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Empirical Bayes Methods Enable Advanced Population-Level Analyses of
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ABSTRACT Many single-molecule experiments aim to characterize biomolecular processes in terms of kinetic models that
specify the rates of transition between conformational states of the biomolecule. Estimation of these rates often requires analysis
of a population of molecules, in which the conformational trajectory of each molecule is represented by a noisy, time-dependent
signal trajectory. Although hidden Markov models (HMMs) may be used to infer the conformational trajectories of individual mol-
ecules, estimating a consensus kinetic model from the population of inferred conformational trajectories remains a statistically
difficult task, as inferred parameters vary widely within a population. Here, we demonstrate how a recently developed empirical
Bayesian method for HMMs can be extended to enable a more automated and statistically principled approach to two widely
occurring tasks in the analysis of single-molecule fluorescence resonance energy transfer (smFRET) experiments: 1), the char-
acterization of changes in rates across a series of experiments performed under variable conditions; and 2), the detection of
degenerate states that exhibit the same FRET efficiency but differ in their rates of transition. We apply this newly developed
methodology to two studies of the bacterial ribosome, each exemplary of one of these two analysis tasks. We conclude with
a discussion of model-selection techniques for determination of the appropriate number of conformational states. The code

used to perform this analysis and a basic graphical user interface front end are available as open source software.

INTRODUCTION

Owing to a host of technological innovations over the past
two decades, single-molecule techniques are now reaching
a level of maturity that makes it possible to perform detailed
mechanistic investigations of some of the cell’s most funda-
mental and complex biomolecular processes (1-5). A large
class of such single-molecule experiments seeks to establish
a kinetic model, defined in terms of a set of structural con-
formations of the molecule (hereafter referred to as states)
and the rates of transition between these states. This kinetic
model must be inferred from a set of experimental signal-
versus-time trajectories that report on conformational
transitions in tens, hundreds, or even thousands of signal tra-
jectories. Unfortunately, however, the analysis of large pop-
ulations of trajectories presents several challenges that
currently impair our ability to accurately infer such kinetic
models. Specifically, it remains difficult or impossible
to 1), accurately determine the number of states that are pre-
sent in each noisy signal trajectory; 2), rigorously infer a
single kinetic model that is consistent with the entire popu-
lation of signal trajectories; 3), directly compare kinetic
models for populations of trajectories recorded under
different experimental conditions; and 4), confidently detect
degenerate states that exhibit the same signal output but that
differ in their transition rates. Overcoming these challenges,
therefore, promises to increase the ease, confidence, and
accuracy with which kinetic models can be inferred from
this class of single-molecule experiments.
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The analysis of individual, noisy signal trajectories has
been greatly facilitated by the use of hidden Markov models
(HMMs) (6-8). In the biophysical community, these
methods were introduced within the context of patch-clamp
experiments on ion channels (9-11), and have since been
applied within a variety of single-molecule experimental
platforms, including optical trapping (12), magnetic twee-
zers (13), and single-molecule fluorescence resonance en-
ergy transfer (smFRET) experiments (14-19). In HMM
approaches, a statistical model defines an expected distribu-
tion of measurement values in terms of a set of parameters,
such as the centers and widths of Gaussian peaks represent-
ing the signal values associated with each conformational
state, and the transition probabilities between states.
Given this model, maximum likelihood (ML) techniques
(14,18,20,21), such as those employed in the smFRET
data analysis software packages HaMMy (14) and SMART
(18), can determine the most likely set of parameters and
conformational trajectory for each measured signal trajec-
tory. A well-known deficiency of ML methods, however,
is that the likelihood can always be improved by adding
more states to the kinetic model, making it difficult to
distinguish real conformational states from states that
arise from overfitting the inherently noisy individual sig-
nal trajectories. Variational Bayesian (VB) techniques
(15,16,19,22), such as those employed in the smFRET
data analysis software package vbFRET (15,16), improve
upon ML methods by introducing a prior distribution, which
specifies the expected range of parameter values, allowing
maximization of the evidence, a likelihood that is averaged
over this prior distribution. Unlike the likelihood, the
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evidence is more likely to peak when the signal trajectory is
modeled with the optimal number of states. Thus, VB
methods can be used to perform model selection, that is,
to determine the number of states that yields the best
average agreement between the data and the model (see
Methods for further background).

Although maximization of the evidence has proven an
effective model-selection strategy, it does not completely
eliminate overfitting, and particularly underfitting, of the
signal trajectories. For example, single-molecule FRET effi-
ciency (Eprgr) trajectories that are particularly noisy (i.e.,
with a standard deviation in the Epggr value of ~ 0.15)
and/or include transitions that are fast relative to the rate
of data acquisition (i.e., more than one transition every
five time points) are particularly prone to underfitting
(15). Moreover, existing ML and VB techniques have an
important shortcoming that has significant theoretical and
practical implications: they can only be used to model indi-
vidual signal trajectories, or multiple signal trajectories (17)
only if they are modeled with exactly the same parameters.
For example, it is a common occurrence that the same state
gives rise to a signal centered at Epgrgr = 0.30 in one trajec-
tory and Erggr = 0.35 in another, due to variations in the the
photophysical properties of the fluorophores, slight struc-
tural differences in the molecule, and offsetting errors in
the measured fluorescence intensity. Although it might be
trivial for an experimentalist to recognize that the
Errer = 0.30 and Errer = 0.35 measurements are different
manifestations of the same state, the ML and VB techniques
described above cannot model this situation. From a theoret-
ical perspective, it is unsatisfying that the existing algo-
rithms cannot account for such a fundamental component
of all real experiments that is obvious to the human eye.
From a practical perspective, this shortcoming means that
rather than simultaneously modeling a large population of
signal trajectories to naturally infer a single kinetic model
that is most consistent with the entire population, the exper-
imentalist must instead individually model each trajectory
and subsequently perform a significant amount of postpro-
cessing to infer and validate the single, consensus kinetic
model.

