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S1 Generative Model for Hierarchical Hidden Markov Models (HHMMs) 

S1.1 Overview 

In this section, we will first define all the variables used to describe the algorithms for 

dynamic and static heterogeneity. Next, we show how these variables are organized to optimize 

the evidence – the probability that a given set of parameters, state occupancies, and 

observations give rise to the same dataset. To describe the evidence, we will begin with a 

formal definition of the evidence, then follow by defining the signal emissions model used 

herein, describe the prior distributions, and close with general outlines of the two algorithms. 

 

S1.2 Variable Definitions 

Variable Definition 

݊ ௧ Observations of a signal trajectoryݔ ∈ ሼ1, … ,ܰሽ at time ݐ ∈ ሼ1, … , ܶሽ. 

௧ݖ
ௗ  

State of the biomolecule in signal trajectory ݊ ∈ ሼ1,… ,ܰሽ  at time 
ݐ ∈ ሼ1, … , ܶሽ. The model for dynamic heterogeneity has ݀ ∈ ሼ1,… ,  ሽܦ
and the model for static heterogeneity has ݀ ∈ ሼ1,2ሽ. 

Ωௗ Size of the state space at level ݀ ∈ ሼ1,… ,  .ሽܦ

Ω෪ௗ ≡
Ωௗ

Ωௗିଵ
 Accessible state space at level ݀ ∈ ሼ1,… ,  .ሽܦ

 .Collectively, the parameters for a population of signal trajectories ߠ

߶ Collectively, the parameters for the distribution of signal emissions. 
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Variable Definition 

߶ 
Distribution of signal emissions for a given production state ݅ ∈
൛1, … ,Ω෪ൟ. 

 ߤ
Mean of the normal distribution of signal emissions for a given 
production state ݅ ∈ ൛1, … ,Ω෪ൟ. 

 ߣ
Precision of the normal distribution of signal emissions for a given 
production state ݅ ∈ ൛1, … ,Ω෪ൟ. 

݉ 
Variational estimate for the mean, ߤ , of the normal distribution of 
signal emissions, ݅ ∈ ൛1, … ,Ω෪ൟ. 

 ߚ
Variational estimate for the precision of the mean, ߤ, of the normal 
distribution of signal emissions, ݅ ∈ ൛1, … ,Ω෪ൟ. 

ܽ 
Variational estimate for the scale of the gamma distribution of the 
precision, ߣ , of the normal distribution of signal emissions, ݅ ∈
൛1, … ,Ω෪ൟ. 

ܾ 
Variational estimate for the rate of the gamma distribution of the 
precision, ߣ , of the normal distribution of signal emissions, ݅ ∈
൛1, … ,Ω෪ൟ. 

ߨ
ௗሺ݇ሻ Initial state probabilities ݀ ∈ ሼ1,… , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݇ ∈ ሼ1, … ,Ωௗିଵሽ. 

ܣ
ௗ ሺ݇ሻ Transition matrices ݀ ∈ ሼ1,… , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ, ݇ ∈

ሼ1, … ,Ωௗିଵሽ. 

,Ω෪ାଵܣ
ௗ ሺ݇ሻ Probability of transitioning between siblings of the parent of the ݅th 

node at level ݀. 

ߩ
ௗሺ݇ሻ 

Variational estimate for the number of times a signal trajectory is first 
observed in state ݀ ∈ ሼ1,… , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݇ ∈ ሼ1, … ,Ωௗିଵሽ. 

ߙ
ௗ ሺ݇ሻ 

Variational estimate for the number of times a signal trajectory makes 
a transition between ݅ ∈ ൛1, … ,Ω෪ௗൟ  and ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ  at level 
݀ ∈ ሼ1,… , ݇ ሽ positioned at the pathܦ ∈ ሼ1,… ,Ωௗିଵሽ. 

߰ Collectively, hyperparameters for the prior distribution. 

݉, 
Prior estimate for the mean of the normal distribution of the mean ߤ 
of the normal distribution of signal emissions, ݅ ∈ ൛1, … ,Ω෪ൟ. 

