
Biophysical Journal, Volume 114
Supplemental Information
Increasing the Time Resolution of Single-Molecule Experiments with

Bayesian Inference

Colin D. Kinz-Thompson and Ruben L. Gonzalez Jr.



Supporting Information: Increasing the time resolution of single-molecule

experiments with Bayesian inference

Colin D. Kinz-Thompson and Ruben L. Gonzalez, Jr.

Department of Chemistry, Columbia University, New York, NY 10027, USA

1 Distributions of Fractional Occupancies

Two-state System

Consider a single-molecule whose dynamics are governed by the stochastic, two-state system,

1
k1−⇀↽−
k2

2.

For a memoryless two-state system, the individual lifetimes that the single-molecule dwells in states 1 and 2 are exponentially

distributed with rate constants k1 and k2, respectively. In this case, the equilibrium probabilities of finding states 1 and 2 occupied

are,

p1 =
k2

k1 + k2
, and

p2 = 1− p1 =
k1

k2 + k2
, (1)

respectively. However, during a period of observation, t = 0 to τ , a single-molecule will begin in one of the two states, and then

will processively transition between the two states a random number of times, which is governed by k1, k2, and τ . Along these

lines, during the observation period, the time spent in the ith state (i.e., the sojourn time), Ti, is also governed k1, k2, and τ . For

T1 and T2 > 0 sec, the probability distribution of T1 is known to be (1, 2),

P † (T1|k1, k2, τ) = e−k1T1−k2(τ−T1) ·

[
(p1k1 + p2k2) · I0

(
2(k1k2T1(τ − T1))1/2

)
+ (k1k2)

1/2

(
p1

(
T1

τ − T1

)1/2

+ p2

(
τ − T1
T1

)1/2
)
· I1
(

2(k1k2T1(τ − T1))1/2
)]

, (2)

where p1 and p2 are the probability of finding the single-molecule is states 1 and 2, respectively, (i.e., at equilibrium, p1 = k2
k1+k2

and p2 = k1
k1+k2

), and I0 and I1 are modified Bessel functions of the first kind. This distribution is not normalized because it

lacks density at T1 = 0 and T1 = τ . These conditions represent the situations when the single-molecule is exclusively in state

1 or in state state 2, respectively, for the entire duration of the observation period. Ad hoc, at equilibrium, the contributions to

the probability distribution at these points should be the equilibrium population-weighted probability that the single-molecule does

not undergo a transition out of the ith state during the observation period; this probability is the survival probability (i.e., 1 - the

cumulative distribution function) of the exponential distribution, which is e−kiτ . Therefore, considering these contributions, the

entire probability distribution of time spent in state 1 during the observation period is,

P (T1|k1, k2, τ) = P † (T1|k1, k2, τ) + p1e
−k1τ · δ (τ − T1) + p2e

−k2τ · δ (T1) , (3)

1



where δ is the Dirac delta function, which ensures that these terms only contribute when the single-molecule is exclusively in one of

the two states. The probability distribution of T2 during an observation period can be obtained by interchanging the rate constants.

If the observation period, τ , is known, then the probability distribution of the total time spent in state 1 during an observation period

given in Eqn. (3), can be transformed into the probability distribution of the fraction of time spent in state 1 during the observation

period, f . This transformation is,

P (f |k1, k2, τ) = P (T1 = f · τ |k1, k2, τ) · |J |−1; where f ≡ T1
τ
, so

∂f

∂T1
=

1

τ
and |J |−1 = τ, (4)

where J is the Jacobian. Therefore, by plugging Equation (3) into Equation (4) and making the substitution T1 = fτ ,

P (f |k1, k2, τ) =
k2

k1 + k2
τe−k1τ · δ (τ − (fτ)) +

k1
k1 + k2

τe−k2τ · δ ((fτ))

+ 2
k1k2
k1 + k2

τe−k1(fτ)−k2(τ−(fτ)) ·
[
I0 (y) +

k2 (fτ) + k1 (τ − (fτ))

y
· I1 (y)

]
,

(5)

where y ≡ 2
√
k1k2 (fτ) (τ − (fτ)) = 2τ

√
k1k2f (1− f).

Noting the identity,

δ (ax) =
1

|a|
· δ (x) , (6)

we can simplify Equation (5) to yield,

P (f |k1, k2, τ) =
k2

k1 + k2
e−k1τ · δ (1− f) +

k1
k1 + k2

e−k2τ · δ (f)

+ 2
k1k2
k1 + k2

τe−(k1f+k2(1−f))τ ·
[
I0 (y) +

(k2f + k1(1− f)) τ

y
· I1 (y)

]
.

(7)

Above, we have chosen to simplify Equation (7) so that it is apparent that it is equivalent to the expression of Berezhkovskii and

coworkers, and that used by Gopich and coworkers (3, 4).

2 Bayesian Inference

Overview

Bayesian inference allows for the parameters describing an initial hypothesis, θ, to be modified to account for new data, D.

Mathematically, this process can be written using Bayes’ rule,

p(θ|D) =
p(D|θ) · p(θ)

p (D)
=

p(D|θ) · p(θ)∑
(p(D|θ) · p(θ))

∝ p(D|θ) · p(θ) (8)

which is analogous to saying that the probability of the hypothesis after having seen the data (the posterior probability, p(θ|D))

is proportional to the product of the probability of the data given the hypothesis (the likelihood, p(D|θ)) and the initial probability

of the hypothesis itself (the prior probability, p(θ)). For an introduction to Bayesian inference, see Ref. (5). According to Eqn.

