free-energy landscape and
modeling the kinetics of these transitions is of great mech-
anistic interest. This is because doing so allows identifica-
tion and characterization of states and subpopulations of a
biomolecular system and/or pathways of a biological pro-
cess that would otherwise be excluded from the kinetic
mechanism that is elucidated (e.g., (5,6,12,14)). Despite
its importance, however, detecting and modeling the ki-
netics of such transitions remains one of the most significant
challenges in the analysis and interpretation of single-mole-
cule kinetic experiments (3,5,6,12,14–16). This is due to
inherent limitations (17–23) in the conventional hidden
Markov model (HMM)-based approaches that are widely
used to analyze signal trajectories recorded using all of
the currently available experimental methods, including sin-
gle-molecule patch-clamp (24), fluorescence resonance en-
ergy transfer (FRET) (1,25,26), force spectroscopy (1,27),
and field-effect transistor (7,28–31) experiments. Because
the noisy, discretely sampled signal trajectories that are re-
corded in such experiments (2,32,33) can be described, to
a good approximation, as discrete-time Markov chains
(17,34,35), HMMs have become useful tools for the analysis
of these experiments. Nonetheless, it is important to note
that the kinetic model employed by an HMM explicitly as-
sumes that the signal trajectory being analyzed only con-
tains transitions that occur along the single, directly
detected dimension of a one-dimensional free-energy land-
scape (36). This assumption consequently renders HMMs
inadequate for the analysis of signal trajectories that addi-
tionally contain projections of transitions that occur along
the indirectly detected dimensions of a multidimensional
free-energy landscape.
A

B

dimension, denoted by a1 % a2 and b1 % b2 transitions. We note that a slightly

would allow simulation of a single-molecule trajectory for a biomolecule that c

tected dimensions (i.e., a1 % b2 and a2 % b1 transitions). Although the approac

molecule trajectories, for illustrative purposes, we have nonetheless opted to us

(B) to simulate the single-molecule trajectory presented in (A). This figure is av
To rigorously address this problem, here we have
adapted a class of inference tools based on a subclass of
Markov chains, known as hierarchical Markov chains, to
develop a hierarchical hidden Markov model (HHMM)
(37–39)-based approach, which we call hFRET, for the
analysis of single-molecule signal trajectories. HHMMs
allow signal trajectories to be modeled as though they
contain transitions along an arbitrary number of direct
and indirectly detected dimensions of a free-energy land-
scape. Thus, hFRET can be used to identify and charac-
terize kinetic heterogeneity and, correspondingly, to
describe biomolecular processes using a hierarchical ki-
netic mechanism. Moreover, hFRET uses the variational
approximation to Bayesian inference (36,40,41) to estimate
the parameters of the HHMMs (i.e., the signal amplitudes
of the states and the rates of transitions between states),
a method we have previously and successfully used to es-
timate the parameters of HMMs (20–22). Because such
variational Bayesian methods provide a powerful way to
control model complexity (20–22), hFRET provides a prin-
cipled approach for selecting the simplest hierarchical ki-
netic mechanism that best describes the data.

We begin this article by describing the theory underlying
hFRET. Using computer-simulated single-molecule signal
trajectories derived from a known hierarchical kinetic model
and set of parameters, we then assess the accuracy with
which hFRET can select the correct hierarchical kinetic
model and infer the correct model parameters. Building
from the analysis of computer-simulated data derived
from a known model, we next use hFRET to analyze exper-
imentally recorded single-molecule FRET (smFRET) data
that report on the conformational dynamics of the ribosome,
the biomolecular machine that is universally responsible for
protein biosynthesis. Our analyses unambiguously reveal
the presence of kinetic heterogeneity in single-molecule
FIGURE 1 Manifestation and origin of kinetic

heterogeneity in single-molecule signal trajec-

tories. (A) A simulated single-molecule signal tra-

jectory composed of contiguous periods, denoted

by the variable grayscale backgrounds, is shown,

in which the rates of transitions between two

observable signal amplitudes, denoted as an and

bn, alternate between two distinct kinetic regimes

(where the subscript n denotes the signal ampli-

tudes associated with each kinetic regime). (B)

The two-dimensional free-energy landscape (left)

and corresponding kinetic mechanism (right)

used to generate the simulated single-molecule

signal trajectory shown in (A) are shown. A

biomolecule governed by this free-energy land-

scape can undergo transitions along both a

directly detected dimension, denoted by a1 % b1
and a2 % b2 transitions, and an indirectly detected

more complex free-energy landscape and corresponding kinetic mechanism

an additionally undergo transitions between the directly and indirectly de-

h described in this work allows simulation and/or modeling of such single-

e the relatively simpler free-energy landscape and kinetic model shown in

ailable in color online.
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signal trajectories recorded on several ribosomal complexes
and demonstrate that the extent of the heterogeneity depends
on the composition of the ribosomal complexes. The
approach we present here not only enables researchers to
use single-molecule kinetic experiments to develop hierar-
chical kinetic models describing biological processes of in-
terest, but it also paves the way for the development of
closely related approaches that can further expand the data
analysis capabilities of the field. Straightforward extensions
of the approach presented here, for example, should allow
multiple populations of signal trajectories that have been re-
corded on the same biological process, but using different
signals, to be simultaneously analyzed within the context
of a single, hierarchical kinetic model. Further extensions
should enable the results of single-molecule kinetic experi-
ments on a biological process of interest to be connected
to the results of MD simulations of the same biological
process.
MATERIALS AND METHODS

Theory

hFRET makes use of hierarchical Markov chains, which are a subclass

of Markov chains whose states are parameterized in terms of multiple

dimensions as opposed to a single dimension (37) (Fig. 2). The

hierarchical Markov chain describing the states and transitions of a
1792 Biophysical Journal 116, 1790–1802, May 21, 2019
biological process, or the ‘‘system,’’ obeys a Kolmogorov-Chapman

equation (42) that propagates a state possessing D dimensions fzdntg
for the nth trajectory at time t into the next state in the subsequent

time point fzdn;tþ1g, giving rise to the following likelihood function, L,

for a given population of N mutually independent trajectories, each of

length Tn:

L ¼
YN
n¼ 1

p
��

zdnTn
�
.