 ,ߚ
Prior estimate for the precision of the normal distribution of the mean 
݅ , of the normal distribution of signal emissionsߤ ∈ ൛1, … ,Ω෪ൟ. 
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Variable Definition 

ܽ, 
Prior estimate for the scale of the gamma distribution of the precision, 
݅ ,, of the normal distribution of signal emissionsߣ ∈ ൛1, … ,Ω෪ൟ. 

ܾ, 
Prior estimate for the rate of the gamma distribution of the precision, 
݅ ,, of the normal distribution of signal emissionsߣ ∈ ൛1, … ,Ω෪ൟ. 

,ߩ
ௗ ሺ݇ሻ 

Prior estimate for the number of times a signal trajectory is first 
observed in state ݀ ∈ ሼ1,… , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݇ ∈ ሼ1, … ,Ωௗିଵሽ. 

,ߙ
ௗ ሺ݇ሻ 

Prior estimate for the number of times a signal trajectory makes a 
transition between ݅ ∈ ൛1, … ,Ω෪ௗൟ  and ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ  at level 
݀ ∈ ሼ1,… , ݇ ሽ positioned at the pathܦ ∈ ሼ1,… ,Ωௗିଵሽ. 

ܮ ቀݍ൫൛ݖ௧
ௗ ൟ൯,  .ሻቁ Evidenceߠሺݍ

௧ߛ
  

Expected occupancy of the production state ݅ ∈ ൛1, … ,Ω෪ൟ  of a 
biomolecule. 

௧ߦ
ௗ ሺ݇ሻ 

Expected counts of the number of transitions between ݅ ∈ ൛1, … ,Ω෪ௗൟ 
and ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ  at level ݀ ∈ ሼ1,… , ሽܦ  positioned at the path 
݇ ∈ ሼ1,… ,Ωௗିଵሽ in signal trajectory ݊ ∈ ሼ1,… ,ܰሽ at time ݐ ∈ ሼ2, … , ܶሽ. 

݃
ௗ  

Expected counts of the number of times a signal trajectory begins in 
state ݅ ∈ ൛1, … ,Ω෪ௗൟ at level ݀ ∈ ሼ1, … ,  .ሽܦ

 ߞ
Mixture coefficients in the static heterogeneity algorithm, probability 
that a signal trajectory ݊ ∈ ሼ1,… ,ܰሽ belongs to state ݅ ∈ ൛1, … ,Ω෪ൟ. 

ܿ௧ሺ݇ሻ Forward-backward scale variable. 

ො௧ߙ
ௗ ሺ݇ሻ Forward variable. 

መ௧ߚ
ௗ ሺ݇ሻ Backward variable. 

ොߙ
,

 ሺ݇ሻ Forward-upward variable. 

ොߙ
,

 ሺ݇ሻ Forward-downward variable. 

መߚ
,

 ሺ݇ሻ Backward-upward variable. 

መߚ
,

 ሺ݇ሻ Backward-downward variable. 

 .”or “parents ,ݖ ሻ The set of nodes in the state-space graph that point atݖሺݎܽ
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Variable Definition 

 .ݖ ሻ The ݇௧ super-parent ofݖሺݎܽ

݄ܿሺݖሻ The set of nodes in the state-space graph that ݖ  points at, or 
“children”. 

 ሻݔሺܾ݅ݏ
The set of nodes in the state-space graph that share nodes that point 
to ݔ, or “siblings”. 

Γሺݖሻ ൌ න ݔ௭ିଵ݁ି௫݀ݔ

∞



 Gamma function. 

߰ሺݖሻ ൌ
݀ൣln൫Γሺݖሻ൯൧

ݖ݀
 Digamma function. 

