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In vitro and in vivo single-molec
ule fluorescence imaging of
ribosome-catalyzed protein synthesis
Corey E Perez and Ruben L Gonzalez Jr
Combined with the availability of highly purified, fluorescently

labeled in vitro translation systems, the advent of single-

molecule fluorescence imaging has ushered in a new era in

high-resolution mechanistic studies of ribosome-catalyzed

protein synthesis, or translation. Together with ensemble

biochemical investigations of translation and structural studies

of functional ribosomal complexes, in vitro single-molecule

fluorescence imaging of protein synthesis is providing unique

mechanistic insight into this fundamental biological process.

More recently, rapidly evolving breakthroughs in fluorescence-

based molecular imaging in live cells with sub-diffraction-limit

spatial resolution and ever-increasing temporal resolution

provide great promise for conducting mechanistic studies of

translation and its regulation in living cells. Here we review the

remarkable recent progress that has been made in these fields,

highlight important mechanistic insights that have been

gleaned from these studies thus far, and discuss what we

envision lies ahead as these approaches continue to evolve and

expand to address increasingly complex mechanistic and

regulatory aspects of translation.
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Introduction
The ribosome is the universally conserved, two-subunit

ribonucleoprotein ribozyme that synthesizes proteins by

sequentially incorporating aminoacyl-transfer RNA (aa-

tRNA) substrates in the order specified by the codon

sequence of a messenger RNA (mRNA) template, a process

termed translation (Figure 1) [1]. Over the past eight years,

single-molecule fluorescence imaging has significantly

expanded our mechanistic understanding of translation.

We begin this article by briefly reviewing the prolific body

of work that has emerged from single-molecule in vitro
www.sciencedirect.com
fluorescence studies of translation. Using a top-down

approach, we open with a discussion of studies in which

the overall rate of protein synthesis by single ribosomes has

been measured and conclude with a synopsis of the numer-

ous studies in which partial reactions within the translation

pathway have been kinetically dissected with single-mol-

ecule resolution. We follow this by highlighting a number of

exciting recent reports in which protein synthesis and

ribosomes have been imaged in living cells using cutting-

edge in vivo single-molecule fluorescence imaging

approaches. Collectively, these advances in fluorescence

imaging of translation are enabling researchers to address

mechanistic questions that have remained difficult or

impossible to address using ensemble biochemical

approaches.

In vitro imaging of ribosome-catalyzed protein
synthesis
One of the most important technologies enabling in vitro
fluorescence imaging of translation at the single-molecule

level is the ability to reconstitute the entire protein

synthesis reaction in a test tube using purified translation

components [2]. By replacing wild-type translation com-

ponents with recombinantly expressed and fluorescently

labeled variants that retain full biochemical activity [3],

several research groups have been able to use various

fluorescence imaging approaches to investigate the mol-

ecular mechanism of protein synthesis with single-mol-

ecule resolution (reviewed recently in [4,5]). These

studies have made use of epifluorescence [6,7], confocal

fluorescence [8], and total internal reflection fluorescence

(TIRF) [9,10] microscopy approaches, or slight variations

thereof, to image single ribosomes or ribosomal com-

plexes and address mechanistic questions ranging from

the rate at which single ribosomes translate single

mRNAs to the roles that ribosome, tRNA, and translation

factor conformational dynamics play in driving and reg-

ulating protein synthesis.

Measuring the rate of protein synthesis by single

ribosomes

The first demonstration that protein synthesis could

be observed with single-ribosome resolution came from

Cooperman, Goldman, and co-workers (Figure 2a and b)

[11�]. In this study, ribosomal elongation complexes carry-

ing a 30-biotinylated mRNA encoding a polyphenylalanine

polypeptide were immobilized via non-specific adsorption

to mica. The mRNA 30-end was subsequently labeled

using a 0.2 mm diameter, neutravidin-derivatized, and

fluorescently labeled polystyrene bead. Epifluorescence
Current Opinion in Chemical Biology 2011, 15:853–863
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Figure 1
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Ribosome structure and the translation process. (a) The X-ray crystallographic structure of a prokaryotic ribosomal elongation complex [12]. The large

ribosomal subunit is depicted in blue, the small subunit is shown in tan, and the mRNA is cartooned in gray. The ribosome contains binding sites for aa-

tRNA (purple), peptidyl-tRNA (red), and deacylated tRNA (orange) which span the two subunits and are designated as the A, P, and E sites,

respectively. (b-c) The prokaryotic translation process. During the initiation stage of protein synthesis, a ribosomal initiation complex is assembled in

which an initiator fMet-tRNAfMet and the start codon of the mRNA to be translated are positioned into the P site. Initiation complexes then proceed into

the elongation stage of protein synthesis, during which elongating ribosomes cycle through three major steps as each amino acid is added to the