�
zdn1

��

¼
YN
n¼ 1

p
��

zdn1
��YTn

t¼ 2

p
��

zdnt
� ��� nzdn;t�1

o�
: (1)
We separate these dimensions into 1) the directly detected dimension,

denoted z1nt and also referred to as the production level of the state space,

which specifies the distribution of observed signal emissions; 2) the first

indirectly detected dimension, denoted z2nt, which specifies the distribu-

tion of kinetic regimes on the directly detected dimension; and 3) the

arbitrarily higher-order indirectly detected dimensions, denoted zdnt ,

each of which specifies the distribution of kinetic regimes in the indi-

rectly detected dimension that lies directly below it, zd�1
nt . These dimen-

sions are given natural number values that abstractly distinguish the

dimensions of a free-energy landscape. The nested, conditional depen-

dencies of this state-space coordinate system may be visualized as a

tree of points (see Models 0–5 in Fig. 3) (37–39), which may be thought

of as enumerating the order in which the dimensions of a free-energy

landscape are specified. Using this convention, the likelihood of the hi-

erarchical Markov chain L can be decomposed (38), beginning with
FIGURE 2 Simulation and analyses of single-

molecule signal trajectories generated using a

hierarchical Markov chain. A representative,

1000-time-point, single-molecule signal trajectory

simulated using a hierarchical Markov chain

composed of a directly detected dimension con-

taining two states and two indirectly detected di-

mensions in which each dimension contains two

states (top center) is shown. The free-energy land-

scape and variational Bayesian inference-based

analysis generated using the correct HHMM

comprised of a directly detected dimension, z1,

and two indirectly detected dimensions, z2 and z3

(left), are compared to the free-energy landscape

and hFRET analysis of a less complex HHMM

comprised of a directly detected dimension, z1,

and only one indirectly detected dimension, z2

(right). Both models describe the same transitions

along the directly detected dimension but differ

in the transitions along and interpretation of indi-

rectly detected dimensions. This figure is available

in color online.
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FIGURE 3 Selection among distinct HHMMs

using variational Bayesian inference. Plot of the

log evidence lower bound in natural units of infor-

mation obtained from the variational Bayesian

inference-based analysis of six HHMMs, denoted

as Models 0–5, is given. Each HHMM is composed

of one directly detected dimension containing two

states and n indirectly detected dimension(s)

(where n is a number between 0 and 5, as specified

by the model numbers denoted along the top of the

plot) in which each indirectly detected dimension

also contains two states. The tree of points corre-

sponding to each HHMM is depicted along the

top of the plot, and the kinetic schemes correspond-

ing to the HHMMs associated with Models 0 and 1

are depicted along the bottom of the plot. In the in-

terest of presenting the simplest and clearest figure

possible, the relatively complex, multidimensional

kinetic schemes corresponding to the HHMMs

associated with Models 2–5 are not shown

and are instead labeled ‘‘NS’’ along the bottom of

the plot.
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the directly detected dimension and iteratively specifying the abstract

values associated with the system on the indirectly detected dimensions:

L ¼
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n¼ 1

"YD
d¼ 1

pd;zd
n1

#

�
2
4 YTn�1

t¼ 2

YD�1

d¼ 1
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d
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nTn

;exit

#
;

(2)

where we have introduced the standard notation

dij ¼
	
1; if i ¼ j
0; if isj



;

p
�
zd ¼ i

� ¼ pdi;
n1

�
d

�� d
�

p znt ¼ i zn;tþ1 ¼ j ¼ Adij;

�
dþ1 dþ1 d

�

p znt szn;tþ1; znt ¼ i ¼ Adi;exit:

The final statement above represents the probability that the value asso-

ciated with the system along the indirectly detected dimension d, which

specifies the distribution of kinetic regimes in the indirectly detected

dimension d � 1, has transitioned to a new value. We note that a hierarchi-

cal kinetic model for static heterogeneity may be derived directly from

Eq. 2 by simply limiting the equation such that it contains only one indi-

rectly detected dimension and that transitions between kinetic regimes

within that indirectly detected dimension are not allowed (presented in

greater detail in Supporting Materials and Methods, Section S1).

Equation 2 specifies the hierarchical kinetic model. We use the varia-

tional approximation to Bayesian inference (36,40,41) to specify both
the emission distributions and the computational algorithm for estimating

the parameters of the HHMM, a procedure that we summarize here and

present in greater detail in Supporting Materials and Methods, Section

S2. Briefly, we seek to maximize the lower bound of the log probability,

denoted as the ‘‘evidence,’’ of a set of parameter distributions, denoted as

q, and a set of observations, denoted as {xnt}, given prior information, de-

noted as j0:

ln p
�fxntg;�zdnt�; q ��j0

�
R

Z
dq

X
n

X
zdnt

p
��

zdnt
�
; qjfxntg;j0

�

� ln
p
�fxntg;�zdnt�; qjj0

�
p
��

zdnt
�
; qjfxntg;j0

�:
(3)

The variational approximation assumes that the coordinates do not

depend on the parameter distributions such that the joint probability may

be written as

p
��

zdnt
�
; q

�� fxntg;j0

� ¼ q
��

zdnt
� ��j0

�
qðq jj0Þ: (4)

Although here we will assume that the emission distributions are normal

distributions, this assumption can be generalized as necessary. Inference of

the parameters of an HHMM then proceeds by iteratively locating param-

eters that optimize a lower bound for the evidence. Iterations proceed by

optimizing qðfzdntg
��j0Þ, then optimizing q(qjj0), and finally calculating

the evidence lower bound. Convergence is achieved when the evidence

lower bound remains virtually unchanged between iterations.