 

S1.3 Evidence 

The evidence is the probability that the current set of observations was obtained from an 

experiment given any possible set of parameters and some amount of prior data. As in all 

Bayesian inference-based algorithms, we would like to use Bayesian inference to estimate the 

parameter distributions that will optimize the evidence: 

,௧ሽݔሺሼ ሻ߰|ߠ ൌ ሻ߰|ߠሺሻߠ|௧ሽݔሺሼ  .ߠ݀

Unfortunately, this calculation is analytically intractable in the case of the present model. As a 

consequence, we instead seek to estimate the parameter distributions that will maximize a 

lower bound of the evidence (1): 

ܮ ቀݍ൫൛ݖ	�
ௗ ൟ൯, ሻቁߠሺݍ ൌ ߠ݀ ∑ ∑ ௧ݖሺݍሻߠሺݍ

ௗ ሻ ln
ሺ௫,௭

 ,ఏ|టబሻ

൫௭
 ൯ሺఏሻ௭

 . 

This sum over ݖ௧
ௗ  runs over all of the possible values of all of the possible states of the signal 

trajectory of the biomolecule. This expression assumes that the joint probability can be 

factorized: 

௧ݖ൫
ௗ , ,௧ݔหߠ ߰൯ ൌ ௧ݖ൫ݍ

ௗ ൯ݍሺߠሻ, 

an assumption that forms the basis of the variational approximation (1). 
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S1.4 Signal Emissions Model 

The signal emissions model is the probability that an observation was obtained from an 

experiment given a particular set of parameters and a particular production state (i.e., the state 

of the directly observed dimension) of the biomolecule. It is given by: 

௧ݖ|௧ሽݔሺሼ
 , ሻߠ ൌ ∏ ∏  ቀݔ௧ቚ߶௭ವ ቁ

்
௧ୀଵ

ே
ୀଵ . 

Furthermore, we assume that  ቀݔ௧ቚ߶௭ವ ቁ follows a normal distribution: 

 ቀݔ௧ቚ߶௭ವ ቁ ൌ ቆ
ఒ

ವ

గ
ቇ

భ
మ

݁
ି
ഊ

ವ

మ
൬௫ିఓ

ವ ൰
మ

. 

Nonetheless, the signal emissions model may generally be modified to any appropriate 

distribution. Including the signal emission distributions, the likelihood function is given by: 

ܮ ൌෑෑߨௗ,௭భ



ௗୀଵ

ෑቀݔ௧ቚ߶௭ವ ቁ

்

௧ୀଵ



ே

ୀଵ

	

ෑෑܣ
ௗ,௭

 ,௫௧

ఋ

శభ,,శభ

శభ

ܣ
ௗ,௭

 ,௭,షభ
 	

ఋ

 ,,శభ

 ቆଵିఋ

శభ,,శభ

శభ ቇ

ௗ,௭,శభߨ

ିଵ

ௗୀଵ

்ିଵ

௧ୀଶ

 ෑܣௗ,௭
 ,௫௧



ௗୀଵ

൩. 

 

S1.5 Prior Distributions 

Prior information using the variational approximation and standard (“conjugate 

exponential”) distributions allows us to write down the form of the prior distributions. These prior 

distributions have advantages and limitations that are discussed elsewhere (see reference 2). 

These are given by: 

Variable Prior Distribution 

,ߤ ݅ ∈ ൛1, … ,Ω෪ൟ ሺߤ|߰ሻ ൌ ,|݉,ߤ൫ ,൯ߚ ൌ ൬
,ߚ
2
൰

ଵ
ଶ
݁ି

ఉబ,
ଶ ൫ఓିబ,൯

మ

 

,ߣ ݅ ∈ ൛1, … ,Ω෪ൟ ሺߣ|߰ሻ ൌ ,|ܽ,ߣ൫ ܾ,൯ ൌ
ܾ,

బ,

Γ൫ܽ,൯
ߣ
బ,ିଵ݁ିబ,ఒ 
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S1.6 Algorithm 

The algorithm proceeds iteratively, first with an expectation step (E-step) and then a 

maximization step (M-step), until the change in the value of the evidence lower bound between 

consecutive iterations is negligible. Broadly, the E-step determines the expected state of the 

biomolecule in each signal trajectory at each time point and also calculates the value of the 

likelihood function ((ሺߠ|ݔሻ, generally; see Equation 2 in the main text of the article) The M-step 

takes the expected state occupancies of the biomolecule calculated in the E-step and uses 

these occupancies to re-estimate all of the parameters. We do not re-estimate the parameters 

of the prior distribution and, as such, it is important that the values chosen do not contribute 

more than the updates derived from observations in the M-step. By default, the algorithm utilizes 

naïve parameters for the prior distributions assuming observation of a dataset 100-fold smaller 

than that being analyzed. 