Recently, we have developed an empirical Bayesian (EB)
technique (23,24) that improves upon VB methods by infer-
ring the features of the prior distribution, which in VB
methods must be specified by the experimentalist. In EB
estimation, the variation in parameter values predicted by
the prior distribution is matched to the variation in inferred
parameter values over the population of trajectories,
enabling a single, consensus kinetic model to be learned
from the simultaneous analysis of a large population of
signal trajectories (see the Methods section for a more
detailed introduction). We have benchmarked this EB tech-
nique using computer-simulated data, demonstrating that,
relative to both ML and VB methods, it exhibits a greater
resistance to both over- and underfitting of signal trajec-
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tories, and we have provided a basic example showing
that this EB technique can be used to analyze experimental
Ergrer trajectories (25).

In this article, we use experimental smFRET data report-
ing on the mechanism of protein synthesis by the bacterial
ribosome to demonstrate how our previously developed
EB method (25) can be extended to perform two very
frequently encountered smFRET data analysis tasks: 1),
the comparison of the number of states, their occupancy,
and associated transition rates, across experiments recorded
for the same biomolecular system but under different exper-
imental conditions (e.g., in the absence, presence, and/or
varying concentrations of a particular buffer or biomole-
cular component), and 2), the detection of states that exhibit
the same FErrpr value but have different transition rates.
Currently, most experimentalists treat these problems by
performing inference on the individual trajectories, deciding
via a separate assessment (e.g., via a transition density plot
(14) or similar (26) metric) how many states they believe are
in the data and then binning the inference results in an ad
hoc postprocessing step. This process is time-consuming,
may be prone to user bias, and lacks metrics for assessing
the accuracy of the outcomes. The two extensions of EB
estimation presented here, in contrast, allow users to quickly
perform analysis in a more automated, statistically rigorous,
and reproducible manner, greatly reducing the potential for
user bias.

Collectively, the results of these analyses highlight the
considerable advantages of EB methods over ML and VB
methods and demonstrate how the simultaneous analysis
of large populations of signal trajectories using EB methods
uniquely enables us to 1), automate identification of a com-
mon set of states across various experimental conditions; 2),
detect small, but statistically significant, differences in a sin-
gle state across different experimental conditions; 3), char-
acterize the dependence of the thermodynamic and kinetic
properties of states on experimental conditions; and 4),
identify kinetically distinct subpopulations within a single
experiment.

METHODS
Bayesian inference in coupled HMMs

Bayesian inference seeks to determine the probability of a set of unknown
variables in light of a set of observed data. In the context of single-molecule
studies, these unknown variables are a set of model parameters ¢ and a state
sequence z;, whereas the observations are a signal trajectory, x;. A graphical
model defines a statistical relationship between these variables that can
commonly be factored into two terms

P(X,Zam\//o) = p(X|Z, 0)p(z,0|1//0). (D

The two distributions p(x|z, §) and p(z, 8]y, ), known as the likelihood and
prior distribution, respectively, describe our assumptions about the model.
The likelihood describes the measurement signal we expect to see given
the state trajectory, z;, of the molecule and a set of emission model
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parameters that describe the distribution of measurement values associated
with each state. The prior distribution encodes our expectations about the
transition probabilities and emission model parameters. Based on these as-
sumptions, the goal of Bayesian inference is now to reason about the so-
called posterior probability of the state trajectory (z,) and model parameters
(6) in light of a set of measurements (x;). Bayes’ rule states that this poste-
rior probability p(z, f|x, ) can be expressed as

gy — PO P 0)
PEI ) =T )

The prior distribution for an HMM can be written as p(z,6)y,) =
p(z|0) p(6]y,), where the probability p(z|#) depends on two model parame-
ters. The first is a transition matrix, Ay, that specifies the probability of
entering state / from state k at any given time. The second is a set of proba-
bilities m; that specify the likelihood of starting in state k. The form of the
likelihood p(x|z, #) depends on the type of experimental technique consid-
ered. In the case of smFRET experiments, a common approach (14—
16,18,25) is to model the signal for each state k as a Gaussian peak with
center y; and width oy, or precision Ax = 1/¢?%. The parameters that describe
any given trajectory are therefore § = {u, A, A, 7}. The prior distribution
p(0]y,) on the parameters can itself be defined in terms of a set of hyperpara-
meters Y, = {mo, By, o, bo, &0, py} (see the Supporting Material).

The structure of the probabilistic relationships that define an HMM can
be represented as a network, or more precisely as a directed acyclic graph
(22,27). In this network, the nodes are individual variables and edges
signify dependencies. Such a graphical model for a coupled HMM on N tra-
jectories with K states is shown in Fig. 1. The dependency structure between
variables in this model reflects three fundamental assumptions about the
data: 1), at each time, there is a fixed probability of entering into a given
state, which depends only on the current state, and has no memory of earlier
parts of the state trajectory; 2), observations associated with a given state
are independent and identically distributed; and 3), the parameters 6, of
each trajectory are coupled through a shared prior, p(6,|y,), whose distri-
bution reflects the variability of parameter values in an experiment.