By utilizing the variational approximation, we can factorize the joint dis-

tribution of the kinetic model as follows. First, we simplify the hierarchical

Markov chain likelihood in Eq. 2 in terms of its transition counts:

L ¼
YD
d¼ 1

YUd

i¼ 1

p
bdi
di A

edi
di;exit

YUd

j¼ 1

A
ndij
dij ; (5)

whereUd denotes the number of distinct values of the system along the indi-

rectly detected dimensions in level d; bdi denotes the number of transitions

resulting in zdntþ1 ¼ i, given that zdþ1
nt szdþ1

n;tþ1; edi denotes the number of

transitions out of zdnt ¼ i, given that zdþ1
nt szdþ1

n;tþ1; and ndij denotes the
Biophysical Journal 116, 1790–1802, May 21, 2019 1793



Hon and Gonzalez
number of transitions from zdnt ¼ i to zdn;tþ1 ¼ j. Notably, normalizing L im-

plies that the factored distributions over the kinetic parameters decompose

into multinomial distributions:

q
�fbdig; fedig;�ndij� �� fpg; fAg;j0

�
¼

YD
d¼ 1

Multðfbdig jpd; d;j0 Þ

�
YUd

i¼ 1

Mult
�fedig;�ndij� ��Adij; i;j0

�

¼
YD
d¼ 1

qðfbdig jpd; d;j0 Þ
YUd

i¼ 1

q
�fedig;�ndij� ��Adij; i;j0

�
:

(6)

Therefore, considering the state space as a tree of points that are direc-

tionally interconnected by conditional relationships, each point can be
considered as an independently operatingMarkov chain, and to infer the pa-

rameters and parameter distributions of the hierarchical kinetic model, it is

sufficient to calculate the transition counts specified above. From these pa-

rameters, we calculate transition rates between the various free-energy

minima (see Supporting Materials and Methods, Section S3) and therefore

quantitatively specify the hierarchical kinetic model.
Generation of simulated signal trajectories using
a specific hierarchical kinetic model

One thousand signal trajectories composed of 1000 time points each were

simulated by randomly drawing each signal trajectory from a hierarchical

Markov chain. This hierarchical Markov chain was composed of a directly

detected dimension containing two states characterized by two distinct

signal amplitudes and two indirectly detected dimensions in which each

dimension contained two distinct states (i.e., the hierarchical Markov chain

shown in the left-hand side of Fig. 2). Gaussian-distributed noise to a final

signal/noise ratio of 5:1 was then added to each of the simulated signal tra-

jectories. The source code for generating simulated signal trajectories, as

well as sample simulated signal trajectories, can be found together with

the hFRET source code, graphical user interface, and user manual at

https://github.com/GonzalezBiophysicsLab/hFRET.
Collection and analysis of smFRET data

The L1-tRNA smFRET data that was analyzed using hFRET in this study

consists of data sets that had been previously collected, analyzed using a

different maximal-likelihood-estimated HMM approach (18), and inter-

preted and reported by Fei et al. (10). Briefly, the L1-tRNA smFRET signal

was generated by preparing PRE complexes carrying an OH-(Cy3)tRNAPhe

within the P site and (Cy5)L1 within the L1 stalk of the 50S subunit. OH-

(Cy3)tRNAPhe was prepared by site-specifically labeling the dihydrouridine

at position 47 of OH-tRNAPhe (Sigma) with Cy3. (Cy5)L1 was prepared by

site-specifically labeling an introduced cysteine at position 202 in a recom-

binantly overexpressed and purified single-cysteine variant of Escherichia

coli ribosomal protein L1 with Cy5. (Cy5)L1-labeled 50 subunits were sub-

sequently generated by reconstituting (Cy5)L1 into 50S subunits that had

been purified from an E. coli strain lacking the gene encoding ribosomal

protein L1.

As discussed in more detail elsewhere (10), three PRE complexes were

assembled onto mRNAs containing a biotin moiety at the 50 terminus.

PRE�, which carried an OH-(Cy3)tRNAPhe at the P site and a vacant A

site, was prepared by delivering puromycin, a ribosome-targeting inhibitor

of protein synthesis, to the A site of a ribosomal elongation complex car-

rying an fMet-Phe-tRNAPhe at the P site and a vacant A site. Puromycin
1794 Biophysical Journal 116, 1790–1802, May 21, 2019
is an analog of the 30-terminal residue of aminoacyl-tRNA that binds to

the A site of the peptidyl transferase center of the 50S subunit, acts as an

acceptor substrate in the peptidyl transfer reaction with the fMet-Phe-

(Cy3)tRNAPhe at the P site, and rapidly dissociates from the 50S subunit,

thereby generating a PRE complex containing a deacylated OH-(Cy3)

tRNAPhe in the P site and a vacant A site (i.e., PRE�) (43). PREfMFK, which

carried an OH-(Cy3)tRNAPhe at the P site and an fMet-Phe-Lys-tRNALys at

the A site, was prepared by delivering a ternary complex composed of elon-

gation factor (EF) Tu, GTP, and Lys-tRNALys (EF-Tu(GTP)Lys-tRNALys)

to the A site of a ribosomal elongation complex carrying an fMet-Phe-

(Cy3)tRNAPhe at the P site and a vacant A site. Once accommodated into

the A site, Lys-tRNALys acts as an acceptor substrate in the peptidyl transfer

reaction, thereby generating a PRE complex carrying an OH-(Cy3)tRNAPhe

at the P site and an fMet-Phe-Lys-tRNALys at the A site (i.e., PREfMFK).

PREK, which carried an OH-(Cy3)tRNAPhe at the P site and an Lys-

tRNALys at the A site, was prepared by delivering EF-Tu(GTP)Lys-tRNALys

to the A site of a PRE complex identical to PRE� and thereby carrying an

OH-(Cy3)tRNAPhe at the P site and a vacant A-site PRE�. Although it ac-

commodates into the A site, the lack of a peptidyl moiety on the OH-(Cy3)

tRNAPhe at the P site prevents Lys-tRNALys from acting as an acceptor sub-

strate in the peptidyl transfer reaction, thereby generating a PRE complex

carrying an OH-(Cy3)tRNAPhe at the P site and an Lys-tRNALys at the A

site (i.e., PREK).