(8), one can use Bayes’ rule in order to calculate the probability of a hypothesis describing a biomolecular system after obtaining

a series of single-molecule observations if one has a model for the data (i.e., an expression for likelihood). Unfortunately, direct

enumeration of the posterior distribution (i.e., all possible hypotheses) can be computationally expensive, especially when there

are large number of parameters in the model for the data. As an alternative, methods such as Markov chain Monte Carlo (MCMC)

can be used to explore the expansive hyper-volume of the posterior distribution in a much more economical manner. Sufficient

sampling of the posterior probability distribution then provides random samples, which can be used to statistically describe the

posterior probability distribution (see below).
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Likelihood Function

A general model for the signal originating from a single-molecule is that the signal from each state is distributed according to a nor-

mal distribution. In such a situation, if the single-molecule occupies multiple states during a signal acquisition period, that datapoint

will distributed according to a convolution of the corresponding normal distributions for the different states; such a convolution of

normal distributions is also a normal distribution. Additional detection noise or baseline contributions can be accounted for by ad-

ditional convolutions. If every distribution in the convolution is a normal distribution, then the resulting distribution is also a normal

distribution with a mean, µ, and variance, σ2, that are linear-combinations of the means and variances weighted by the time spent

in each particular state. For instance, in a two-state system, if a molecule is in state 1 for the entire ith period of observation, the

observed emission signal, di, would be centered at ε1 with variance σ2
1 . Similarly, emission from only state 2 would be centered at

ε2 with variance σ2
2 . For an observation period with a fractional occupation of these states, the signal will be centered at the linear

combination ε1f + ε2 (1− f), and the variance will be σ2
1f + σ2

2 (1− f). For this two-state system,

P (di|ε1, ε2, σ1, σ2, f) =
1√

2π (σ2
1f + σ2

2(1− f))
· e

−1
2

(di−(ε1f+ε2(1−f)))2

(σ21f+σ
2
2(1−f)) . (9)

Unfortunately, the exact fractional occupation during the observation period, f , is not a parameter that is observed during an

experiment; so, Equation (9) is not useful for inferring model parameters. However, one can derive the probability distribution of

the fractional occupation; the exact form for the memoryless two-state model, P (f |k1, k2, τ), was given in Section 1. Knowing this

probability distribution allows the dependence upon f to be removed from Equation (9); this process is known as marginalization

(Fig. S1A). For the two-state system, the resulting, marginalized probability distribution using the analytical expression for the

probability distribution given in Equation (7) is,

P (di | ε1, ε2, σ1, σ2, k1, k2, τ) =

∫ 1

0

df · P (di|ε1, ε2, σ1, σ2, f) · P (f |k1, k2, τ)

=
1√
2π
·
[

1

σ1

k2
k1 + k2

e
− 1

2

(
di−ε1
σ1

)2
−k1τ +

1

σ2

k1
k1 + k2

e
− 1

2

(
di−ε2
σ2

)2
−k2τ

+
2k1k2τ

k1 + k2

∫ 1

0

df · 1√
σ2
1f + σ2

2(1− f)
e
− 1

2

(di−(ε1f+ε2(1−f)))2

(σ21f+σ
2
2(1−f))

−(k1f+k2(1−f))τ ·
(
I0(y) +

(k2f + k1(1− f))τ

y
· I1(y)

)]
(10)

In this form, the integral can be computed numerically, for instance, with a Gaussian quadrature method. Having experimentally

observed a set of signals from a single-molecule, {d} = {d1, · · · , dN}, we can calculate the likelihood of observing this particular

set, L ≡ P (D|Θ); this expression is the product of the probability of the observed signal during each measurement period,

P (di|ε1, ε2, σ1, σ2, k1, k2, τ), which is

L = P ({d}|Θ) = P ({d}|{ε}, {σ}, {k}, τ) =

N∏
i=1

P (di|{ε}, {σ}, {k}, τ) , (11)

where {ε}, {σ}, and {k} are the sets of emission means, emission standard deviations, and rate constants defining the single-

molecule system (e.g., for a two-state system {ε} = {ε1, ε2}, {σ} = {σ1, σ2}, and {k} = {k1, k2}).
This assumes that the datapoints are independent and identically distributed, and that the system is at equilibrium. That

assumption is reasonable for the case of fast dynamics (i.e., k1τ or k2τ > 1), where subsequent signal measurements are made

during a time when the single-molecule occupies several different states. For the case of slow dynamics, if there are a sufficient

number of measurements in the signal versus time trajectory, then the single-molecule can be considered at equilibrium (i.e.,

〈f〉 ≈ k2/(k1 + k2)). Thus, we believe that it is a reasonable approximation. As we show in the main text, the likelihood function

performs well in this regime under this assumption.

