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S1 Generative Model for Hierarchical Hidden Markov Models (HHMMs)
S1.1 Overview

In this section, we will first define all the variables used to describe the algorithms for
dynamic and static heterogeneity. Next, we show how these variables are organized to optimize
the evidence — the probability that a given set of parameters, state occupancies, and
observations give rise to the same dataset. To describe the evidence, we will begin with a
formal definition of the evidence, then follow by defining the signal emissions model used

herein, describe the prior distributions, and close with general outlines of the two algorithms.

S1.2 Variable Definitions

Variable Definition

Xnt Observations of a signal trajectory n € {1, ..., N} attime t € {1, ..., T;,}.

State of the biomolecule in signal trajectory n € {1,...,N} at time
z% t € {1,...,T,}. The model for dynamic heterogeneity has d € {1, ..., D}
and the model for static heterogeneity has d € {1,2}.

Q4 Size of the state space at level d € {1, ..., D}.
— Q .
Qg4 = d Accessible state space at level d € {1, ..., D}.
Qa-1
0 Collectively, the parameters for a population of signal trajectories.
¢ Collectively, the parameters for the distribution of signal emissions.
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Distribution of signal emissions for a given production state i€
{1,..,Qp}

Mean of the normal distribution of signal emissions for a given
production state i € {1,.., Qp}.

Precision of the normal distribution of signal emissions for a given
production state i € {1, ..., Qp}.

Variational estimate for the mean, yu;, of the normal distribution of
signal emissions, i € {1,..., Qp}.

Variational estimate for the precision of the mean, y;, of the normal
distribution of signal emissions, i € {1, ..., Qp}.

Variational estimate for the scale of the gamma distribution of the
precision, 4;, of the normal distribution of signal emissions, i€

{1,..,Qp}

Variational estimate for the rate of the gamma distribution of the
precision, 4;, of the normal distribution of signal emissions, i€

{1,..,Q,}
Initial state probabilities d € {1,...,D},i € {1,.., QL k € {1, ..., Qu_1}.

Transition matrices d € {1,...,D}i € {1,.., Qg j€{l,..,Qa+ 1}k €
{1; ey Qd—l}'

Probability of transitioning between siblings of the parent of the ith
node at level d.

Variational estimate for the number of times a signal trajectory is first
observed in state d € {1,...,D},i € {1,.., QgL k € {1,.., Qq_1}.

Variational estimate for the number of times a signal trajectory makes
a transition between i €{1,..,Q4} and j €{1,.., Q4+ 1} at level
d € {1, ..., D} positioned at the path k € {1, ..., Q4_1}.

Collectively, hyperparameters for the prior distribution.

Prior estimate for the mean of the normal distribution of the mean y;
of the normal distribution of signal emissions, i € {1, ..., Qp}.

Prior estimate for the precision of the normal distribution of the mean
p; of the normal distribution of signal emissions, i € {1, ..., Qp}.
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Variable Definition

a Prior estimate for the scale of the gamma distribution of the precision,

ot A;, of the normal distribution of signal emissions, i € {1, ..., Qp}.
b Prior estimate for the rate of the gamma distribution of the precision,

0.t A;, of the normal distribution of signal emissions, i € {1, ..., Qp}.
@ (k) Prior estimate for the number of times a signal trajectory is first

Po.i observed in state d € {1,...,D},i € {1,..., Q4} k€ {1, ..., Qg_1}.
Prior estimate for the number of times a signal trajectory makes a
ag (k) transition between i€{1,..,Q4} and j€{1,..,Qy+1} at level

L(q({z%)).a(8))

V7i1t
i (k)

Ini

Cni

Cne (k)
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B (1)
@ya (k)

(k)
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e

Sa

Bya, ()
Boa ()

par(z)

d € {1,...,D} positioned at the path k € {1, ..., Q4-1}.
Evidence.

Expected occupancy of the production state ie{l, ...,Q'D} of a
biomolecule.