As previously described in greater detail (10,44), a laboratory-built,

prism-based, wide-field single-molecule TIRF microscope was used to im-

age the three PRE complexes in a Tris-Polymix imaging buffer composed

of 50 mM tris(hydroxymethyl)aminomethane acetate, 100 mM potassium

chloride, 5mMammonium acetate, 0.5mMcalcium acetate, 15mMmagne-

sium acetate, 6 mM b-mercaptoethanol, 5 mM putrescine dihydrochloride,

and 1 mM spermidine (free base) at a pH25�C of 7.5 that was supplemented

with an oxygen-scavenging system (1% b-D-glucose, 25 units/mL glucose

oxidase, and 250 units/mL catalase) (10). Briefly, each PRE complex was

tethered to the surface of a microfluidic TIRF microscopy observation

flowcell that had been passivated with a mixture of polyethylene glycol

(PEG) and biotinylated PEG and had been treated with streptavidin. Cy3 flu-

orophores were directly excited using a 532-nm laser excitation source

(CrystaLaser, Reno, NV) and fluorescence emissions from both Cy3 and

Cy5 were collected using a 1.2 numerical aperture/60� objective (Nikon,

Tokyo, Japan), wavelength separated using a two-channel imaging system

(Photometrics, Tucson, AZ), and recorded as a video using a back-illumi-

nated, electron-multiplying, charge-coupled device camera (Photometrics)

operating at an acquisition time of 50 ms per frame.
As detailed in our previous report (10), individual pairs of Cy3 and Cy5

fluorescence intensity versus time trajectories (i.e., intensity trajectories) re-

porting on the conformational dynamics of single PRE complexes were

generated using laboratory-written, MATLAB (The MathWorks, Natick,

MA)-based image-analysis software. Each pair of Cy3- and Cy5 fluores-

cence intensity trajectories was 1) truncated at the first time point at which

either fluorophore ‘‘photobleached’’ (i.e., underwent an apparently irrevers-

ible loss of fluorescence intensity), 2) baseline corrected by subtracting the

average intensity of the last 10 time points after the photobleaching event of

either the Cy3 or Cy5 fluorophore, and 3) spectral-cross-talk-corrected by

decreasing the Cy5 fluorescence intensity at each time point by 7% of

the Cy3 fluorescence to account for the 7% bleed-through of Cy3 fluores-

cence emission into the Cy5 channel. The photobleaching-, baseline-, and

spectral-cross-talk-corrected pairs of Cy3- and Cy5 fluorescence intensity

trajectories were then used to generate individual EFRET trajectories by us-

ing the Cy3 intensity at each timepoint, ICy3(t), and the Cy5 intensity at each

timepoint, ICy5(t), to calculate the EFRET at each time point as EFRET(t) ¼
ICy5(t)/(ICy5(t) þ ICy3(t)). Assuming the quantum yield of the Cy3 fluoro-

phore and the rotational motion of the Cy3 and/or Cy5 fluorophores are con-

stant throughout the experiment, changes in EFRET are proportional to

changes in the distance between the Cy3 and Cy5 fluorophores as given

by EFRET(R) ¼ 1/(1 þ (R/R0)
6), where R is the distance between the Cy3

and Cy5 fluorophores and R0 is the Förster radius, which is �54 Å under

our conditions (25,45). The resulting EFRET trajectories were analyzed

https://github.com/GonzalezBiophysicsLab/hFRET
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using hFRET and visualized using state re-entry plots as discussed in the

Results. The hFRET source code, graphical user interface, and user manual

can be found together with source code for generating simulated signal tra-

jectories and sample simulated signal trajectories at https://github.com/

GonzalezBiophysicsLab/hFRET.
RESULTS

hFRET enables accurate hierarchical kinetic
model selection

We first sought to calibrate hFRET by investigating
whether it could be used to accurately select among hierar-
chical kinetic models similar to that shown in Fig. 1, butof
systematically increasing complexity. Statistically rigorous
model selection is important in data analyses that incorpo-
rate indirectly detected dimensions because statistical tech-
niques are the only means for counting and distinguishing
among alternative models. To test the model selection accu-
racy of hFRET, we used a specific hierarchical kinetic
model to generate a set of simulated signal trajectories,
used hFRET to infer the most probable parameters for
several models of increasing complexity, and selected the
most probable model by calculating and comparing
the lower bound of the evidence (see Eq. 4). Although the
lower bound of the evidence is generally not a rigorous
metric for de novo model selection (41), it can be used to
compare models as a function of increasing complexity of
their state spaces along indirectly detected dimensions.
Indeed, when comparing models with an equivalent num-
ber of directly detected dimensions but a varying number
of indirectly detected dimensions via the difference be-
tween their evidence lower bound (see Supporting Mate-
rials and Methods, Section S2), the contribution of only
the indirectly detected dimensions to the difference be-
tween the evidence lower bounds and the evidence per se
is equivalent (22,36).

To generate the set of simulated signal trajectories, we
used a hierarchical Markov chain composed of one directly
detected dimension, two indirectly detected dimensions, and
two signal amplitudes, thereby specifying a free-energy
landscape consisting of eight distinct free-energy minima,
shown in Fig. 2 (simulation parameters and sample data pro-
vided online at https://github.com/GonzalezBiophysicsLab/
hFRET). Because it would be difficult for any model,
including the HHMM we describe here, to confidently
distinguish between free-energy minima that overlap along
both the direct and indirect dimensions, we took care to
choose simulation parameters that would not lead to such
overlap. We subsequently used hFRET to analyze the set
of simulated signal trajectories and infer the most probable
parameters for six different models (Fig. 3). Each of these
six models incorporates one directly detected dimension,
anywhere from zero to three indirectly detected dimensions,
and two signal amplitudes. In addition to allowing transi-
tions along the directly and indirectly detected dimensions,
all six models also allowed simultaneous transitions be-
tween the directly and indirectly detected dimensions (see
the kinetic schemes depicted at the bottom of Fig. 3). We
have denoted these models as Models 0–5, where the
increasing numbers represent increasing model complexity.
We then calculated the lower bound of the evidence for all
six models (see Supporting Materials and Methods,
Section S2). As expected, the evidence lower bound for
the correct model (i.e., Model 2, the model that was used
to simulate the data) was significantly larger than that of
the incorrect, simpler models (i.e., Models 0–1) as well as
the incorrect, more complex models (i.e., Models 3–5).
Collectively, the results of these analyses demonstrate that
selecting the model with the largest lower bound of the ev-
idence can be used to specify the most parsimonious hierar-
chical kinetic model that is consistent with the data.
hFRET allows quantitative characterization of the
hierarchical structural dynamics of the ribosome