Finally, given a large number of measurements in {d}, L can easily underflow on a computer; thus, it is better computed on a
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log scale. The resulting log-likelihood, ln(L), is

ln(L) = ln (P ({d}|Θ)) =

N∑
i

ln (P (di|{ε}, {σ}, {k}, τ)) . (12)

Prior Distributions

Prior probability distributions are subjective (i.e., conditional), but not unsystematic. Choosing a prior probability distribution is

equivalent to systematically encoding knowledge of initial conditions. For instance, if a particular parameter describes a magnitude,

then it must be a greater than or equal to zero. Objectivity is ingrained in this process since, given the same initial conditioning,

two rational individuals produce the same prior probability distribution (5).

Certain parameters are more conveniently represented by certain probability distributions. Just considering the allowed values

of particular parameters and the support of particular distributions, probabilities and ratios are conveniently represented with

beta distributions, magnitudes and rates are conveniently represented with gamma distributions, and positions and signals are

conveniently represented by normal distributions. These distributions are:

Beta, P (x|α, β) =
xα−1 · (1− x)β−1

B(α, β)
, for 0 ≤ x ≤ 1, (13)

Gamma, P (x|α, β) =
βα · xα−1 · e−βx

Γ(α)
, for x ≥ 0, (14)

Normal, P (x|µ, σ2) =
1√

2πσ2
e−

1
2σ2

(x−µ)2 , and (15)

Uniform, P (x|α, β) =
1

β − α
, for α ≤ x ≤ β. (16)

When using BIASD to analyze single-molecule fluorescence resonance energy transfer (smFRET) experiments, we typically em-

ploy beta distributions for the ε, because they are ratios of distances or photon counts. We often use gamma distributions for the

σ, because it represents the magnitude of the noise. Finally, for the k, we often also use gamma distributions, because these rate

constants represent a number per time and therefore cannot be negative.

Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) allows for the efficient sampling of high dimensional space (such as a posterior probability

distribution) by taking a random walk along the distribution (see Ref. (6) for an introduction). Briefly, random steps are drawn from

a proposal distribution, and these steps are either accepted or rejected based upon an acceptance criteria. The sequence of steps

forms a Markov chain that is ideally able to traverse the relevant (i.e., higher probability) hyper-volume of the N-dimensional space;

thus eliminating the need to enumerate the entire N-dimensional space. To do so effectively, the acceptance rate of steps must

not be too large, because then the Markov chain will not diffuse far from its initial location. Likewise, the acceptance rate must not

be too small, because then the Markov chain will not diffuse along the probability distribution at all. One method to facilitate this

exploration is to choose a proposal step based upon the positions of other Markov chains, which presumably are already located in

relevant regions of the N-dimensional space. Such approaches amount to simultaneously moving an ensemble of MCMC chains

(called ‘walkers’), and carefully choosing proposal moves based upon the positions of these walkers that maintain detailed balance

(7, 8).

3 Analysis using BIASD

Synthetic Titration

To begin our analysis, prior probability distributions, as described in Section 2, were chosen for the five parameters in the model,

ε1, ε2, σ ≡ σ1 = σ2, k1, and k2. For the synthetic titration of a ligand to its receptor, the prior probability distributions for the BIASD
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parameters were chosen to be

ε1 ∼ Normal (µε1 = 0.0, σε1 = 0.01)

ε2 ∼ Normal (µε2 = 1.0, σε2 = 0.01)

σ ∼ Gamma (ασ = ζ, βσ = ζ/0.04)

k1 ∼ Gamma (αk1 = ζ, βk1 = ζ/ (10.0 · [L]))

k2 ∼ Gamma (αk2 = ζ, βk2 = ζ/10.0) ,

where ζ was chosen to be 2.0 to create broad prior distributions. The relatively narrower standard deviations for the prior probability

distributions of ε1 and ε2 are justified by inspecting the signal trajectories at the lowest and highest [L]. In an experimental situation,

this could also be learned from previous experiments performed on mutant receptors, with ligand analogues, or in the presence

of a drug that stabilizes state 1 or state 2. Similarly, the parameters used to describe the prior probability distribution of σ could

have been previously characterized for a particular instrument (e.g., a particular microscope). The prior probability distributions

for σ, k1, and k2 were chosen to be Gamma-distributed because of they are supported between 0 and ∞. We note that all of

these prior probability distributions were constructed such that the mean of the distribution is centered at the parameter value

used in simulated the signal trajectory that was analyzed. Finally, the BIASD posterior probability distributions for simulated signal

trajectories were sampled using ensemble, affine-invariant MCMC as described in the Materials and Methods (7, 8). The posterior

probability distributions for k1 and k2, as plotted in Fig. 2 in the main text, are summarized below in Table 3 containing the rate

constant used in the simulation (truth), the marginalized mean of the MCMC samples (inferred mean), and the 95% credible

intervals (95% C.I.) of the MCMC samples.

k1 (s−1) k2 (s−1)