Expected counts of the number of transitions between i € {1, ..., Q 4}
and j €{1,..,Q4+ 1} at level d €{1, ..., D} positioned at the path
ke{l,.., Qu4_1}insignal trajectory n € {1, ..., N} attime t € {2, ..., T;,}.

Expected counts of the number of times a signal trajectory begins in
state i € {1,.., Q4} atlevel d € {1, ..., D}.

Mixture coefficients in the static heterogeneity algorithm, probability
that a signal trajectory n € {1, ..., N} belongs to state i € {1, ..., Qp}.

Forward-backward scale variable.
Forward variable.

Backward variable.

Forward-upward variable.
Forward-downward variable.
Backward-upward variable.

Backward-downward variable.

The set of nodes in the state-space graph that point at z, or “parents”.
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Variable Definition
pary(z) The k" super-parent of z.
ch(2) The set of nodes in the state-space graph that z points at, or

“children”.

The set of nodes in the state-space graph that share nodes that point

sib(x) to x, or “siblings”.

oo

I'(z) = f x?"le~*dx | Gamma function.
0

Y(z) = w Digamma function.

S1.3 Evidence

The evidence is the probability that the current set of observations was obtained from an
experiment given any possible set of parameters and some amount of prior data. As in all
Bayesian inference-based algorithms, we would like to use Bayesian inference to estimate the
parameter distributions that will optimize the evidence:

p({xne} 01%0) = [ p({xne 310D (B140) d6.

Unfortunately, this calculation is analytically intractable in the case of the present model. As a
consequence, we instead seek to estimate the parameter distributions that will maximize a

lower bound of the evidence (1):

Xnt 20,0 Wo
L(a({z }).a(®)) = [ d6 T, T,g a(6)q(zi) InPresmerioe,

This sum over zZ% runs over all of the possible values of all of the possible states of the signal
trajectory of the biomolecule. This expression assumes that the joint probability can be
factorized:

p(281 6%t o) = a(z1)a(6),

an assumption that forms the basis of the variational approximation (1).
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S1.4 Signal Emissions Model
The signal emissions model is the probability that an observation was obtained from an
experiment given a particular set of parameters and a particular production state (i.e., the state

of the directly observed dimension) of the biomolecule. It is given by:

¢Z£t)'

¢Z£t) follows a normal distribution:

p({xnt}lng ) = g=1 H:LP (xnt

Furthermore, we assume that p (xnt

1

1 2p 2
Ap\z _ znt(x _ )
¢ D) _ < znt) e — \Xnt ﬂzgt .
Znt

p (xnt

T

Nonetheless, the signal emissions model may generally be modified to any appropriate

distribution. Including the signal emission distributions, the likelihood function is given by:

N D Tn
L= T, d (x D )
d,zhy p nt ¢Znt
n=1|d=1 t=1
Th—1p-1
§ § 4 a 1-6 d+1 d+1
2;11?1'2%}}—1 Znt?nt+1 Znt Znt+1

; d
d,z% exit d,z,‘ft,z,‘f’t_l dZn,t41

D
| | Ad,z,‘an,exit]'

d=1

S1.5 Prior Distributions

Prior information using the variational approximation and standard (“conjugate
exponential”) distributions allows us to write down the form of the prior distributions. These prior
distributions have advantages and limitations that are discussed elsewhere (see reference 2).