To demonstrate how hFRET-based analyses of single-mole-
cule kinetic data can be used to characterize the hierarchical
dynamics of biomolecular systems, we have used hFRET to
analyze signal trajectories from smFRET experiments re-
porting on the structural dynamics of the bacterial ribosome.
The ribosome is the universally conserved, two-subunit,
ribonucleoprotein complex that uses aminoacyl-transfer
RNA (tRNA) substrates to translate the triplet-nucleotide
codon sequence of messenger RNA (mRNA) templates
into proteins (Fig. 4 A). During the elongation stage of trans-
lation, addition of each amino acid to the nascent polypep-
tide chain that is being synthesized by the ribosome
proceeds through an elongation cycle composed of three
steps: 1) aminoacyl-tRNA selection, 2) peptidyl transfer,
and 3) translocation (46) (Fig. 4 B).

After undergoing peptidyl transfer but before undergoing
translocation, bacterial ribosomal pre-translocation (PRE)
complexes undergo thermally driven, reversible fluctuations
between at least twomajor conformational states that we refer
to as global state 1 (GS1) and global state 2 (GS2), establishing
a GS1 % GS2 equilibrium (10) (Fig. 4 C). In GS1, the ribo-
somal subunits occupy their ‘‘nonrotated’’ intersubunit orien-
tation, the L1 stalk element of the 50S subunit occupies its
‘‘open’’ conformation, and the ribosome-bound tRNAs
occupy their ‘‘classical’’ configurations. Contrasting with
this, inGS2, the ribosomal subunits occupy their ‘‘rotated’’ in-
tersubunit orientation, the L1 stalk element of the 50S subunit
occupies its ‘‘closed’’ conformation, and the ribosome-bound
tRNAs occupy their ‘‘hybrid’’ configurations.

Previously, we have designed and developed an L1-tRNA
smFRET signal by preparing PRE complexes carrying a
cyanine (Cy) 3 FRET donor-fluorophore-labeled, deacy-
lated, phenylalanine-specific tRNA (OH-(Cy3)tRNAPhe)
within the ribosomal peptidyl-tRNA binding (P) site and a
Cy5 FRET acceptor-labeled ribosomal protein L1 ((Cy5)
Biophysical Journal 116, 1790–1802, May 21, 2019 1795
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FIGURE 4 Structure of ribosomal complexes,

the translation elongation cycle, and smFRET

studies of PRE complexes. (A) X-ray crystallo-

graphic structure of an E. coli ribosomal complex

(Protein Data Bank [PDB]: 4V51) (62). The large,

or 50S, ribosomal subunit is shown in light blue;

the small, or 30S, subunit is shown in tan; the A,

P, and E sites on the 50S and 30S subunits are de-

noted as black letters; the path of the mRNA is de-

noted as a dark gray curve; the A- and P-site

tRNAs are shown in orange; and the location of a

hypothetical nascent dipeptide on the A-site

tRNA is denoted as yellow shapes. (B) The transla-

tion elongation cycle is composed of aminoacyl-tRNA selection, peptidyl transfer, and translocation. (C) The equilibrium between the GS1 and GS2 confor-

mational states of a PRE complex. The L1-tRNA smFRET signal that is used to report on transitions between GS1 (EFRET of �0.18) and GS2 (EFRET

of �0.81) in the PRE complex data that are analyzed in this study is generated using an OH-(Cy3)tRNAPhe within the P site and a (Cy5)L1 within the

L1 stalk of the 50S subunit. The Cy3 and Cy5 fluorophores are depicted as green and red circles, respectively.

Hon and Gonzalez
L1) within the L1 stalk (Fig. 4 C) (10,47). Using a total in-
ternal reflection fluorescence (TIRF) microscope, we have
imaged these PRE complexes at single-molecule resolution,
collecting Cy3 and Cy5 fluorescence intensity (ICy3 and
ICy5, respectively) versus time trajectories (hereafter
referred to as ICy3 and ICy5 trajectories, respectively) for in-
dividual PRE complexes and using these intensities to
calculate the corresponding FRET efficiency (EFRET) versus
time trajectory (hereafter referred to as the EFRET trajec-
tory), where EFRET¼ ICy5/(ICy3þ ICy5). The resulting EFRET

trajectories were observed to spontaneously and stochasti-
cally fluctuate between two EFRET signal amplitudes, one
centered at an EFRET of �0.18 and the other centered at an
EFRET of �0.81 (see Table 1 for the specific EFRET signal
amplitudes corresponding to particular PRE complexes).
Consistent with the interpretation that PRE complexes un-
dergo thermally driven, reversible fluctuations between
GS1 and GS2, the EFRET signal amplitudes centered at
EFRETs of �0.18 and �0.81 could be assigned to GS1 and
GS2, respectively. These assignments were made using
structural models of PRE complexes in GS1 (48) and GS2
(49) and the known relationship between EFRET and the dis-
tance between the donor and acceptor fluorophores EFRET ¼
1/[1 þ (R/R0)

6], where R is the distance between the donor
and acceptor fluorophores and R0, which is also known as
the Förster radius, is the distance at which a specific donor
and acceptor fluorophore pair exhibit a half-maximal EFRET

(i.e., an EFRET ¼ 0.50) (25). Further details regarding the
design and development of the L1-tRNA smFRET
signal and the collection, analysis, and interpretation of
L1-tRNA smFRET data can be found in the Materials and
Methods.
TABLE 1 Observed EFRETs for each PRE Complex