nascent polypeptide chain: (i) aa-tRNA selection; (ii) peptide bond formation; and (iii) translocation. The elongation cycle is repeated at each codon until

a stop codon is translocated into the A site, an event that triggers the termination stage of protein synthesis and the release of the newly synthesized

protein from the ribosome. The resulting ribosomal post-termination complex then enters the ribosome recycling stage of protein synthesis during

which it is disassembled into its component small and large ribosomal subunits, deacylated tRNA, and mRNA, allowing these components to enter a

new round of translation. Figure adapted with permission from Elsevier, # 2010, from [3].
microscopy was then used to track the position of individ-

ual tethered beads as a function of time. From these data,

the authors characterized the restricted diffusion of each

tethered bead by calculating the root-mean-square hori-

zontal displacement from the average position of the bead

(Drms). Addition of phenylalanine-specific tRNA aminoa-

cylated with phenylalanine (Phe-tRNAPhe), the translation

elongation factors Tu (EF-Tu) and G (EF-G), and GTP to

the adsorbed elongation complexes triggered translation,

effectively shortening the length of the mRNA tether and

further restricting the diffusion of the beads. By measuring

the resulting decrease in Drms as a function of time and

modeling the number of translation elongation cycles

associated with a specified decrease in Drms, the authors

determined that single ribosomes in their experimental

system could undergo protein synthesis at a rate of 1–2

peptide bonds s�1, only an order of magnitude slower than
Current Opinion in Chemical Biology 2011, 15:853–863
the rate of protein synthesis observed in vivo [13,14]. The

publication of this landmark study marked the beginning

of a still-evolving period of rapid progress in single-mol-

ecule studies of protein synthesis.

Using a slightly different approach, Puglisi, Funatsu, and

co-workers were able to measure the aggregate rate of

transcription, translation, co-translational folding, and chro-

mophore maturation (kobs) of green fluorescent protein

(GFP) (Figure 2c and d) [15�,16]. To accomplish this,

the authors tethered genetically engineered and directly

biotinylated ribosomes onto the surface of a quartz micro-

fluidic flowcell. A DNA template encoding a fast-maturing

GFP variant followed by an amino acid spacer long enough

to extrude GFP through the ribosomal polypeptide exit

tunnel and the Secretion Monitor translational arrest

sequence was then added to the surface-tethered
www.sciencedirect.com
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Figure 2
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Measuring the rate of protein synthesis by single ribosomes. (a) The experimental system used by Cooperman, Goldman, and co-workers to measure

the rate of polyphenylalanine synthesis by single ribosomes is shown. The 30-end of the mRNA (black curvy line) from a mica microscope slide-

adsorbed ribosomal elongation complex (gray) is labeled with a fluorescently labeled microsphere (pink sphere). The polyphenylalanine peptide is

shown in orange. The black dotted line represents the average end-to-end distance of the mRNA tether. The diffusion of the microsphere is restricted

to the region bounded by the mica microscope slide and the average end-to-end distance of the mRNA tether, denoted by the green dashed arc and

the green shading. Adapted with permission from Cold Spring Harbor Laboratory Press, # 2003, from [11�]. (b) Centroid distributions of beads

undergoing restricted diffusion. Centroid distributions were measured at 17 min (pink squares), 54 min (orange triangles), and 95 min (black circles)

after addition of Phe-tRNAPhe, EF-Tu, EF-G and GTP to the mica-adsorbed ribosomal elongation complexes. Adapted with permission from Cold

Spring Harbor Laboratory Press, # 2003, from [11�]. (c) The experimental system used by Puglisi, Funatsu, and co-workers to measure the rate of GFP

synthesis by single ribosomes is shown. In this system, a ribosome tethered to the flowcell surface translates an mRNA encoding GFP fused to a

translational arrest sequence that interacts with the ribosomal exit tunnel, stalls the elongation cycle, and prevents dissociation of the newly

synthesized GFP from the ribosome, effectively localizing the GFP to the flowcell surface so that it can be visualized using TIRF microscopy (left panel).

A control sample lacking the arrest signal fails to localize the synthesized GFP to the flowcell surface and thus should not yield a detectable signal (right

panel). Adapted with permission from Oxford University Press, # 2008, from [15�]. (d) TIRF images of surface-localized GFP molecules taken at 5 min

(top panels) and 20 min (bottom panels) after delivery of purified translation components to surface-tethered ribosomes programmed with an mRNA

encoding GFP fused to the translational arrest sequence (left panels) or encoding GFP lacking the translational arrest sequence (right panels). Adapted

with permission from Oxford University Press, # 2008, from [15�].
ribosomes along with a reaction mixture containing the full

complement of purified transcription and translation com-

ponents with the exception of ribosomes. After incubating

the reaction for a defined period of time, the flowcell was

washed to quench the reaction, and TIRF microscopy was

used to image and quantify the number of individual, fully

matured GFPs that were anchored to the surface of the

flowcell via a translationally stalled ribosome. By varying
www.sciencedirect.com
the incubation time, the authors were able to measure kobs.