These are given by:

Variable Prior Distribution
3 B
. = N\ 2 dr o 32
ot € (L0 Q) pGuli) = p(pulm o) = (22 o~ % kummon
- el boi ™" . agim1 by,
i €f1, .., Qp} p(Ailo) = p(Ailag, boy) = A0t Tem o
F (ao’i)
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Variable Prior Distribution

D Po) = p ({r8} K |pd}()) =
mi)ie 1., 0} p({(rf}(0lo) = p ({m} (0108} )

k € {1, ey Qd—l} I (Z;Q;dl pg,,-(k)) T ng(k)—l
de{l,.., D} — k)
) M2 T (pg, (k) H( )

J

A0, i € {1,..., Ty) p({af} (o, i) = p({ATG}(OI{at;} (KD, 1)
jefl,... Qa+1} I (ZP4 ady(0) T a1
ke{l,.., Q4 =35+ Aji (k)

de %1, ...,D}d o H?=dl T (ag,ij(k)) B ( ] )

S1.6 Algorithm

The algorithm proceeds iteratively, first with an expectation step (E-step) and then a
maximization step (M-step), until the change in the value of the evidence lower bound between
consecutive iterations is negligible. Broadly, the E-step determines the expected state of the
biomolecule in each signal trajectory at each time point and also calculates the value of the
likelihood function ((p(x|0), generally; see Equation 2 in the main text of the article) The M-step
takes the expected state occupancies of the biomolecule calculated in the E-step and uses
these occupancies to re-estimate all of the parameters. We do not re-estimate the parameters
of the prior distribution and, as such, it is important that the values chosen do not contribute
more than the updates derived from observations in the M-step. By default, the algorithm utilizes
naive parameters for the prior distributions assuming observation of a dataset 100-fold smaller

than that being analyzed.

S2 Variational Bayes Expectation Maximization (VBEM)
S2.1 The E-step
The E-step estimates the likelihood function while concurrently using the current

estimates of the parameters, 6, to estimate the most likely state of each biomolecule n at time ¢,
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z%.. This is done in conceptually distinct ways for dynamic and for static heterogeneity. In the
case of dynamic heterogeneity, wherein the biomolecules are described by signal trajectories
that undergo stochastic, abrupt changes in the rates of transitions between observed states, we
present an algorithm, termed the Forward-Backward Activation (FBA) algorithm and first
described by Wakabayashi, et al (3), that generalizes the well-known forward-backward
algorithm to account for transitions along indirectly observed dimensions. In the case of static
heterogeneity, wherein the biomolecules are described by subpopulations of signal trajectories
that are distinct in their rates of transitions between observed states, we present an algorithm,
termed the Forward-Backward Mixture (FBM) algorithm, that, over a mixture of HMMs,
determines the parameters that distinguish each subpopulation and describe the degree to
which each signal trajectory belongs to each subpopulation. The goal of the E-step is to return
summary statistics with which we can re-estimate all parameters in the M-step. The E-step is, in
the cases of both dynamic and static heterogeneity, the step of the algorithm that consumes

most of the computational time.

S2.1.1 Forward-Backward Activation (FBA) Algorithm — Dynamic Heterogeneity

We adapt the FBA algorithm initially described by Wakabayashi, et al (3). The FBA
algorithm estimates quantities, termed the “forward-upward”, “forward-downward”, “backward-
upward”, and “backward-downward” variables, that are used to calculate the state occupancies
and inter-state transition counts. If each node of the tree has K children, then the algorithm is
O(NTKP) where N is the number of signal trajectories, T is the number of time points in each
signal trajectory, D is the number of subpopulations of signal trajectories, and K is the number

of production states. It is important to note that the FBA algorithm is linear in time, and is thus

tractable for large datasets.
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The forward-upward and forward-downward variables are calculated according to the

following recursion, beginning at the top of the tree:

@y, (D) =3} (DA},

n

We define a scale factor that will eventually be used to calculate the likelihood function as well

as keep the entirety of the calculation within computational precision:
&égt(k) = &L.,gtp(xnﬂd’i)
Cnt = XkeQp_, Diech(k) &ér?t(k)'
Using these two equations which generate the scale factor, we continue the recursion:
t
a0 =ap0 | -
t =1

&Ly (k) = @ (par(l))md (k) + Z &, (KAL(K),d € {2,...,D}
nt nt ent—1
jECh(K)

@p () = afps(par(O)mP W) + ) @lp (DAR(K)
jech(k)