PRE Complex GS1 EFRET GS2 EFRET

PRE�A 0.168 5 0.003 0.809 5 0.003

PREfMFK 0.198 5 0.002 0.818 5 0.002

PREK 0.198 5 0.003 0.811 5 0.003

Error bars represent 99% confidence intervals estimated using hFRET.
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Notably, the L1-tRNA smFRET signal has been used to
investigate how the absence, presence, and acylation status
of the peptidyl-tRNA in the ribosomal aminoacyl-tRNA
binding (A) site modulates the kinetics of GS1 / GS2
and GS2 / GS1 transitions (10). Specifically, smFRET
data were collected on PRE complexes containing a vacant
A site (PRE�), carrying an fMet-Phe-Lys-tRNALys peptidyl-
tRNA in the A site (PREfMFK), and carrying a Lys-tRNALys

aminoacyl-tRNA in the A site (PREK). Fig. 5, A–C present
plots of representative ICy3, ICy5, and EFRET trajectories cor-
responding to PRE�, PREfMFK, and PREK, respectively. As
expected, the EFRET trajectories corresponding to all three
PRE complexes fluctuate between two EFRET signal ampli-
tudes centered at EFRETs of �0.18 and �0.81 and corre-
sponding to GS1 and GS2, respectively. hFRET-based
analyses of the entire population of EFRET trajectories corre-
sponding to either PRE�, PREfMFK, or PREK demonstrated
that, for each PRE complex, the most parsimonious hierar-
chical kinetic model is one in which the directly detected
dimension is composed of fluctuations between two directly
detected states that are characterized by distinct EFRET

signal amplitudes centered at EFRETs of �0.18 and �0.81
and one indirectly detected dimension that is composed of
fluctuations between two indirectly detected states, which
are characterized by distinct rates of transitions between
the two signal amplitudes centered at EFRETs of �0.18
and �0.81. Although the hFRET-based analyses also re-
vealed transitions between directly and indirectly detected
dimensions, such transitions were exceedingly rare. Specif-
ically, these transitions comprise less than 4% of the total
number of transitions within the entire population of EFRET

trajectories corresponding to each PRE complex. Given that
the exceedingly low frequency with which these transitions
are observed results in extremely wide confidence intervals
on the rate constants that can be estimated using these tran-
sitions and the fact that these rare transitions might arise
from a small number of rapid, two-step transitions in which
the time-resolution limit of our detector prevented observa-
tion of one of the steps, these transitions were excluded from
further analysis.
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FIGURE 5 Kinetic heterogeneity of PRE com-

plexes. Representative Cy3 and Cy5 fluorescence

intensity trajectories (top) and corresponding

EFRET trajectories (bottom) are shown for (A)

PRE�, (B) PREfMFK, and (C) PREK. The back-

grounds of the EFRET trajectory plots are linearly

grayscale-weighted by the probability that a time

point belongs to either the S state, dark gray, or

the U state, light gray. State re-entry plots (see Re-

sults) for the GS1-S state (upper left-hand plot,

initiating at dark gray circle at EFRET of �0.18),

GS2-S state (upper right-hand plot, initiating at

dark gray circle at EFRET of �0.81), GS1-U state

(lower left-hand plot, initiating at light gray circle

at EFRET of �0.18), and GS2-U state (lower right-

hand plot, initiating at light gray circle at EFRET

of �0.81) of (D) PRE�, (E) PREfMFK, and (F)

PREK. For the purpose of generating these plots,

time points with a probability of belonging to the

S state that is greater than or equal to 50% are

discretely assigned to the S state, and time points

with a probability of belonging to the U state that

is greater than or equal to 51% are discretely as-

signed to the U state. The ‘‘N’’ denoted at the top

of the GS1-S state re-entry plot for each PRE com-

plex specifies the number of distinct EFRET trajec-

tories that were used to generate the four state

re-entry plots for the corresponding PRE complex.

Similarly, the ‘‘n’’ denoted at the top of each state

re-entry plot specifies the number of state subtra-

jectories that were used to generate the correspond-

ing state re-entry plot.

Computational Tool
Consistent with previous work from our group (9,10,47)
and others (50–54), we interpret the fluctuations between
the two directly detected states with distinct EFRET signal
amplitudes centered at EFRETs of �0.18 and �0.81, consis-
tent with the GS1 and GS2 states of the PRE complex,
respectively, as reporting on the GS1 / GS2 and GS2 /
GS1 transitions. Moreover, based on a visual inspection of
the analyzed EFRET trajectories as well as a full kinetic anal-
ysis that is presented further below, we interpret the fluctu-
ations between the two indirectly detected states with
distinct rates of fluctuations between GS1 and GS2 as re-
porting on transitions between an indirectly detected state
in which excursions to GS1 and GS2 are relatively long-
lived and stable, denoted as the stable (S) state of the PRE
complex, and a state in which excursions to GS1 and GS2
are relatively short-lived and unstable, denoted as the unsta-
ble (U) state of the PRE complex.

To visually assess the extent to which the individual
EFRET trajectories recorded for each PRE complex fluctuate
between the indirectly detected S and U states (i.e., exhibit
dynamic heterogeneity), we generated ‘‘state re-entry plots’’
for the GS1-S, GS2-S, GS1-U, and GS2-U states of each
PRE complex (Fig. 5, D–F). The goal of these plots is to
illustrate the time that it takes and the states that are sampled
when an EFRET signal first enters a specific indirectly de-
tected state (e.g., the GS1-S state); transitions to additional
Biophysical Journal 116, 1790–1802, May 21, 2019 1797
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states, at least one of which must be a different indirectly de-
tected state (i.e., the GS1-U or GS2-U states); and ultimately
re-enters the original indirectly detected state (i.e., the
GS1-S state). To generate these plots, we first divided
each EFRET trajectory in the entire population of EFRET tra-
jectories corresponding to each PRE complex into GS1-S,
GS2-S, GS1-U, and GS2-U subtrajectories, in which, as a
specific example, GS1-S subtrajectories were defined as
those that begin when the EFRET signal enters GS1-S and un-
dergo at least one transition to one of the U states (i.e.,
GS1-U or GS2-U) before returning to GS1-S. GS2-S,
GS1-U, and GS2-U subtrajectories were analogously
defined. For each PRE complex, we then plotted a post-
synchronized surface contour plot of the time evolution of
population FRET for each of the GS1-S, GS2-S, GS1-U,
or GS2-U subtrajectories. As an example, the GS1-S con-
tour plot for each PRE complex was generated by post-
synchronizing the GS1-S subtrajectories from that PRE
complex, such that the first time point that transitions into
GS1-S was assigned to the 0 s time point on the plot, and
then generating a surface contour plot that effectively super-
imposes all of the postsynchronized transitions into the
GS1-S at the 0 s time point. GS2-S, GS1-U, and GS2-U con-
tour plots were analogously generated. These plots demon-
strate that the vast majority of EFRET trajectories recorded
for each PRE complex fluctuate reversibly between the S
and U states and exhibit dynamic heterogeneity. In addition,
comparative analyses of these plots suggest that the re-entry
times for the U states are particularly sensitive to the pres-
ence of an A-site tRNA (compare the two lower plots in
Fig. 5 D to those in Fig. 5, E and F), a qualitative observa-
tion that can be more quantitatively characterized using a
full kinetic analysis, as described in the next paragraph.