Entry Truth Inferred Mean 95% C.I. Truth Inferred Mean 95% C.I.
1 1.00× 10−2 1.21× 10−2 (2.93× 10−03, 2.84× 10−2) 1.00× 10+1 8.24× 10+0 (1.95× 10+0, 2.02× 10+1)
2 1.58× 10−2 2.15× 10−2 (6.39× 10−03, 4.61× 10−2) 1.00× 10+1 1.03× 10+1 (3.27× 10+0, 2.29× 10+1)
3 2.51× 10−2 3.54× 10−2 (1.23× 10−2, 7.16× 10−2) 1.00× 10+1 1.27× 10+1 (4.37× 10+0, 2.58× 10+1)
4 3.98× 10−2 4.37× 10−2 (1.40× 10−2, 8.94× 10−2) 1.00× 10+1 1.03× 10+1 (3.65× 10+0, 2.08× 10+1)
5 6.31× 10−2 8.05× 10−2 (2.27× 10−2, 1.84× 10−1) 1.00× 10+1 1.21× 10+1 (4.79× 10+0, 2.26× 10+1)
6 1.00× 10−1 1.10× 10−1 (2.90× 10−2, 2.41× 10−1) 1.00× 10+1 1.46× 10+1 (6.31× 10+0, 2.75× 10+1)
7 1.58× 10−1 1.22× 10−1 (3.98× 10−2, 2.48× 10−1) 1.00× 10+1 1.51× 10+1 (6.67× 10+0, 2.82× 10+1)
8 2.51× 10−1 1.95× 10−1 (8.53× 10−2, 3.63× 10−1) 1.00× 10+1 1.51× 10+1 (7.50× 10+0, 2.52× 10+1)
9 3.98× 10−1 3.01× 10−1 (1.72× 10−1, 4.79× 10−1) 1.00× 10+1 1.24× 10+1 (6.00× 10+0, 2.24× 10+1)
10 6.31× 10−1 4.93× 10−1 (2.66× 10−1, 8.26× 10−1) 1.00× 10+1 1.11× 10+1 (7.31× 10+0, 1.58× 10+1)
11 1.00× 10+0 9.47× 10−1 (6.81× 10−1, 1.27× 10+0) 1.00× 10+1 1.32× 10+1 (9.37× 10+0, 1.75× 10+1)
12 1.58× 10+0 1.46× 10+0 (1.12× 10+0, 1.85× 10+0) 1.00× 10+1 1.16× 10+1 (8.69× 10+0, 1.45× 10+1)
13 2.51× 10+0 2.22× 10+0 (1.74× 10+0, 2.76× 10+0) 1.00× 10+1 1.05× 10+1 (8.17× 10+0, 1.29× 10+1)
14 3.98× 10+0 4.05× 10+0 (3.34× 10+0, 4.81× 10+0) 1.00× 10+1 1.18× 10+1 (9.69× 10+0, 1.40× 10+1)
15 6.31× 10+0 6.86× 10+0 (5.80× 10+0, 8.00× 10+0) 1.00× 10+1 9.58× 10+0 (8.05× 10+0, 1.12× 10+1)
16 1.00× 10+1 9.17× 10+0 (7.81× 10+0, 1.06× 10+1) 1.00× 10+1 1.00× 10+1 (8.37× 10+0, 1.16× 10+1)
17 1.58× 10+1 1.74× 10+1 (1.49× 10+1, 2.00× 10+1) 1.00× 10+1 1.02× 10+1 (8.66× 10+0, 1.17× 10+1)
18 2.51× 10+1 2.59× 10+1 (2.17× 10+1, 3.01× 10+1) 1.00× 10+1 9.37× 10+0 (7.96× 10+0, 1.09× 10+1)
19 3.98× 10+1 4.09× 10+1 (3.43× 10+1, 4.77× 10+1) 1.00× 10+1 9.38× 10+0 (7.84× 10+0, 1.11× 10+1)
20 6.31× 10+1 7.00× 10+1 (5.83× 10+1, 8.26× 10+1) 1.00× 10+1 1.06× 10+1 (8.49× 10+0, 1.31× 10+1)
21 1.00× 10+2 1.01× 10+2 (8.14× 10+1, 1.22× 10+2) 1.00× 10+1 9.08× 10+0 (6.68× 10+0, 1.18× 10+1)
22 1.58× 10+2 1.50× 10+2 (1.16× 10+2, 1.87× 10+2) 1.00× 10+1 8.44× 10+0 (5.62× 10+0, 1.19× 10+1)
23 2.51× 10+2 2.67× 10+2 (1.72× 10+2, 3.69× 10+2) 1.00× 10+1 8.67× 10+0 (3.62× 10+0, 1.60× 10+1)
24 3.98× 10+2 4.67× 10+2 (2.61× 10+2, 6.77× 10+2) 1.00× 10+1 8.46× 10+0 (1.68× 10+0, 1.89× 10+1)
25 6.31× 10+2 8.65× 10+2 (3.85× 10+2, 1.73× 10+3) 1.00× 10+1 8.63× 10+0 (1.37× 10+0, 2.08× 10+1)
26 1.00× 10+3 1.34× 10+3 (5.45× 10+2, 2.96× 10+3) 1.00× 10+1 8.87× 10+0 (1.27× 10+0, 2.34× 10+1)
27 1.58× 10+3 1.83× 10+3 (6.42× 10+2, 4.44× 10+3) 1.00× 10+1 9.64× 10+0 (1.31× 10+0, 2.54× 10+1)
28 2.51× 10+3 2.91× 10+3 (8.11× 10+2, 7.32× 10+3) 1.00× 10+1 9.03× 10+0 (1.05× 10+0, 2.45× 10+1)
29 3.98× 10+3 4.08× 10+3 (8.03× 10+2, 1.12× 10+4) 1.00× 10+1 9.36× 10+0 (1.36× 10+0, 2.48× 10+1)
30 6.31× 10+3 6.36× 10+3 (8.73× 10+2, 1.76× 10+4) 1.00× 10+1 9.33× 10+0 (1.25× 10+0, 2.64× 10+1)
31 1.00× 10+4 9.94× 10+3 (1.43× 10+3, 2.86× 10+4) 1.00× 10+1 9.57× 10+0 (1.18× 10+0, 2.63× 10+1)