&;gt(k) = Zjech(i) aég;—1(i)A;il%1d+1 ,d € {1, vy D — 1}-
The forward-upward variables have time-boundary conditions:
&,’j}n (k) =}
@0 (k) = @y (par())nf,d € {2, .., D}.
Similarly, the backward-upward and backward-downward variables are calculated according to

the following recursion:

Bl (D= Bl (DAL
J

t
Biz, 00 = BlapCencl) | | et
t =1
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Bla (0 = Bl (par(0)Als GO+ Y Bla (0A44G),d € (2,...,D)

nt+

jech(k)
Bya () = Tjecnp Bpars (D, d € {1,.., D — 1},

It should be noted that we have introduced a scaling variable alongside the backward-downward

variables. The backward-downward variables have time-boundary conditions:
4t _ g1
’Béﬁrn (k) = A,
Bla () = Blas(par(0)aly . d € (2,..,D}.

Finally, we need to prepare the variables needed for the M-step, as well as calculate the

likelihood function. This is done by setting:

Pt = | [ ene

n,t

Vhe= ) &0y ()

keQp_1

Tp—1

g% = ke (OBla () + Z @y (par(O)mfBla (0

Tp,—1

d _ A1 d pJ
fntij(k) - Z aér‘f,t(k)Aijﬁbg,tﬂ(k)

t=1

Tp—1

g = G OBy (0+ ) aly (04%,,. 8% (par(0).
t=1

S2.1.2 Forward-Backward Mixture (FBM) Algorithm — Static Heterogeneity

We adapt the E-step of the FBM algorithm from reference 1. This FBM algorithm
estimates quantities, termed the “forward” and “backward” variables, that are used to acquire
the mixture coefficients, state occupancies, and inter-state transition counts. The complexity of

the algorithm is O(NTK?D) where N is the number of signal trajectories, T is the number of time

10
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points in each signal trajectory, D is the number of subpopulations of signal trajectories, and K
is the number of production states. It is important to note that, like the FBA algorithm, the FBM
algorithm is linear in time, and is thus tractable for large datasets.

The forward variable, @%,;(k), and backward variable, §%;(k), reduce in the d dimension
because the subpopulations that do not interconvert do not have subsequent transitions along

any indirectly observed dimensions:

81 (K) = @nei () = Pt |d0) ) Ao (04 (0)
J

Bﬁti(k) = Bnti(k) = Zj ﬁn,t+1,j(k)p(xn,t+1|¢j)Aij(k)-
The boundary conditions are as follows:
An1i (k) = p(xpeldm; (k)
BnTni(k) = P(ann|¢i),
where it should be noted that we have removed an unnecessary index from n{i(k). These
variables are normalized to supply the likelihood function as well as a convenient scale and

recursion, all to guarantee computational precision:

e ()= ) ey (040

J
t
Qi) = () | | -G
t =1
Enti (k) = Bnti(k) Hi =1 C;tl’(k)-

To complete the algorithm, we use the above variables to calculate the variables of primary

interest:

p((tacd) = a(ze) = | [ enei0

n,k,t

Vie = ) @i (OB pa(0

k

11
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Ini = anli(k)ﬁnli (k)

Cne ()P Cene | i1 (k)Bnti (k)Aj; (k)
[1: cne (k)

{ e Htcnt(k)
nt antcnt(k).

fntij (k) =

At this point, all variables required for the M-step of the FBM algorithm have been prepared.

S2.2 M-step

Parameters are updated during the M-step. This is done simultaneously and, as such, all
parameters on the right-hand side of the equations belong to the previous iteration and those on
the left-hand side belong to the current iteration. Priors are not updated in this model, as we do
not utilize the empirical Bayes’ framework. The M-step is iterated with the E-step above until the
evidence lower bound converges within a set tolerance. There are only trivial differences
between the FBA and FBM algorithms in the M-step. This is because, at the M-step, the FBM
algorithm is simply a limiting case of the FBA algorithm and, as such, the two algorithms share
the same parameter distribution structures and differ only in the details of the model topology.
Derivations of these equations may be found in reference 1 and are derived by maximizing the

evidence lower bound.