The hierarchical kinetic model described above possesses
four distinct free-energy minima corresponding to GS1-S,
GS2-S, GS1-U, and GS2-U that are connected by eight
rate constants (Fig. 6). Four of these rate constants connect
the states along the directly detected dimension, thus corre-
sponding to the rates of transitions between GS1 and GS2
within the S or U state, denoted as k1,S / 2,S, k2,S / 1,S,
k1,U / 2,U, and k2,U / 1,U (where the subscripts 1 and 2
denote GS1 and GS2, respectively, and the S and U sub-
scripts denote the S and U states, respectively). The remain-
ing four rate constants connect the states along the indirectly
detected dimension, thus corresponding to the rates of tran-
sitions between the S and U states within GS1 or GS2, de-
noted as k1,S / 1,U, k1,U / 1,S, k2,S / 2,U, and k2,U / 2,S.
Using this kinetic model, Fig. 7 reports the values of these
rate constants for the three PRE complexes we have charac-
terized. In all three cases, k1,S / 2,S was between �12- and
54-fold smaller than k1,U / 2,U, and k2,S / 1,S was between
�13- and �17-fold smaller than k2,U / 1,U, demonstrating
that, as qualitatively observed in the individual EFRET trajec-
tories (Fig. 5), GS1 and GS2 within the S state are signifi-
cantly more stable than they are within the U state.
1798 Biophysical Journal 116, 1790–1802, May 21, 2019
Moreover, comparison of these rate constants for PRE�

and PREfMFK demonstrates that the PRE complex
carrying an fMet-Phe-Lys-tRNALys in the A site exhibits a
k1,S / 1,U that is �6-fold smaller than that of the PRE com-
plex with an empty A site. Together with slightly smaller,
�4-fold decreases in k1,U / 1,S, k2,U / 1,U, and k2,S / 1,S,
these data demonstrate that the presence of a peptidyl-
tRNA in the A site of a PRE complex can modulate rates
of transitions along more than one dimension of the multidi-
mensional free-energy landscape of a PRE complex. As can
be seen by comparing the two lower plots in Fig. 5 D to
those in Fig. 5 E, these kinetic effects act to increase the
re-entry times that are observed for the U states in PREfMFK

versus PRE�. Similarly, comparison of the rate constants for
PREK and PREfMFK demonstrates that the PRE complex
carrying a Lys-tRNALys in the A site exhibits a k2,U / 2,S

that is �3-fold larger than that of the PRE complex carrying
an fMet-Phe-Lys-tRNALys in the A site. Together with a
slightly larger, �2-fold increase in k1,S / 1,U, these data
demonstrate that the acylation status of the A-site tRNA
contributes to the ability of the A-site peptidyl-tRNA to
modulate the rates of transitions along the indirectly de-
tected dimensions of the free-energy landscape of a PRE
complex.
DISCUSSION

This work demonstrates a rigorous approach for analyzing
single-molecule kinetic data that exhibit kinetic heterogene-
ity. Specifically, hFRET can be used to identify and
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Computational Tool
kinetically characterize transitions observed in single-mole-
cule signal trajectories whose underlying kinetic model can
be best described by a hierarchical Markov chain with tran-
sitions between relatively well-separated free-energy
minima. This kinetic model describes signal trajectories in
which the rates of fluctuations between signal amplitudes
that are observed along the dimension of a free-energy land-
scape that is directly detected in the experiment are modu-
lated by the diffusion of the biomolecule along additional
dimensions of the landscape that are not directly detected.
hFRET, which uses the variational approximation to opti-
mize the evidence lower bound, enables estimation of the
parameters describing a set of hierarchical Markov chains
that are consistent with a population of signal trajectories,
as well as selection of the hierarchical Markov chain corre-
sponding to the most probable kinetic model that is required
to describe the population of signal trajectories. Comple-
menting existing methods for analyzing single-molecule
signal trajectories exhibiting kinetic heterogeneity arising
from fluctuations between indirectly detected dimensions
of a free-energy landscape (22,55–59), including a method
described as this manuscript was in the final stages of prep-
aration (60), hFRET enables experimentalists to directly
quantify and select between kinetic models generated
from hierarchical Markov chains of arbitrary complexity.
Thus, hFRET uniquely provides experimentalists with a
flexible, comprehensive, and statistically robust method
for quantitatively characterizing alternative subpopulations
of a biomolecule or biomolecular complex of interest and/or
alternative pathways of a biological process of interest
(5,6,12,14).