Table 1: Summary of Rate Constants Inferred Using BIASD for Synthetic Titration Simulation
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Temperature-dependent Pre-translocation Complexes

The temperature-dependent datasets of smFRET trajectories from Wang and coworkers were truncating at the first photophysical

anomaly, such as photobleaching, in order to ensure two-state behavior (Figure S2) (9). Next, all of the data points in the datasets

of smFRET trajectories were assumed to be independent and identically distributed (i.e., there is only one type of complex in

the ensembles). As such, we computed the joint likelihood of all of the data points from the smFRET trajectories at a particular

temperature to perform Bayesian inference.

For the prior probability distributions for εGS1, εGS2, σ ≡ σGS1 = σGS2, kGS1, and kGS2., we used uniform distributions,

because we assumed no previous analysis of these experiments. Specifically,

εGS1 ∼ Uniform (α = −0.5, β = 0.5)

εGS2 ∼ Uniform (α = 0.5, β = 1.5)

σ ∼ Uniform (α = 0.02, β = 0.20)

kGS1 ∼ Uniform (α = 0.01, β = 100)

kGS2 ∼ Uniform (α = 0.01, β = 100) .

The limits of these uniform distributions were chosen due to experimental considerations. For the ε, the FRET efficiency is limited

between 0 and 1, but can exceed these limits due to background corrections; therefore, we chose to limit the uniform distributions

between -0.5 and 1.5, while enforcing εGS1 < εGS2. The limits chosen for σ reflect maximum signal to noise ratios of 1/0.2 = 5

to 1/0.02 = 50, which is reasonable for our total internal reflection fluorescence microscope. Finally, the limits for the k reflect

the length of the experiment on one end, (60 s)−1 =0.016 s−1, and on the other end, five times faster than the acquisition rate,

τ−1 = 20 s−1, which is reasonable upon inspection of individual trajectories.

Hierarchical Mixtures of and Transitions between Sub-populations

In order to consider multiple different sub-populations with BIASD, we will show how to combine BIASD with a mixture model and

an HMM. Consider denoting that the ith data point from the jth single-molecule trajectory belongs to the mth classes of K different

classes by using an indicator variable, zijm, which is one if the data point belongs to the assigned class, and zero otherwise. We

can then write the likelihood of observing this data point using the BIASD model, but conditioned upon zijm (i.e., belonging to the

mth class). This would be the same expression in Eqn. (10), but written to denote the conditional probability as

P (dij |Θm, τ, zijm) = P (dij |Θm, τ) · zijm, (17)

where Θm denotes the BIASD model parameters Θ = {ε1, ε2, σ, k1, k2} for the mth sub-population. Note that zijm functions like a

delta function in this case. Given a multitude of classes, we can write the probability of dij conditioned upon all of the possible K

subsystems as,

P (dij |~Θ, τ, ~zij) =

K∑
m=1

P (dij |Θm, τ, zijm), (18)

where ~zij = {zij1, . . . , zijK} and ~Θ = {Θ1, . . . ,Θm} and it is important to note that only one of the zijm will be one, because dij
belongs to only one class.

As mentioned in the main text, inferring the values of ~zij simultaneously with the values of the model parameters ~Θ is difficult,

but we also do not particularly care about the values of ~zij . Therefore, we will marginalize out the ~zij . To perform this marginal-

ization, we need an expression for the probability of zijm, P (zijm). In the case of a mixture model (e.g., without any transitions

between data points), we will use πm as this probability, and enforce that
∑K
m=1 πm = 1. Note that this means in the set of πm,

~π = {π1, . . . , πK} = {π1, . . . , πK−1, 1 −
∑K−1
m=1}, so that there are only K − 1 independent parameters. Now we can write the
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marginalized probability as

P (dij |~Θ, τ, ~π) =

K∑
m=1

P (dij |Θm, τ, zijm) · P (zijm|πm), (19)

and additionally note that for the case of a mixture model, the probability of all of the data points from the jth molecule is

P (dj |~Θ, τ, ~π) =
∏
i

P (dij |~Θ, τ, ~π). (20)

In the case of an HMM (Fig. S1B), this marginalization process is more involved, since the P (zijm) depends upon zi−1,jm,

but this can be performed with the forward-backward algorithm (6, 10). Briefly, given a rate matrix Q̃, where rate constants for

transitions between states are on the off-diagonals, and the diagonals are the negative sum of the rows in order to conserve mass,

a transition probability matrix, Ãij, from the i-1th to the ith data point from the jth single-molecule signal trajectory can be calculated

as

Ãij = exp
(
Q̃ · tij

)
, (21)

where tij is the amount of time that has passed between the i-1th and the ith data point. Note tij is not necessarily τ , nor do all of

the tij have to be the same. This transition matrix provides the P (zijm|zi−1,jm) necessary to marginalize out the ~zij . As a result,

the probability distribution of a signal trajectory can be written as

P (d1j . . . dNj |~Θ, τ, Q̃, {t1j . . . , tNj}) =
∏
i

K∑
m=1

P (dij |Θm, τ, zijm) · P (zijm|zi−1,jm, Ãij), (22)

where P (z0jm) is the steady-state probability of state m, which can be obtained by solving differential equations, by using the

diagram method, or from Eqn. (21) when tij → ∞. Again, this marginalization can be efficiently calculated by using the forward-

backward algorithm (6, 10).