The main difficulty in Bayesian inference is that the posterior
p(z,0|x,4,) can typically not be calculated directly. This is because the
normalizing term p(x|y,) in Eq. 2, known as the evidence, involves an
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intractable integral. In the EB approach used here, we approximate the
evidence p(x|y) with the same techniques as those employed in VB estima-
tion: we use a pair of distributions ¢(z) and ¢(f|y) to approximate the
posterior with a factorized form:

p(z,0lx, ) =q(z) q(0]y). ®)
Whereas ML methods obtain a point estimate for the optimal parameters 6,
this approach yields a distribution ¢(6|y) defined in terms of a set of pos-
terior parameters . The relationship between ¥ and ¥, reflects an impor-
tant principle of Bayesian statistics. The posterior parameters have the same
form as the prior parameters, but define a more tightly peaked distribution
that reflects our increased knowledge in light of the measurements. More
precisely put, ¥ can be calculated from a set of sufficient statistics, 7~
(see section S2 in the Supporting Material). For an HMM, these statistics
are given by

Yoo = Eqolzals v = ZEq(z) [+ 1y2a ) 5 “4)
t

Iy = Z'Ytka X, = Z'szxm Uy = Z'Yrkxtz' )
i ‘ f

The statistics 7 = {v,&,T", X, U} summarize the information contained in
each trajectory in terms of the amount of time spent in each state, I'y, the
number of transitions between states, &, the mean X, /I"; measurement
value for each state, and its variance, Uy /Ty — (Xk/l"k)z.

The posterior parameters can be calculated directly from the sufficient
statistics and the prior parameters (for details, see section S3.3 of the
Supporting Material). For example, the posterior for the transition probabil-
ities g(A]a),

ay = &y + o, (6)
is simply the sum of the number of transitions ¢ that we believe we have
seen in the trajectory, and the equivalent number of transitions of the
prior «p.

7
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FIGURE 1 Graphical model for the coupled
Bayesian HMM used in EB and VB methods.
(A) smFRET signals and sequence of latent
states for two trajectories in an experiment.
(B) Graphical model showing an HMM for N
trajectories with K states. The parameters

(0 | G
00 = {t k> A, Anpt, Tai} of each trajectory are
distributed according to p(f|y) with hyperpara-

;_T/ meters ¥ = {my, By, ar, b, e, pi }. ML methods
use a non-Bayesian variant of this HMM, which
omits the hyperparameters, y. To see this figure
in color, go online.
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In general, placing a prior on the parameters is equivalent to assuming
that one has already seen a number of data points with statistics 7 before
seeing the measurements, x,. The number of equivalent observations asso-
ciated with 7 determine how quickly the posterior will change in light of
new observations.

EB estimation (23-25) extends VB estimation to perform simultaneous
inference on populations of trajectories. To do so, we learn N approximate
posterior distributions ¢(6,|y,) for each trajectory x,. The prior, p(6|yy), is
subsequently chosen by way of a self-consistency requirement; the range of
0, values predicted by the posterior distributions should match that of the
prior. This is equivalent to choosing a set of prior parameters whose distri-
bution is as close as possible to the average posterior (see section S4 of the
Supporting Material).

In a mathematical sense, this estimation procedure approximates the log
evidence log p(x|y,) with a lower bound L,

p(x,,,Zn, 0n|‘//o)
L= E, 8 gl
Z 0/1|‘pn |:0 q(Zn)q(en‘l//n)

by iteratively finding solutions to the equations

)

oL oL oL
_— 07 - = 0, — = O. 8
0q(zn) 0q(0,|¥,) Y, ®)

A full derivation of each of these update steps in this algorithm can be found
in sections S3 and S4 of the Supporting Material for this article.

In summary, the EB approach to kinetic analysis uses HMMs to calculate
two sets of quantities. For each trajectory, we obtain a set of trajectory
statistics, 7 ,, which report on the occupancy, transitions and measurement
values associated with each state. The second quantity is a set of prior
parameters, ¥, = ¥(7 ), which represent the characteristics that all signal
trajectories have in common. Finally, a set of posterior parameters,
¥, = W(T, + Ty), encodes what we know about the parameters of individ-
ual trajectories in light of the measured signal. Note that the prior parame-
ters 1/, can be equivalently defined in terms of a set of prior statistics, 7,
whereas the posterior statistics are simply the sum of the prior statistics and
the trajectory statistics.

We reiterate that EB estimation differs from VB estimation only in the
fact that the hyperparameters y,, are not chosen by the user and held
fixed, but are set to the values that maximize the evidence as part of
the inference procedure. This allows for more accurate inference, as
knowledge of typical parameter values results in better estimates of 7.
Moreover, since the learned EB prior is typically less broadly peaked
than the postulated prior in VB methods, the effective number of ob-
servations for each posterior is larger, resulting in tighter confidence
bounds on parameter estimates for individual trajectories (25). Indeed,
past analysis of simulated data, for which the true state sequence is known,
has shown that EB inference systematically outperforms VB and ML
methods, in terms of both parameter estimation and model-selection
tasks (25).