To demonstrate the ability of hFRET to analyze real-
world, single-molecule signal trajectories, we have used it
to analyze EFRET trajectories reporting on fluctuations be-
tween the GS1 and GS2 states of ribosomal PRE complexes.
The results of our analyses demonstrate that the most parsi-
monious hierarchical kinetic model is one that is composed
of four states, denoted GS1-S, GS2-S, GS1-U, and GS2-U,
in which fluctuations between GS1-S and GS2-S or
GS1-U and GS2-U report on transitions along the directly
detected dimension of the corresponding free-energy land-
scape, and fluctuations between GS1-S and GS1-U or
GS2-S and GS2-U report on transitions along the indirectly
detected dimension of the free-energy landscape. Interest-
ingly, we find that in all three of the PRE complexes that
we investigated, the majority of the EFRET trajectories fluc-
tuate reversibly between the S and U states, thereby exhib-
iting dynamic heterogeneity.
anism describing the rates of transitions between GS1-S, GS2-S, GS1-U,

and GS2-U for (A) PRE�, (B) PREfMFK, and (C) PREK. Note that all rates

are in units of s�1, error values are 95% confidence intervals, and the rela-

tive sizes of the PRE complexes are proportional to the relative occupancies

of GS1-S, GS2-S, GS1-U, and GS2-U. The boxes enclosing the various

transitions are shaded as in Fig. 6.
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Moreover, our data provide insights into the physical ori-
gins of the dynamic heterogeneity of PRE complexes. For
example, assuming that the dominant contributions to the en-
ergy barriers that separate the S states from the U states in
PRE complexes are enthalpic, the fact that k1,S / 2,S and
k2,S / 1,S are more than one order of magnitude smaller
than k1,U / 2,U and k2,U / 1,U, respectively, for all three
PRE complexes strongly suggests that PRE complexes in
the S states are able to formmore and/or stronger intramolec-
ular interactions than they can form in the corresponding U
states. Interpreted within the context of PRE�, which carries
a tRNA only at the P site, this observation suggests the pos-
sibility that the aminoacyl-acceptor stem of the deacylated
tRNA at the P site of PRE complexes can stochastically
and reversibly sample at least two conformations. In one of
these conformations, the aminoacyl-acceptor stem makes
relativelymore and/or stronger interactions with the 50S sub-
unit P and E sites when the deacylated tRNA is in its ‘‘clas-
sical’’ and ‘‘hybrid’’ configurations, respectively, thereby
giving rise to theGS1-S andGS2-S states. In the other confor-
mation, the aminoacyl-acceptor stem makes relatively fewer
and/or weaker interactions with the 50S subunit P and E sites
when the deacylated tRNA is in its ‘‘classical’’ and ‘‘hybrid’’
configurations, respectively, thereby giving rise to theGS1-U
and GS2-U states. Alternatively, or in addition, it is possible
that the heterogeneity we observe in PRE� originates from
the ribosome itself. It is possible, for example, that the 30S
(and/or 50S) subunit component of an intersubunit interac-
tion can stochastically and reversibly sample at least two con-
formations that modulate the number and/or strength of the
interactions that it could potentially make with its corre-
sponding 50S (and/or 30S) subunit component while in the
nonrotated and rotated intersubunit orientations, thereby giv-
ing rise to the S and U states. Thus, our findings strongly sug-
gest that the deacylated tRNA at the P site and/or the
ribosome itself are major contributors to the dynamic hetero-
geneity of PRE complexes.

Moreover, our observation that the rates of transitions
between the S and U states, particularly k1,U / 1,S and
k1,S / 1,U, are sensitive to the presence of a peptidyl-tRNA
in theA site of a PRE complex (compare Fig. 7,A andB) dem-
onstrates that the peptidyl-tRNA at the A site also contributes
to the dynamic heterogeneity of PRE complexes. Specifically,
we hypothesize that presence of a peptidyl-tRNA at the A site
can modulate the strength of the interactions that the tRNA at
the P site can make with the 50S subunit P and E sites and/or
the interactions that the 30S (and/or 50S) subunit component
of an intersubunit interaction can makewith its corresponding
50S (and/or 30S) subunit component in the nonrotated and
rotated intersubunit orientations. This hypothesis is further
supported and extended by the observation that the rates
of transitions between the S and U states, particularly
k2,S / 2,U and k1,S / 1,U, are sensitive to the acylation status
of the tRNA at the A site (compare Fig. 7, B and C). Thus,
our findings strongly suggest that the presence and likely the
1800 Biophysical Journal 116, 1790–1802, May 21, 2019
identity, post-transcriptional modification status, length and
sequence of the covalently attached peptide, etc., of the
peptidyl-tRNA at the A site can modulate the P-site tRNA-
and/or ribosome-mediated dynamic heterogeneity of PRE
complexes.

Beyond the characterization of static and dynamic hetero-
geneity in single-molecule signal trajectories, the varia-
tional Bayesian HHMM-based approach that underlies
hFRET can be adapted to address several other challenges
in the field of single-molecule biophysics. Consider, for
example, biological processes of greater complexity, in
which a sample might exhibit static heterogeneity and
each static subpopulation may or may not also exhibit dy-
namic heterogeneity. Currently, there are no computational
methods for analyzing signal trajectories from such sam-
ples. Nonetheless, it should be possible to use the variational
Bayesian inference-based approach that we have described
here together with a set of kinetically non-interconverting
hierarchical Markov chains to develop an hFRET-like algo-
rithm that can be used to analyze signal trajectories of such
complexity. In a second example, we note that there are
currently no standard computational methods available for
elucidating the single, most parsimonious kinetic model
that is fully consistent with the signal trajectories from mul-
tiple data sets in which the signal trajectories from each data
set report on the conformational dynamics of a distinct
structural element of a biomolecule or biomolecular com-
plex of interest (e.g., the various smFRET data sets associ-
ated with the different FRET donor and acceptor pairs that
have been developed and used to investigate the intersubu-
nit, L1 stalk, and tRNA dynamics of PRE complexes
(13)). Using a variational Bayesian HHMM-based approach
that builds on hFRET so as to treat the signal trajectories
from each data set as reporting on a different dimension
of the same free-energy landscape should allow the single,
most parsimonious kinetic model that is fully consistent
with all of the data sets to be selected. A final example is
really an extension of the second example, in which the
experimental signal trajectories from one data set are re-
placed by signal trajectories derived from molecular dy-
namics (MD) simulations. Such an approach would
provide a robust method for integrating experimental and
MD simulation data into a single kinetic model. Although
the sampling period of the detectors that are used in most
single-molecule biophysical experiments (�1–100 ms
sampled for �1–100 s) is currently much longer than the
maximal time of an MD simulation (�10 ms (61)), rapid im-
provements in the detectors and increases in computational
power will soon allow the timescales accessible to single-
molecule experiments and MD simulations to be bridged.
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