To illustrate the ability to couple BIASD with an HMM, we simulated the five-state system in Fig. 4A of the main text. States 1

and 2 had signal values of ε1 = 1000 (a.u.), and ε2 = 500 (a.u.), respectively, while all other states had a signal value of 0. Since,

these states were intended to correspond to a photoblinked, or photobleached fluorophore, we did not infer these values, but fixed

them at 0 in the likelihood expression. We set σ ≡ σ0 = σ1 = σ2 = 10 (a.u.), and simulated the system for 2000 data points with τ

= 0.1 s, using the rate constants given in Table 2.

Initial State Final State Initial Fluorophore Final Fluorophore 〈t〉 = k−1

1 2 on on 5 sec
1 2 off off 5 sec
2 1 on on 15 sec
2 1 of off 15 sec
1 1 on off 50 msec
1 1 off on 15 msec
2 2 on off 40 msec
2 2 off on 20 msec
1 1 on bleach 800 sec
2 2 on bleach 800 sec

Table 2: Parameters Used in Photoblinking Trajectory Simulation.

We then created prior probability distributions where σ, and all of the rate constants were distributed according to the Gamma

distribution with a mean of the simulation parameters and α = 100.0, while ε1, and ε2 were distributed according to the Normal dis-

tribution with a mean of the simulation parameters and a standard deviation of 10.0. The resulting posterior probability distribution

was sampled using MCMC, and is shown in Figure S3.
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4 Dependence of BIASD Performance on Parameter Values

To investigate how BIASD performs as the underlying molecular parameters and several important experimental parameters vary

through the range of possible values that they could take, we have analyzed the analytical equations that were presented in

Section 2, which are used to infer those molecular parameters from the observed data. Consequentially, below we derive equations

that allow an experimentalist to determine whether signal trajectories can be appropriately analyzed using BIASD, as well as

to optimally design experiments that they will analyze using BIASD in the future. Specifically, the equations and corresponding

analyses provided below allow one to determine the signal-to-noise ratio (SNR) of the signal trajectory and the number of observed

datapoints in the signal trajectory that are required in order for BIASD to provide meaningful results.

We begin by considering the asymptotic limit of the likelihood function (Eqn. (7)) where kτ ≡ (k1 + k2)τ � 1, and specifically

min(k1, k2) · τ > 5. As described by Berezhkovskii and coworkers (3), in this asymptotic limit, Equation (7) can be written as

P ‡(f |Θ) = N (f |p1, σ2
b ≡

2p1p2
kτ

), (23)

where ‡ denotes the expression is in the asymptotic limit, N (µ, σ2) denotes a normal distribution as described in Section 2 on

prior probability distributions with mean µ and variance σ2, and Θ is the collection of relevant model parameters. In this asymptotic

limit, and assuming σn ≡ σ1 = σ2 for simplicity, the two-state BIASD likelihood function given in Equation (11) simplifies to yield

P ‡(d|Θ) =

∫ 1

0

df · P (d|f,Θ) · P ‡(f |Θ)

≈
∫ ∞
−∞

df · N (d|ε1f + ε2(1− f), σ2
n) · N (f |p1, σ2

b )

= N (d|〈µ〉, σ2
B), (24)

where 〈µ〉 ≡ (ε1p1 + ε2(1− p1))2, and σ2
B ≡ σ2

n + σ2
b · (ε1 − ε2)2. The extension of the integral to positive and negative infinity is

only valid in the asymptotic limit. This expression shows that, in this asymptotic limit, the likelihood function is a normal distribution

centered at the ensemble-average signal value (i.e.,〈µ〉), and has a minimum width that is the instrument noise (i.e., σ2
n), but which

is broadened by a term that depends upon the rate constants that govern the kinetics of the underlying molecular system (i.e.,

σ2
b (ε1 − ε2)2·); we will refer to this latter contribution as “kinetic broadening”. Figure S4 shows the exact likelihood function (black,

dashed), and the likelihood function in the asymptotic limit (blue, solid) for an arbitrarily chosen Θ; the residual between the two

functions is also shown (blue, dashed).

Given a collection of observed datapoints from a particular signal trajectory, {d} ≡ {d1, · · · di, · · · dN}, there are two interesting

models to consider in the context of Bayesian inference that might describe this {d}. Model one, M1, is the asymptotic limit of a

two-state system described above with the kinetic broadening expression in Equation (24), or rather

p({d}|Θ,M1) =

N∏
i=1

N (di|〈µ〉, σ2
B). (25)

Model two, M2, is just instrument noise coincidentally centered at the ensemble-average signal value, such that

p({d}|Θ,M2) =

N∏
i=1

N (di|〈µ〉, σ2
n). (26)

Essentially, M1 is a kinetically broadened two-state system centered at 〈µ〉, while M2 is a false positive where some noisy, one-

state signal happens to have an average value that is the same as 〈µ〉 (Fig. S4, red).