Analysis of labeled and unlabeled
subpopulations of signal trajectories

In this section, we extend the EB method to perform commonly occurring
advanced analysis tasks, which we illustrate in the next sections using two
experimental smFRET studies that each investigate aspects of translation,
the mechanism by which the bacterial ribosome synthesizes the protein
that is encoded by a messenger RNA (mRNA) template (see Tinoco and
Gonzalez (1) for a review). The goal of analysis in the first example is to
coherently detect the set of states that can be sampled across experiments
performed in the presence and absence of other biomolecular components,
and subsequently separately estimate the transition rates for each experi-
ment. In the second example, our goal is to extend the EB method to detect
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subpopulations of trajectories that sample the same two states, but to do so
using different transition rates.

The common denominator in both these analysis tasks is that we seek to
use measurements of large populations of trajectories to identify a common
set of states and determine how transition rates differ for subpopulations of
molecules within this aggregate data. In the case of the first set of experi-
ments, we have labeled subpopulations consisting of sets of signal trajec-
tories recorded under identical experimental conditions, and we simply
wish to obtain per-experiment estimates of the transition rates based on a
shared definition of states. In the case of the second study, each experiment
contains two unlabeled subpopulations and the set of signal trajectories
associated with each subpopulation must be inferred from the data.

To allow more straightforward analysis of labeled and unlabeled subpop-
ulations, we will extend the EB estimation procedure in the following
manner. Rather than estimate a single set of prior parameters, ¥, from
the trajectory statistics, 7 ,, we split our population in into M fractions
with prior parameters y,,. We introduce a new variable, y,,,, for the pop-
ulation membership of each signal trajectory. This variable is simply a
binary indicator that is 1 if trajectory » is part of population m. For labeled
populations, the values for y are known, and we can estimate distributions
for individual populations from the restricted set of posterior distributions

P(B1¥o,) = Zynmq (01v.,) /Zynm ©)

In the case of unlabeled subpopulations, y must be inferred from the data.
To do so, we generalize the EB approach to a mixture of distributions,

P (Xu|¥om), where we assume a discrete prior, p(y|¢), on the subpopulation

membership. The evidence can now be expressed as a marginal over all
possible y values,

pe) = > ply, ¥o)p(19), (10)

_ Z Z Hp xl"// }ﬂm¢)nm (1)

n Yn m

An expectation maximization algorithm over this mixture can be con-
structed by introducing a variational posterior ¢(y) and maximizing the
lower bound,

L = Eq¢y)q0p)q0) [log p(x,y,z,0[¥,)]. (12)

We can subsequently estimate the statistic w,, = E,(,) [Vum| from the lower
bounds, Ly, >10g p(x,:|¥om)

exp(Lum) P,
Zm/ eXp (an’ ) ¢;n

In the resulting EB procedure, the expectation values with respect to the
approximate posteriors are now weighted by the population weights (see
section S4.5 of the Supporting Material)

0|¢0m anmq 0|11/nm /Z Wy - (14)

13)

(’L)I’U'ﬂ =

Software implementation

All analysis algorithms are implemented in MATLAB, with essential inner
components (i.e., the forward-backward and viterbi algorithms) written in C
as MEX files. Our implementation uses multiple processors when available.
We performed a simple benchmark in Matlab 2013a on a Macbook equip-
ped with a four-core 2.3GHz Core i7 processor, using a computer-simulated
data set with N = 350 trajectories of average length T = 112. Analysis with
two to six states required 240 s using eight nodes and 600 s using a single
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node. In comparison, our previously released VbFRET software (15)
required 1500 s to analyze the same data set on the same machine.

A line-by-line derivation of the implemented EB estimation algorithm
and its extensions can be found in the Supporting Material. A command-
line version of the source code used in this publication, along with a
GUI frontend for basic EB estimation tasks, is available at http://ebfret.
github.io. This software supports a new single-molecule data format that
has been designed in collaboration with the Herschlag group at Stanford
to enable exchange of data and analysis results between research
groups (M. Greenfeld, J.-W. van de Meent, D. S. Pavlichin, H. Mabuchi,
C. H. Wiggins, R. L. Gonzalez Jr., and D. Herschlag, unpublished).

RESULTS

Labeled subpopulations: The role of IF3
conformational dynamics in regulating
translation initiation

We begin by showing how the extended EB estimation pro-
cedure described by Eq. 9 can be used to characterize the
dependence of conformational state occupancies, emission
model parameters, and transition probabilities on experi-
mental conditions. We do so by analyzing a set of previously
published smFRET (29) experiments that investigate the
role of initiation factor (IF) 3 in regulating the fidelity
with which the bacterial ribosome initiates translation at
the triplet-nucleotide start codon of the mRNA to be
translated.

During bacterial translation initiation, the small, or 30S,
ribosomal subunit, IF1, IF2, IF3, a specialized formylme-
thionyl initiator transfer RNA (fMet-tRNAtMet), and the
mRNA to be translated form a 30S initiation complex
(30S IC) in which the triplet-nucleotide anticodon of

B Signal Histogram Life Time
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fMet-tRNA™®! is basepaired to the mRNA start codon
within the peptdiyl-tRNA binding (P) site of the 30S subunit
(30). Subsequent joining of the large, or 50S, ribosomal sub-
unit to the 30S IC results in the formation of a translation-
elongation-competent 70S initiation complex (70S IC).
Because errors in fMet-tRNA™® or start-codon selection
can result in mistranslation of the mRNA sequence, regu-
lating the fidelity of initiation is crucial to protein synthesis
and cellular fitness. Thus, the major role of IF1, IF2, and IF3
during translation initiation is to control the fidelity of this
process by, among other mechanisms, coupling the 50S-
subunit-joining step of the initiation process to the correct
selection of fMet-tRNA™®! and the start codon; the role of
IF3 in this mechanism is to prevent 50S subunit joining until
fMet-tRNA™®! and the start codon have been correctly
selected into the P site.