 

S2 Variational Bayes Expectation Maximization (VBEM) 

S2.1 The E-step 

The E-step estimates the likelihood function while concurrently using the current 

estimates of the parameters, ߠ, to estimate the most likely state of each biomolecule ݊ at time ݐ, 

Variable Prior Distribution 

൛ߨ
ௗሺ݇ሻൟ, ݅ ∈ ൛1, … ,Ω෪ௗൟ	

݇ ∈ ሼ1, … ,Ωௗିଵሽ	
݀ ∈ ሼ1, … ,  ሽܦ

ߨ൫൛
ௗൟሺ݇ሻ|߰൯ ൌ  ቀ൛ߨ

ௗൟሺ݇ሻหሼߩ,
ௗ ൟሺ݇ሻቁ ൌ 

Γ ቀ∑ ,ߩ
ௗ ሺ݇ሻΩ෪

ୀଵ ቁ

∏ Γ ቀߩ,
ௗ ሺ݇ሻቁΩ෪

ୀଵ

ෑቀߨ
ௗሺ݇ሻቁ

ఘబ,ೕ
 ሺሻିଵ

Ω෪

ୀଵ

 

ܣ
ௗ ሺ݇ሻ, ݅ ∈ ൛1, … ,Ω෪ௗൟ	
݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ	
݇ ∈ ሼ1, … ,Ωௗିଵሽ	
݀ ∈ ሼ1, … ,  ሽܦ

ܣ൫൛
ௗ ൟሺ݇ሻ|߰, ݅൯ ൌ ܣ൫൛

ௗ ൟሺ݇ሻ|൛ߙ,
ௗ ൟሺ݇ሻ, ݅൯

ൌ
Γ ቀ∑ ,ߙ

ௗ ሺ݇ሻΩ෪ାଵ
ୀଵ ቁ

∏ Γ ቀߙ,
ௗ ሺ݇ሻቁΩ෪ାଵ

ୀଵ

ෑ ቀܣ
ௗሺ݇ሻቁ

ఈబ,ೕ
 ሺሻିଵ

Ω෪ାଵ

ୀଵ
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௧ݖ
ௗ . This is done in conceptually distinct ways for dynamic and for static heterogeneity. In the 

case of dynamic heterogeneity, wherein the biomolecules are described by signal trajectories 

that undergo stochastic, abrupt changes in the rates of transitions between observed states, we 

present an algorithm, termed the Forward-Backward Activation (FBA) algorithm and first 

described by Wakabayashi, et al (3), that generalizes the well-known forward-backward 

algorithm to account for transitions along indirectly observed dimensions. In the case of static 

heterogeneity, wherein the biomolecules are described by subpopulations of signal trajectories 

that are distinct in their rates of transitions between observed states, we present an algorithm, 

termed the Forward-Backward Mixture (FBM) algorithm, that, over a mixture of HMMs, 

determines the parameters that distinguish each subpopulation and describe the degree to 

which each signal trajectory belongs to each subpopulation. The goal of the E-step is to return 

summary statistics with which we can re-estimate all parameters in the M-step. The E-step is, in 

the cases of both dynamic and static heterogeneity, the step of the algorithm that consumes 

most of the computational time. 