The question of how BIASD performs in the analysis of a particular experimentally recorded signal trajectory (i.e., a particular

{d}) can be evaluated by asking if the signal trajectory contains enough information about the kinetic broadening to make M1

significantly more probable than M2. Is there evidence for a two-state system in the signal trajectory, or is it more likely that the

signal trajectory is just a false positive? This question is a traditional model-selection problem, which can therefore be answered

using Bayesian inference.
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In order to establish a minimum baseline for the performance of BIASD, we will proceed without invoking any underlying

knowledge of the experimental system, and assume equal prior probabilities for M1 and M2 (i.e., P (M1) = P (M2)). Using

knowledge of a previous experiment, or even just knowing that the observed signal trajectory truly originated from a bona fide two-

state system, for instance by first observing a slowly interchanging two-state system and then altering the experimental conditions

to increase the rate of transitions and produce a signal trajectory with kinetic broadening to be analyzed with BIASD, will improve

the performance of BIASD. With equal prior probabilities for both models, for one particular collection of N observed datapoints in

a particular signal trajectory, {d}, the model-selection question posed above is

P (M1|Θ, {d}) =
P ({d}|Θ,M1) · P (M1)

P ({d}|Θ,M1) · P (M1) + P ({d}|Θ,M2) · P (M2)

=

(
1 +

(
σ2
B

σ2
n

)N
· e
− 1

2

(
1
σ2n
− 1

σ2
B

)
·
∑N
i=1(di−〈µ〉)

2

)−1
. (27)

Notably, because σ2
n < σ2

B , regardless of the parameter values underlying the signal trajectory, this equation states that P (M1|Θ, {d}) >
0.5. This means that there is always some information gained by using BIASD, and that every additional datapoint that is observed

contributes more and more information. As a result, this equation states that one way to increase the performance of BIASD is to

simply collect and analyze more datapoints - a conclusion that agrees well with intuition.

To understand how BIASD performs as the values of the experimental and molecular parameters that underlie that signal

trajectory are changed, consider the expectation value of P (M1|Θ, {d}) given the different possible collections of {d} that might

be observed in a signal trajectory. These possible collections can be described with the exact two-state likelihood distribution

of a collection of observed datapoints in a particular signal trajectory given in Equation (11). In the asymptotic limit given in

Equation (25), this expectation value is thus

E [P (M1|Θ, {d})] =

∫
dd1 · · ·

∫
ddN · P (M1|Θ, {d}) ·

N∏
i=1

P (di), (28)

where P (di) = N (di|〈µ〉, σ2
B), and E denotes an expectation value. Using Jensen’s inequality (E [f(x)] ≥ f(E [x])), a lower

bound for this expectation value in the asymptotic limit can be calculated as

E[P ] ≡ E [P (M1|Θ, {d})] ≥ P (M1|Θ,E [{d}])

≥

(
1 +

(
σ2
B

σ2
n

)N/2
· e

−1
2

(
1
σ2n
− 1

σ2
B

)
·
∑N
i=1 E[(di−〈µ〉)2]

)−1

≥

(
1 +

(
σ2
B

σ2
n

)N/2
· e

−N
2

(
σ2B
σ2n
−1
))−1

E[P ] ≥
(

1 +
(
1 + φ2

)N/2 · e−N
2 ·φ

2
)−1

, (29)

where φ2 ≡ σ2
b (ε1−ε2)

2

σ2
n

= 2p1p2
kτ · (ε1−ε2)

2

σ2
n

≡ 2p1p2
kτ · SNR2. Thus, this equation for the expected probability of M1 relates the

SNR of a particular signal trajectory and the number of observed datapoints that comprise the signal trajectory, N , to the lower

bound-performance of BIASD at a particular value of k1, k2, and τ . Additionally, rearranging Equation (29) and solving for N ,

yields the upper bound for the number of observed datapoints that one would be required to collect in order to have a particular

expected probability of M1. This is

N ≤
2 · ln

(
1

E[P ] − 1
)

ln (1 + φ2)− φ2
. (30)

Notably, Equations (29) and (30) connect the SNR and the number of observed datapoints in a particular signal trajectory to the

performance of BIASD in the analysis of that signal trajectory. Thus, if a researcher can estimate the kinetics (k = k1 + k2) and

thermodynamics (Keq = p2
p1

= k1
k2

) of their system, or, in the worst-case scenario, the bounds that they might expect on the kinetics
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and thermodynamics of their system, then these equations can then be used to plan time-resolved, single-molecule biophysical

experiments of their system. For instance, one might calculate the expected probability thatM1 rather thanM2 is best described by

their signal trajectory, or one can calculate the number of datapoints that one would be required to collect in order for BIASD to be

able to analyze the kinetic broadening present in a particular signal trajectory. In particular, while any value of E[P ] > 0.5 provides

information on the underlying experimental and molecular parameters, we would suggest that using a conservative E[P ] > 0.95 is

a reasonable target to choose when planning an experiment. Figure S5 contains a series of heat maps of E[P ] at various k with

τ = 1 as a function of SNR and number of analyzed datapoints; the E[P ] = 0.95 contour is marked as a white, dashed line. As

the heat maps demonstrate, increasing the SNR and/or the number of analyzed datapoints improves the performance of BIASD.