Here, we present analysis of SmFRET experiments inves-
tigating the role that IF3 conformational dynamics plays in
coupling correct fMet-tRNA™®! and start codon selection to
50S subunit joining (29). IF3 is composed of two globular
domains connected by a flexible linker. When these domains
are labeled with FRET donor and acceptor fluorophores, the
value of Eprgr = Ia/(Ip 4+ 1a), where In and Ip are the
emission intensities of the acceptor and donor fluorophores,
respectively, provides a noisy measure of the intramolecular
distance between the two domains. Histograms of the
observed Epggr values (Fig. 2 A) show two dominant peaks,
corresponding to a low-FRET extended conformational
state, and a high-FRET compact conformational state of
30S IC-bound IF3, whose relative occupancies depend on
the presence of the other IFs and fMet-tRNA™ on the

Free Energy
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- FIGURE 2 smFRET study of IF3 conforma-

tional dynamics on the 30S initiation complex of

the bacterial ribosome. (A) Schematic illustrations
of experimental contsructs 30S IC:‘II‘{EI?, 308
ICTRNA, 308 ICTRNA, 308 IC™NA) and 30S
T IC™et (B Per-state observation histograms. (C)

Y
NUACH:

Lifetime distributions. (D) Free-energy distribu-

tions. States 1-3 are represented by blue, green,
and red lines, respectively. To see this figure in
color, go online.
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IC. In addition to these two states, there appear to be one or
more intermediate conformational states, which tend to be
shorter-lived and have Epggr values that are less well-
defined.

Previous analysis was performed with the vbFRET soft-
ware (15) that obtains VB estimates for each individual
Errer trajectory. In this particular set of experiments,
most trajectories are static (i.e., no conformational transi-
tions are observed before the fluorophores photobleach).
This makes it more difficult to distinguish between interme-
diate and extended or compact states, since within individ-
ual trajectories, there are few transitions that reveal the
location of a state relative to others. For this reason, the re-
sulting Epggr means of states in each trajectory were
assigned to three empirically chosen bins with intervals
(0,0.3), (0.3,0.7), and (0.7,1.0), where all potential interme-
diate states were grouped into the middle interval. The
compact state was found to be highly populated in a
correctly assembled 30S IC, whereas the extended state is
highly populated in incorrectly assembled or incomplete
30S ICs, which either lack IFs, lack fMet—tRNAth", contain
an incorrect elongator aminoacyl-tRNA, or contain an incor-
rect near-start codon (29).

In our analysis, we first performed EB inference on the
aggregate data from five experiments that were recorded
under different conditions: 30S IC:??E’? (lacking IF1, IF2,
and tRNA), 30S IC”RN (lacking IF2 and tRNA), 30S
ICT®NA (lacking IF1 and tRNA), 30S IC™RNA (lacking
tRNA), and 30S [CMet (a correctly assembled 30S IC).
This aggregate dataset contained 4233 trajectories with
4.0-10° total data points. Three states were used to facilitate
comparison with the previous results based on VB analysis.
After inference, separate parameter distributions were esti-
mated from the sufficient statistics of each individual exper-
iment, as described in Eq. 9. The results of this analysis,
which does not require that the user manually assign the
Errer means of states in each trajectory to empirically cho-
sen bins, are in excellent agreement with previous results
based on explicitly defined bin intervals. Fig. 2 shows obser-
vation histograms for each state, as well as distributions of
the lifetime and free energy of each state relative to the other
states (see section S5 of the Supporting Material for the def-
initions of these quantities). The width of each distribution
provides us with a confidence interval on each of the param-
eters. The fractional occupancies obtained for each experi-
ment (Table 1) similarly show a close correspondence to
the values obtained with the VB-based results.

Unlabeled subpopulations: the influence of EF-G
binding on the GS1-GS2 equilibrium

We now demonstrate that the extended EB estimation proce-
dure described by Eq. 14 can be used to identify kinetically
distinct subpopulations of states and estimate the transition
rates for each subpopulation of states. As an example of this
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TABLE 1 Relative occupancies of IF3 states obtained from VB
and EB- analysis of labeled subpopulations

VB + binning EB
Construct ext. int. cpt. ext. int. cpt.

308 IC~IRNA 0.54 0.40 0.06 0.63 0.30 0.07
308 IC_IRNA 0.52 0.45 0.03 0.47 0.43 0.10

308 ICZfNA 0.23 0.11 0.66 0.14 0.15 0.72
30S I[C—RNA 0.56 0.42 0.02 0.60 0.34 0.06
308 IC™Met 0.15 0.17 0.68 0.15 0.21 0.64

Relative occupancies of the extended (ext.), intermediate (int.), and
compact (cpt.) conformations of IF3, obtained from binned analysis with
vbFRET (29) and EB-based analysis of labeled subpopulations.

use case, we perform analysis of a set of sSmFRET experi-
ments investigating the role of elongation factor (EF) G, a
member of the GTPase family of translation factors, during
translation elongation.