 

S2.1.1 Forward-Backward Activation (FBA) Algorithm – Dynamic Heterogeneity 

We adapt the FBA algorithm initially described by Wakabayashi, et al (3). The FBA 

algorithm estimates quantities, termed the “forward-upward”, “forward-downward”, “backward-

upward”, and “backward-downward” variables, that are used to calculate the state occupancies 

and inter-state transition counts. If each node of the tree has ܭ children, then the algorithm is 

ܱሺܰܶܭሻ where ܰ is the number of signal trajectories, ܶ is the number of time points in each 

signal trajectory, ܦ is the number of subpopulations of signal trajectories, and ܭ is the number 

of production states. It is important to note that the FBA algorithm is linear in time, and is thus 

tractable for large datasets.  
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 The forward-upward and forward-downward variables are calculated according to the 

following recursion, beginning at the top of the tree: 

ොభߙ
 ሺ1ሻ ൌ ∑ ොߙ

షభ
భ
 ሺ1ሻܣ

ଵ ሺ1ሻ . 

We define a scale factor that will eventually be used to calculate the likelihood function as well 

as keep the entirety of the calculation within computational precision:  

ොವߙ
 ሺ݇ሻ ൌ ොವߙ

 	௧|߶ሻݔሺ

ܿ௧ ൌ ∑ ∑ ොವߙ
 ሺ݇ሻ∈ሺሻ∈Ωವషభ

.	

Using these two equations which generate the scale factor, we continue the recursion: 

ෝವࢻ
 ሺ݇ሻ ൌ ොವߙ

 ሺ݇ሻ ෑ ܿ௧′
ିଵ

௧

௧′ୀଵ

 

ොߙ


 ሺ݇ሻ ൌ ොߙ


షభ
 ൫ݎܽሺ݇ሻ൯ߨ

ௗሺ݇ሻ   ොߙ
షభ

 ሺ݇ሻܣ

ௗ ሺ݇ሻ
∈ሺሻ

, ݀ ∈ ሼ2, … , 	ሽܦ

ොವߙ
 ሺ݇ሻ ൌ ොವషభߙ

 ൫ݎܽሺ݇ሻ൯ߨ
ሺ݇ሻ   ෝࢻ

షభ
ವ
 ሺ݇ሻܣ

ሺ݇ሻ
∈ሺሻ

 

ොߙ


 ሺ݇ሻ ൌ ∑ ොߙ


శభ
 ሺ݅ሻܣ,Ω෪ାଵ

ௗାଵ 	∈ሺሻ , ݀ ∈ ሼ1, … , ܦ െ 1ሽ. 

The forward-upward variables have time-boundary conditions: 

ොభభߙ
 ሺ݇ሻ ൌ ߨ

ଵ	

ොభߙ
 ሺ݇ሻ ൌ ොభషభߙ

 ൫ݎܽሺ݇ሻ൯ߨ
ௗ, ݀ ∈ ሼ2, … ,  .ሽܦ

Similarly, the backward-upward and backward-downward variables are calculated according to 

the following recursion:  

መభߚ
 ሺ1ሻ ൌߚመ

శభ
భ
 ሺ1ሻܣ

ଵ ሺ1ሻ


	

መವߚ
 ሺ݇ሻ ൌ መವߚ

 ௧|߶ሻݔሺ ෑ ܿ௧
ିଵ

௧

௧′ୀଵ
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መߚ


 ሺ݇ሻ ൌ መߚ


షభ
 ൫ݎܽሺ݇ሻ൯ܣ,Ω෪ାଵ

ௗ ሺ݇ሻ   መߚ
శభ

 ሺ݇ሻܣ

ௗ ሺ݇ሻ
∈ሺሻ

, ݀ ∈ ሼ2, … , 	ሽܦ

መߚ


 ሺ݇ሻ ൌ ∑ መߚ


శభ
 ሺ݅ሻߨ

ௗାଵ
∈ሺሻ , ݀ ∈ ሼ1, … , ܦ െ 1ሽ. 