This is an intuitive and expected result, as increasing the SNR an/or the number of analyzed datapoints will increase the evidence

of kinetic broadening present that is present in the signal trajectory and that can be analyzed using BIASD.

There are several caveats to this analysis. First, it has been performed in the asymptotic limit described above. As a result,

the equations, analyses, and associated conclusions are only valid in this limit (i.e., both k1τ � 1 and k2τ � 1). Additionally,

in the asymptotic limit, the likelihood function is a normal distribution, which is symmetric about the first moment; the exact two-

state likelihood function used for BIASD is asymmetric, as can be seen in the residual between the asymptotic limit and exact

likelihood functions shown in Figure S4. Accounting for this asymmetry in M1 would otherwise have provided additional evidence

to distinguish between M1 and M2. Thus, the equations derived for Equations (29) and (30) are under- and over-estimates,

respectively. This is in addition to the fact that Equations (29) and (30) are already lower and upper bounds, respectively, because

they were derived with Jensen’s inequality. Finally, while the collection of observed datapoints in a particular signal trajectory might

not contain much information regarding the experimental and molecular parameters underlying that signal trajectory and causing

the kinetic broadening, even if kτ � 1, the use of Bayesian inference in BIASD ensures that the corresponding analysis will always

be accurate to within the precision contained within the data, as long as the results of the BIASD analysis are properly reported

with credible intervals.
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Figure S1: Graphical models for BIASD. (A) In BIASD, the dependence of the observed data point, di, upon the set of fractional
occupancies, {f}, is marginalized to yield the graph on right, which depends upon sets of stochastic parameters {ε}, {σ}, and
{k}, as well as upon the deterministic value of τ . (B) A directed graph describing hierarchical, Markovian transitions between
hidden sub-temporal-resolution sub-populations is shown. The rate matrix, Q, dictates the steady-state probabilities, as well as
transition probabilities between sub-temporal-resolution sub-populations for neighboring data points. The plates denote N signal
trajectories and K sub-temporal-resolution sub-populations.
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Figure S2: Temperature Dependence of PRE-A complexes. (A) Histogram of EFRET. GS1 corresponds to the peak at EFRET ∼ 0.15,
and GS2 corresponds to the peak at EFRET ∼ 0.75. Increasing rate constants with increasing temperatures yield more time-
averaging, which results in EFRET data points in the region between εGS1 and εGS2. (B,C) Histograms of the rate constants
estimated for each EFRET trajectory in the set of EFRET trajectories collected at each temperature obtained using: (B) Bayesian
Thresholding-based idealization with the threshold set at an EFRET of 0.45 and (C) Maximum Likelihood Hidden Markov Model (ML
HMM)-based idealization. EFRET trajectories that did not converge were not included in the histograms.
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Figure S3: Corner Plot of Posterior Probability Distribution for Hierarchical Model with Sub-temporal-resolution Photoblinking
Dynamics. Corner plot for (A) ε1, ε2, σ, 〈t12〉 = 1/k12, and 〈t21〉 = 1/k21, and (B) 〈t01〉 = 1/k01, 〈t10〉 = 1/k10, 〈t02〉 = 1/k20, and
〈t20〉 = 1/k20. Cross-sections between the parameters shown in (A) and in (B) are not shown. Cross-sections of the 9D-posterior
probability distribution are shown as 2D heat-maps of the MCMC samples. Marginalized 1D-histograms for each parameter shown
the 2.5%, 50%, and 97.5% probability levels. Parameter values from the simulation are shown in red.
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Figure S4: Example likelihood functions for a single datapoint. The exact two-state likelihood function for one datapoint (Equa-
tion (11)) (black, dashed), and the two-state likelihood function for one datapoint in the asymptotic limit (M1, Equation (25)) (blue,
solid), are shown with parameters ε = 0, ε = 1, σ1 = σ2 = 0.05, k1 = 10s−1, k2 = 5s−1, and τ = 1s. The signal values ε1
and ε2 are normalized to 0 and 1, and therefore generalizable to any linear signal by shifting and rescaling. The likelihood function
for a one state system centered at 〈µ〉 and broadened only by instrument noise σ = 0.05 (M2, Equation (26)) is shown in red.
The means, and half widths at half maximum are shown for both M1 and M2. Residual differences between M1 and the exact
two-state likelihood function (blue, dashed), and between M2 and the exact two-state likelihood function (red, dashed) are shown
below; these have vastly different scales. The ability of BIASD to infer the experimental and molecular parameters underlying a
signal trajectory composed of many datapoints depends upon discriminating between M1 and M2.
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Figure S5: The SNR and number of datapoints dependence of the lower bound expected probability of M1. The heat maps show
the lower limit of E [P ] obtained in the asymptotic limit (Equation (29)) as a function of N and SNR at various k1 and k2 when
τ = 1. The white dashed line is the 95% contour, which can be used to as a mark to surpass when designing experiments. The
performance of BIASD increases with increasing SNR and increasing number of datapoints that are analyzed, and is better than
shown in this lower limit.
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