After the addition of each amino acid to the nascent
polypeptide chain during translation elongation, EF-G
binds to the ribosomal pretranlsocaiton (PRE) complex
and hydrolyzes one molecule of GTP as it promotes the
movement of the ribosome along the mRNA by precisely
one triplet-nucleotide codon, a process termed translocation
(Fig. 3 A). The overall process of translocation can be

A GS1 GS2 POST
Subunit
Rotation
) %
dfe = Mgt
-
[cTFl L =53
m*k [ESi| b
EF-G EF-G EF-G
g %k}j‘ [CTP] [GTP] wfp &
O - 45 o
D) GTP —
Hydrolysis
B no EF-G 500 nM EF-G
m b‘
0 5 10 15 20 25 0 5 10 15 20 25
Time [s] Time [s]

FIGURE 3 smFRET experiments (31) measuring the influence of EF-G
on the GS1-GS2 equilibrium in the bacterial ribosome. (A) The kinetic
pathway for translocation is believed to have three steps: a reversible
rotation of the two subunits (purple and orange), followed by the binding
of EF-G (green), which stabilizes the rotated GS2 state long enough for a
GTP-driven transition to the posttranslocation (POST) complex, blocked
here by substitution of GTP by a nonhydrolyzable analog. (B) smFRET sig-
nals reporting on the GS1-GS2 transition show a shift of the equilibrium
from the GS1 state (magenta line) toward the GS2 state (cyan line) in the
presence of EF-G. To see this figure in color, go online.
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broken up into three smaller multistep processes. The first of
these is a thermally driven, reversible transition between
two global states (denoted as GS1 and GS2) of the PRE
complex. The overall process of translocation can be broken
up into three smaller multistep processes. This conforma-
tional transition is followed by binding of EF-G to the
PRE complex, resulting in a transient stabilization of the
GS2 state of the PRE complex that is long enough to enable
the third step, a GTP hydrolysis-driven movement of the
ribosome along the mRNA. The effect that binding of
EF-G has on the dynamic equilibrium between the GS1
and GS2 states of the PRE complex can be studied using
smFRET by labeling two ribosomal structural elements
with a FRET donor-acceptor pair and substituting GTP
with a nonhydrolyzable analog (GDPNP) that prevents
GTP hydrolysis and the associated movement of the ribo-
some along its mRNA template.

Fig. 3 B shows two Eprpr trajectories that exhibit ther-
mally driven, reversible transitions between GS1 and GS2.
The first trajectory is from an experiment that was recorded
in the absence of EF-G and shows a preference for the GS1
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state. The second trajectory, from an experiment that was re-
corded in the presence of 500 nM EF-G and 1 mM GDPNP,
shows a dramatic shift of the equilibrium toward the GS2
state. Qualitative comparison of these two trajectories sug-
gests that EF-G destabilizes the GS1 state and stabilizes
the GS2 state in the subpopulation of EF-G-bound PRE
complexes. To quantify this difference in transition rates
and characterize its dependence on EF-G concentration,
we must obtain separate estimates for the distribution on
transition rates for the EF-G-free and EF-G-bound subpop-
ulations of PRE complexes in an experiment.

EB analysis of a series of experiments performed at
increasing EF-G concentrations is shown in Fig. 4. As
with the previous experiment we first analyze the aggregate
data to identify two states. The aggregate data for seven
different EF-G concentrations contained 2472 trajectories
with 2.3 x 10° total data points. As can be seen in the obser-
vation histograms (Fig. 4 A), the occupancy of the GS2 state
(cyan line) increases with the EF-G concentration. Conven-
tional EB analysis with a single population (Fig. 4 B) natu-
rally reveals a bimodal signature in the posterior (solid lines)
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> L 1 L 1 L 4 L 4
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FIGURE 4 Analysis of GS1-GS2 equilibrium as a function of EF-G concentration. (A) Histogram of aggregate measurements, split by GS1 (magenta line)
and GS2 (cyan line) states. (B) EB prior (dashed line) and mean posterior (solid line) on the free-energy difference AG = Ggs; — Ggs2. A bimodal signature
in the posterior is visible in experiments where EF-G is present. (C) Prior and posterior after unlabeled subpopulation analysis, showing an increasing
occupancy of the bound fraction (orange line) relative to the nonbound fraction (green line) as a function of EF-G concentration. To see this figure in color,

go online.
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that hints at the existence of two (unlabeled) subpopula-
tions. This signature is absent from the prior (dashed lines),
since EB analysis assumes all transition probabilities are
governed by the same prior distribution. Because a very
limited number of transitions between GS1 and GS2 can
be observed in any one signal trajectory before one of the
fluorophores photobleaches, it is not possible to obtain a
precise estimate of the transition rates for each individual
PRE complex. As a result, the two peaks in Fig. 4 B have
a very high degree of overlap, showing that it would be diffi-
cult to determine the population membership for each signal
trajectory using any form of binning approach. This ambigu-
ity of subpopulation membership is greatly reduced when
using the subpopulation analysis technique described in
the previous section (see also Section S4.5 of the Supporting
Material), which produces two much-better-resolved peaks
(Fig. 4 C). Table 2 lists the population fraction and free
energy difference obtained from EB estimation with unla-
beled subpopulations. As should be expected, the relative
size of the EF-G-bound subpopulation increases as the con-
centration of EF-G increases.