It should be noted that we have introduced a scaling variable alongside the backward-downward 

variables. The backward-downward variables have time-boundary conditions: 

መߚ
భ
 ሺ݇ሻ ൌ ,Ω෪భାଵܣ

ଵ 		

መభߚ
 ሺ݇ሻ ൌ መభషభߚ

 ൫ݎܽሺ݇ሻ൯ܣ,Ω෪ାଵ
ௗ , ݀ ∈ ሼ2, … ,  .ሽܦ

Finally, we need to prepare the variables needed for the M-step, as well as calculate the 

likelihood function. This is done by setting: 

௧ሽሻݔሺሼ ൌෑܿ௧
,௧

 

௧ߛ
 ൌ  ොವߙ

 ሺ݇ሻߚመವ
 ሺ݇ሻ

∈Ωವషభ

 

݃
ௗ ൌ ොభߙ

 ሺ݇ሻߚመభ
 ሺ݇ሻ   ොߙ

,శభ
షభ
 ൫ݎܽሺ݇ሻ൯ߨ

ௗߚመ
,శభ

 ሺ݇ሻ

்ିଵ

௧ୀଵ

	

௧ߦ
ௗ ሺ݇ሻ ൌ  ොߙ

,

 ሺ݇ሻܣ

ௗ መߚ
,శభ

 ሺ݇ሻ

்ିଵ

௧ୀଵ

	

௧,Ω෪ାଵߦ
ௗ ൌ ොߙ



 ሺ݇ሻߚመ



 ሺ݇ሻ   ොߙ

,

 ሺ݇ሻܣ,Ω෪ାଵ

ௗ መߚ
,శభ

 ൫ݎܽሺ݇ሻ൯

்ିଵ

௧ୀଵ

.	

 

S2.1.2 Forward-Backward Mixture (FBM) Algorithm – Static Heterogeneity 

We adapt the E-step of the FBM algorithm from reference 1. This FBM algorithm 

estimates quantities, termed the “forward” and “backward” variables, that are used to acquire 

the mixture coefficients, state occupancies, and inter-state transition counts. The complexity of 

the algorithm is ܱሺܰܶܭଶܦሻ where ܰ is the number of signal trajectories, ܶ is the number of time 
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points in each signal trajectory, ܦ is the number of subpopulations of signal trajectories, and ܭ 

is the number of production states. It is important to note that, like the FBA algorithm, the FBM 

algorithm is linear in time, and is thus tractable for large datasets.  

 The forward variable, ߙො௧
ௗ ሺ݇ሻ, and backward variable, ߚመ௧

ௗ ሺ݇ሻ, reduce in the ݀ dimension 

because the subpopulations that do not interconvert do not have subsequent transitions along 

any indirectly observed dimensions: 

ො௧ߙ
ௗ ሺ݇ሻ ൌ ො௧ሺ݇ሻߙ ≡ ሺ݇ሻܣො,௧ିଵ,ሺ݇ሻߙ௧|߶ሻݔሺ



 

መ௧ߚ
ௗ ሺ݇ሻ ൌ መ௧ሺ݇ሻߚ ≡ ∑ ሺ݇ሻܣ,௧ାଵ|߶൯ݔ൫መ,௧ାଵ,ሺ݇ሻߚ . 

The boundary conditions are as follows: 

ොଵሺ݇ሻߙ ൌ  ሺ݇ሻߨ௧|߶ሻݔሺ

መߚ ்ሺ݇ሻ ൌ ݔ൫ ்
ห߶൯, 

where it should be noted that we have removed an unnecessary index from ߨ
ௗሺ݇ሻ. These 

variables are normalized to supply the likelihood function as well as a convenient scale and 

recursion, all to guarantee computational precision: 

ܿ	� ሺ݇ሻ ≡ߙො௧ሺ݇ሻܣሺ݇ሻ


	

ෝ௧ሺ݇ሻࢻ ≡ ො௧ሺ݇ሻߙ ෑ ܿ
௧′
ିଵ ሺ݇ሻ

௧

௧′ୀଵ

	

௧ሺ݇ሻࢼ ≡ ∏መ௧ሺ݇ሻߚ ܿ
௧′
ିଵ ሺ݇ሻ௧

௧′ୀଵ . 