Bl’ = ﬂO,i + ZY;ltrl € {1' ""FQD}
n,t

I~c _
a; = ap; +§Zy”t'l € {1, . QD}
nt

© N2
1 ; Bo,iMo,i + Xn,t XntVnt ) o
b; = bo; + E(ﬁo,im(z),i + Zxrzztyrlw - oo ﬁ,n i) i €f1,.., Qp}
e !

/‘Li Z%,l E{l, ...,FQD}
l

12
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ml = ﬁ_l<z xnt)/,ilt + mo'iﬁo'i> ,i E {1, eny ’QD}

"\'nt
Ui = mi,i € {1, ...,FQD}
d _ . d d . =
pi (k) = pg;(k) +Xngni-d €{1,..,D},i € {1, s Qd},k ef{1,.., Q4.1

md(k) = e¥(P)-Zv(l) d e {1,..,0}i € {1,.., Al k € (1, .., Qu_1}

al (k) = ady (k) + Zg;fu.j(k),i e{l,..0ubjefl, .. T +1},
n,t

kel .., Q44 defl,.., D}

48 () = PO EVE0) re (1, D) e {1, ., Tg+ 1),

ke{l, .., Qu1},defl,..,D}.

S2.3 Calculation of Evidence Lower Bound

The evidence lower bound is given by:
L (Q({th}): Q(Q)) = p({xne}) — Dy (@llho) — DKL({,D?}HIIJO) - DKL({afij(k)}”l/Jo):
where p({x,,;}) is calculated in the E-step and the Dy, terms are given by:

i I" (ao,;
D1 (Pllpo) = [(ai — Dy(a;) +log (%) —a; +log (%) + ag,; log(bo;)

ibi
— (ag; — 1)@ (ay) + log(by)) + 6;0 ] +

Bi 2B,

13
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D ({pf}110) = logz T (pd) - logz N +Zlog I (pf) - Zlog I (p6:)

Qq Qq
+ ) (o = pt) / (o) —w| Dl
i=1 \ i=1

Diee ({ad ()} 1bo) = EQ< log 224 T (al() —log B4 T (ady (1) + £ log T (afi(k)) -

l4log T (ady;(0) + 524 (el () - a&i,-(k))<¢(a5(k))—w(z?;iag(k))))

S3 Calculation of Kinetic Rates
S3.1 Static Heterogeneity
Calculation of the kinetic rates follows:

ki ~ A,

U,lqtj,

where the rate constants are in units of time-steps.

S3.2 Dynamic Heterogeneity

Calculation of the kinetic rates follows:

d* = min(d|pary (i) = pary(j))

nz Nom +1(Chm(l))

1_[ parm—a(@), Qm+1(parm d+1(l))”parm(])[ par g pard* 1(L))pard*(pard* 1(1))(pard*+l(l)):|
i #],

where the rate constants are in units of time-steps (4).

14



Hon, J. and Gonzalez, R.L., Jr.

References

1. Bishop, C. M. Pattern Recognition and Machine Learning. New York: Springer (2006).

2. Gutiérrez-Pefa, E. & Muliere, P. Conjugate Priors Represent Strong Pre-Experimental
Assumptions. Scand. J. Stat. 31, 235-246 (2004).

3. Wakabayashi, K. & Miura, T. Forward-Backward Activation Algorithm for Hierarchical
Hidden Markov Models, in Advances in Neural Information Processing Systems 25.
Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q., editors. Curran Associates,
Inc., (2012) 1493-1501.

4, Weiland, M., A. Smaill, and P. Nelson. 2005. Learning musical pitch structures with

hierarchical hidden markov models. Proc. Journees Informatiques Music. .

15