Model selection

One of the stated advantages of the VB and EB methods is
that they optimize a lower bound for the log evidence, a
quantity that may be used to decide among analysis results
with different numbers of states. Previous benchmarks
using computer-simulated data have shown that EB estima-
tion systematically outperforms VB and ML methods in
model-selection tasks (25). Not only does EB estimation
more accurately determine the number of states in individ-
ual trajectories, preventing both under- and overfitting, but
the method can also determine the correct number of states
starting from a larger number of candidate states, leaving
superfluous states unpopulated.

In practice, experimental data differ from simulated data
in that they are never in precise agreement with a given sta-
tistical model. In smFRET experiments, for example, we
assume a Gaussian distribution of Erggr values for each
state. With one exception (17), all HMM approaches for
analysis of (time-binned) smFRET data make this same
assumption (14-16,18). In reality, however, the Erggr value
exhibits a sigmoidal dependence on the distance between
the fluorophores, resulting in a distribution of Erggr values

TABLE 2 EF-G concentration dependence in unlabeled
subpopulation analysis of GS1-GS2 equilibrium

EF-G OnM  5nM 50nM 500 nM 1000 nM
PrEF-G 0.13 0.30 0.56 0.65 0.67
AGirr—c 17 12 13 1.4 1.4
AG_pr_g —24 —1.7 —0.8 —04 —04

Fraction of EF-G bound complexes, p,gr_g, and the free energy difference
between the GS1 and GS2 state, AG, for the bound and unbound subpopu-
lation, as a function of EF-G concentration.
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that is skewed toward the middle of the spectrum and ex-
hibits a subtle, but systematic, deviation from the idealized
Gaussian shape assumed in the model. Distributions of
Errpr values further show heavy tails that likely arise
from artifacts such as intermittent photoblinking of fluoro-
phores (32), incorrect detection of the photobleaching
transition, and errors in determining the background fluores-
cence intensity of individual trajectories.

In general, systematic discrepancies and artifacts can
cause a statistical algorithm to correct for the fact that
observed measurement values are not precisely distributed
according to the assumed model by populating additional
states, as was found to be the case in our initial
analysis of experimental data (25). In Fig. 5, we revisit
this notion by examining results obtained by estimating
models with 2-10 states on the same two data sets that
were analyzed in the previous sections. As in previous
work (25), we calculate an effective number of states,
Keir = exp[— Y, {x log ¢, in terms of =3, T/
>k, the fraction of time points assigned to each state.
When performing analysis on simulated data, there is typi-
cally a range of solutions for different K that yield the
same (correct) K.¢ value and leave any additional states
empty (25). Consistent with our previous study (25), the re-
sults in Fig. 5 A show that K. steadily increases with the
number of candidate states, and it is not clear that there is
an optimum K. value beyond which the lower bound, L,
decreases. In other words, the fit of experimental data to
the model can be improved by adding incremental low-
occupancy states that capture outliers in the data, even
when using model-selection criteria. This is undesirable
behavior, as such outlier states are more likely to be indica-
tive of measurement artifacts than of actual conformational
states of interest. However, it is important to note that this
behavior is different from the typical overfitting that is asso-
ciated with ML estimation. ML methods obtain a better fit
by assigning natural statistical variations to separate states,
and will do so even for simulated data that is in perfect
agreement with the hypothesized model. EB analysis gener-
ally obtains the correct result on simulated data but uncovers
unnatural variations in experimental data that are real from a
statistical point of view but do not contain useful informa-
tion about actual conformational transitions.

Examples of these systematic discrepancies can be seen
in Fig. 5 B, which shows the averaged posterior distribution
on the state centers, u,;, and state dwell times, 7, obtained
by analyzing the aggregate data sets from the previous sec-
tions with increasing number of states. When plotted on a
logarithmic scale, a Gaussian distribution will have a para-
bolic shape. The curves for u,,; clearly show both asymme-
tries and aberrant tails that deviate from this idealized form.
As aresult, it is generally difficult to say whether too many
states are used, since the curves obtained at higher K do
show a closer agreement with the shape assumed in the
model.
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IF3 Aggregate Data
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GS1-GS2 Aggregate Data
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For this reason, we suggest that users do not indiscrimin-
ately rely on the lower bound for model selection; thus,
some prudent decision-making with regard to model selec-
tion may still be required on the part of the experimentalist.
One rule of thumb is to treat states observed in <5% of the
trajectories with some caution. Additional states may simply
1), capture artifacts, such as intermediate points between a
transition (15); 2), split a single state into a short-lived
and long-lived variant (which may mean that a subpopula-
tion as described in Methods is necessary); or 3), isolate
the non-Gaussian tails of actual states. Moreover, any de-
creases in the lower bound indicate that the method has
converged to a local maximum rather than the globally
optimal result, since adding an empty state to the previous
result should result in the same, larger L value. In this
case, the user may either opt to perform additional restarts
with random initializations of v, to make it more likely
that the global optimum is found for each number of candi-
date states, or accept the point where L begins to decrease as

a bound on the number of states that can be confidently in-
ferred, given computational limitations. As an example, the
GS1/GS2 experiment shows a decrease in L at K =6,
whereas the lifetime plot for the blue state falls off the scale
at K =5, suggesting that K = 4 is the largest number of
states that is credible. Also note that these four states form
two pairs with similar Erggr values but different lifetimes,
which is consistent with our knowledge that this experiment
in fact does contain kinetically distinct subpopulations.
Finally, we note that the conformational trajectory can be
inferred with more confidence when more transitions are
observed, as it allows the inference procedure to more confi-
dently situate one state relative to others. In cases such as the
IF3/30S IC experiment, where the majority of trajectories
do not exhibit transitions, analysis results could be improved
by shuttering the excitation source to, optimally, obtain a
state lifetime of the order of 10 time points.