To complete the algorithm, we use the above variables to calculate the variables of primary 

interest: 

௧ሽሻݔሺሼ ൌ ௧ݖ൫ݍ
ௗ ൯ ൌ ෑܿ௧ሺ݇ሻ

,,௧

 

௧ߛ
 ൌ ࢻෝ௧ሺ݇ሻࢼ௧ሺ݇ሻ	
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݃ ൌ  ଵሺ݇ሻࢼෝଵሺ݇ሻࢻ

௧ሺ݇ሻߦ ൌ
ܿ௧ሺ݇ሻሺݔ௧|߶ሻࢻෝ,௧ିଵ,ሺ݇ሻࢼ௧ሺ݇ሻܣሺ݇ሻ

∏ ܿ௧ሺ݇ሻ௧
 

ߞ ൌ
∏ ሺሻ

∑ ∏ ሺሻೖ
. 

At this point, all variables required for the M-step of the FBM algorithm have been prepared. 

 

S2.2 M-step 

Parameters are updated during the M-step. This is done simultaneously and, as such, all 

parameters on the right-hand side of the equations belong to the previous iteration and those on 

the left-hand side belong to the current iteration. Priors are not updated in this model, as we do 

not utilize the empirical Bayes’ framework. The M-step is iterated with the E-step above until the 

evidence lower bound converges within a set tolerance. There are only trivial differences 

between the FBA and FBM algorithms in the M-step. This is because, at the M-step, the FBM 

algorithm is simply a limiting case of the FBA algorithm and, as such, the two algorithms share 

the same parameter distribution structures and differ only in the details of the model topology.  

Derivations of these equations may be found in reference 1 and are derived by maximizing the 

evidence lower bound. 

ߚ ൌ ,ߚ ߛ௧


,௧

, ݅ ∈ ൛1, … ,Ω෪ൟ 

ܽ ൌ ܽ, 
1
2
ߛ௧



,௧

, ݅ ∈ ൛1, … ,Ω෪ൟ 

ܾ ൌ ܾ, 
1
2
൭ߚ,݉,

ଶ ݔ௧
ଶ ௧ߛ



,௧

െ
൫ߚ,݉,  ∑ ௧ߛ௧ݔ


,௧ ൯

ଶ

ߚ
൱ , ݅ ∈ ൛1, … ,Ω෪ൟ 

 

ߣ ൌ
ܽ
ܾ
, ݅ ∈ ൛1, … ,Ω෪ൟ 
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݉ ൌ
ߣ
ߚ
൭ݔ௧ߛ௧



,௧

 ݉,ߚ,൱ , ݅ ∈ ൛1, … ,Ω෪ൟ 

 

ߤ ൌ ݉, ݅ ∈ ൛1, … ,Ω෪ൟ 

 

ߩ
ௗሺ݇ሻ ൌ ,ߩ	

ௗ ሺ݇ሻ  ∑ ݃
ௗ

 , ݀ ∈ ሼ1, … , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݇ ∈ ሼ1, … ,Ωௗିଵሽ 

 

ߨ
ௗሺ݇ሻ ൌ ݁ట൫ఘ

൯ି∑ ట൫ఘ
൯ , ݀ ∈ ሼ1,… , ,ሽܦ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݇ ∈ ሼ1, … ,Ωௗିଵሽ 

 

ߙ
ௗ ሺ݇ሻ ൌ ,ߙ

ௗ ሺ݇ሻ ߦ௧
ௗ ሺ݇ሻ

,௧

, ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ,	

݇ ∈ ሼ1, … ,Ωௗିଵሽ, ݀ ∈ ሼ1, … ,  ሽܦ

 

ܣ
ௗ ሺ݇ሻ ൌ ݁ట൫ఘ

൯ି∑ టቀೕ
 ሺሻቁ ݅ ∈ ൛1, … ,Ω෪ௗൟ, ݆ ∈ ൛1, … ,Ω෪ௗ  1ൟ,	

݇ ∈ ሼ1, … ,Ωௗିଵሽ, ݀ ∈ ሼ1, … , 	.ሽܦ

 