In summary, although EB methods provide model-selec-
tion criteria that are superior to those employed in ML and

Biophysical Journal 106(6) 1327-1337
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VB estimation (when applied to computer-simulated data), a
methodological caveat in any statistical analysis is that
model-selection criteria are only as accurate as the represen-
tation of the measurement data in the model. We emphasize
that this limitation is by no means unique to EB analysis.
ML and VB approaches typically use precisely the same
Gaussian distribution of measurement values and suffer
from the same defects. It is merely the case that these issues
are obfuscated when signal trajectories are analyzed indi-
vidually, since an individual signal trajectory rarely contains
enough data points to make discrepancies between the data
and the model apparent, and the experimentalist makes a
judgment call as to how many conformational states they
think are required as part of the data inference postprocess-
ing. The advantage of the EB methodology is that analyzing
all trajectories at once allows us to identify systematic devi-
ations between data and model, allowing us to assess
whether there is sufficient agreement between the data and
the model for model-selection criteria to be effective.

DISCUSSION

Although HMMs have proven an immensely popular and
effective tool for inferring states and transition rates from
individual signal trajectories, combining results from the
analysis of multiple trajectories has remained a difficult
task. Typically, users manually specify a set of bin intervals,
as was done in our previous, VB-based analysis of the IF3
data (29), that allow states identified in individual signal tra-
jectories to be clustered according to their inferred param-
eter values. In contrast, the EB method uniquely enables
simultaneous inference on multiple signal trajectories in a
statistically robust manner that eliminates the need for
user-defined bin intervals and is consequently less prone
to user bias.

By exploiting the advantages of simultaneously analyzing
multiple Erggr trajectories using the EB method, we have
developed estimation procedures that uniquely enable us
to automate widely encountered tasks in the analysis of
smFRET experiments. The first of these tasks is exemplified
by our analysis of the IF3 experiments, which demonstrates
how Epgrgr trajectories from a large number of experiments
recorded under different experimental conditions can first be
simultaneously analyzed to identify a common set of states
and then be subsequently reanalyzed to calculate a separate
prior distribution for each experiment, allowing character-
ization of how the state occupancies and transition rates
vary between experiments. The second task is exemplified
by our analysis of the GS1/GS2 experiments, which demon-
strates how the simultaneous analysis of an entire popula-
tion of Epggr trajectories can be used to automatically
identify and characterize subpopulations of molecules occu-
pying functionally and/or conformationally distinct states
that exhibit similar Egggr values but differ in the rates of
transitions between states.
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For each set of experiments, the results of the EB-based
analysis are largely consistent with previous results based
on VB methods. However, although the previous VB-based
analysis required the use of experiment-specific postpro-
cessing procedures that are time-consuming to implement,
subject to user bias, and difficult to validate, our EB method
can be used to obtain results rapidly and with little to no
manual intervention by the user. Moreover, the EB approach
optimizes a well-defined, statistical, model-selection crite-
rion, the lower bound for the log evidence, which in princi-
ple can be used to compare and decide among different
analyses of the same data.

Our EB-based analysis of smFRET data also demon-
strates that comparing the prior and posterior distributions
can often provide useful qualitative diagnostics that indicate
whether a given model is appropriate for the data. In the case
of the GS1/GS2 experiments, for example, we are able to
calculate a posterior distribution on the free-energy differ-
ence between states that reveals a systematic mismatch
between the single population of PRE complexes that is
assumed in conventional EB analysis and the two subpopu-
lations of PRE complexes that are actually present in
the experiment (i.e., EF-G-free and EF-G-bound). This
mismatch is resolved when we extend our EB method to
identify the two subpopulations within the set of multiple
Errpr trajectories. In a similar way, combining results
from multiple trajectories using our EB method allows us
to see that the distribution of Egrgr values associated with
a given conformational state often exhibits heavy tails and
is skewed relative to the Gaussian distribution that is typi-
cally assumed in HMM analyses of smFRET data. Whereas
discrepancies between the data and the statistical model will
always exist, they are much more difficult to detect in indi-
vidual trajectories (e.g., in ML- and VB-based HMM
analyses of smFRET data). An important advantage of the
EB method, therefore, is that it can tease out such discrep-
ancies, which inform us as to how our assumptions about
the data need to be adjusted in the next iteration of statistical
model design.

We conclude by noting that the EB estimation framework
is applicable to a wide range of single-molecule techniques.
Although here we have analyzed smFRET experiments
exclusively, our approach is by no means restricted to this
platform. Adaptation of the EB algorithm presented here
to the analysis of optical trapping and magnetic tweezers
experimental data is possible with minimal modifications
and we have recently collaborated to adapt the EB algorithm
presented here to the analysis of tethered particle motion ex-
periments (33).

SUPPORTING MATERIAL

A detailed model specification and derivation of update equations is avail-
able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)
00143-X.
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