S2.3 Calculation of Evidence Lower Bound 

The evidence lower bound is given by: 

ܮ ቀݍ൫൛ݖ௧
ௗ ൟ൯, ሻቁߠሺݍ ൌ ௧ሽሻݔሺሼ െ ሺ߶||߰ሻܦ െ ߩ൫൛ܦ

ௗൟ||߰൯ െ ߙ൫൛ܦ
ௗ ሺ݇ሻൟ||߰൯, 

where ሺሼݔ௧ሽሻ	is calculated in the E-step and the ܦ terms are given by: 

ሺ߶||߰ሻܦ ൌ ቈሺܽ െ 1ሻ߰ሺܽሻ  log ൬
ܽ
ܾ
൰ െ ܽ  log ቆ

Γ൫ܽ,൯
Γሺܽሻ

ቇ  ܽ, log൫ܾ,൯

െ ൫ܽ, െ 1൯ሺ߰ሺܽሻ  logሺܾሻሻ 
ܾܽ
ܾ,

  log ൬
,ߚ
ߚ
൰ 

ߚ  ൫݉ െ ݉,൯
ଶ

,ߚ2
െ
1
2
൩	
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ߩ൫൛ܦ
ௗൟ||߰൯ ൌ logΓ൫ߩ

ௗ൯

Ω෪

ୀଵ

െ logΓ൫ߩ,
ௗ ൯

Ω෪

ୀଵ

logΓ ൫ߩ
ௗ൯

Ω෪

ୀଵ

െlogΓ൫ߩ,
ௗ ൯

Ω෪

ୀଵ

൫ߩ
ௗ െ ,ߩ

ௗ ൯

ۉ

ߩ൫߰ۇ
ௗ൯ െ ߰ቌߩ

ௗ

Ω෪

ୀଵ

ቍ

ی

ۊ
Ω෪

ୀଵ

	

ߙ൫൛ܦ
ௗ ሺ݇ሻൟ||߰൯ ൌ ∑ ቆlog∑ Γ ቀߙ

ௗ ሺ݇ሻቁΩ෪
ୀଵ െ log∑ Γ ቀߙ,

ௗ ሺ݇ሻቁΩ෪
ୀଵ  ∑ logΓ ቀߙ

ௗ ሺ݇ሻቁΩ෪
ୀଵ െΩ෪ାଵ

ୀଵ

∑ logΓ ቀߙ,
ௗ ሺ݇ሻቁΩ෪

ୀଵ  ∑ ቀߙ
ௗ ሺ݇ሻ െ ,ߙ

ௗ ሺ݇ሻቁ ቆ߰ ቀߙ
ௗ ሺ݇ሻቁ െ ߰ ቀ∑ ߙ

ௗ ሺ݇ሻΩ෪
ୀଵ ቁቇΩ෪

ୀଵ ቇ. 

 

S3 Calculation of Kinetic Rates 

S3.1 Static Heterogeneity 

Calculation of the kinetic rates follows: 

݇
ௗ ൎ ܣ

ௗ , ݅ ് ݆, 

where the rate constants are in units of time-steps. 

 

S3.2 Dynamic Heterogeneity 

Calculation of the kinetic rates follows: 

݀∗ ≡ min൫݀|ݎܽௗሺ݅ሻ ൌ 	ௗሺ݆ሻ൯ݎܽ

݇
ௗ ൎ ෑܣ,Ω෪ାଵ

 ൫݄ܿሺ݅ሻ൯


ௗିଵ

ୀଵ

	

ෑ షሺሻ,Ω෪ାଵܣ
 ൫ݎܽିௗାଵሺ݅ሻ൯ߨሺሻ



ௗ∗

ୀௗ

ܣ
∗ቀ∗షభሺሻቁ,∗ቀ∗షభሺሻቁ
ௗ∗ ൫ݎܽௗ∗ାଵሺ݅ሻ൯൨	

݅ ് ݆, 

where the rate constants are in units of time-steps (4). 
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