An analogous solution-based, ensemble reaction using

wild-type ribosomes exhibited a similar kobs, suggesting

that the genetic engineering and surface tethering of the

ribosomes did not significantly alter their biochemical

activity. It is important to note, however, that the single-

molecule and ensemble reactions were both rate limited by

chromophore maturation (�0.07 min�1), such that small
Current Opinion in Chemical Biology 2011, 15:853–863
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perturbations to the translational activity of the genetically

engineered, surface-tethered ribosomes might not have

been detected. Nevertheless, together with a very similar

subsequent investigation [17], this study demonstrates the

feasibility of using genetically engineered and surface-

tethered ribosomes to study translation and co-translational

protein folding.

Monitoring multiple rounds of the elongation cycle with

single-codon resolution

During the synthesis of a single protein, the ribosome

spends the majority of its time and energy on translation

elongation, a process that can be divided into three

fundamental substeps: aa-tRNA selection [18,19], pep-

tide bond formation [20,21], and translocation [19,22]

(Figure 1c). A higher resolution mechanistic understand-

ing of translation elongation than that provided by the

experiments described in the previous section can be

obtained by observing translation with single-codon resol-

ution and in real time. A major challenge to achieving this

using typical TIRF microscopy-based experimental set-

ups (Figure 3a) is the high background fluorescence that

arises when fluorescently labeled translation components

are delivered into a flowcell containing surface-tethered

ribosomes. To maintain acceptably low background fluor-

escence levels, the concentration of such components is

typically limited to<50 nM, concentrations that are two to

three orders of magnitude lower than those typically used

in in vitro ensemble biochemical experiments or found in
vivo. At such low concentrations, translation becomes rate

limited by the low probability of binding of translation

components to ribosomes, significantly limiting the

mechanistic information that can be accessed by the

experiment.

Recently, this challenge has been overcome using two

different approaches. The first approach confines the

fluorescent labels to the surface-tethered ribosomes

and uses a change in a ribosome-based fluorescence signal

as a reporter for the transit of the ribosome through

individual rounds of the elongation cycle, thus obviating

the need to introduce fluorescently labeled translation

components into the flowcell [23,24,25��]. To achieve

this, a single-molecule fluorescence resonance energy

transfer (smFRET) [26,27] signal was developed using

ribosomes labeled with a FRET donor fluorophore on the

small ribosomal subunit [23] and a FRET acceptor fluor-

ophore on the large ribosomal subunit [24]. At each

codon, this smFRET signal cycles between two distinct

FRET efficiencies (EFRET); upon peptide bond for-

mation, the smFRET signal transitions from an initial

high EFRET to a low EFRET, ultimately reverting to the

original high EFRET upon translocation [24]. By monitor-

ing this sequence of high-low-high transitions in EFRET at

each codon, Aitken and Puglisi characterized multiple

rounds of the elongation cycle with single-codon resol-

ution and in real time [25��].
Current Opinion in Chemical Biology 2011, 15:853–863
The second approach involves tethering single ribosomes

to the bottom of 50–200 nm diameter nanowells, known

as zero-mode waveguides (ZMWs) that are nanofabri-

cated into a thin metal film deposited onto the surface

of a microfluidic flowcell (Figure 3b–d) [28,29,30��].
Because the diameter of a ZMW is much smaller than

the wavelength of light that is used to excite the fluor-

ophores (typically >450 nm), propagation of the exci-

tation light is inhibited, significantly limiting the

excitation volume to a few zeptoliters (10�21 L) at the

bottom of the ZMW, enabling experiments in which

fluorescently labeled components can be introduced into

the flowcell at physiological or near-physiological con-

centrations [28,29]. Using this approach, Puglisi and co-

workers were able to work with fluorescently labeled

fMet-tRNAfMet, Phe-tRNAPhe, and Lys-tRNALys at con-

centrations of up to 500 nM each, allowing them to

observe the real-time transit of multiple tRNAs through

single, actively translating ribosomes with single-codon

resolution [30��].

Collectively, the two experimental approaches described

above have provided mechanistic details into the mol-

ecular basis for the processivity of the ribosome [25��], the

origins of global translational effects induced by ribo-

some-targeting antibiotics [25��], and the coupling be-

tween tRNA binding and dissociation events on single,

actively translating ribosomes [30��]. Looking forward,

these experimental approaches hold particular promise

for investigations of recoding, a set of critical, but

mechanistically poorly defined, regulatory events in

which ribosomes undergo a +1 or �1 frameshift, miscode

a sense codon, or read through a stop codon at a precise

location within an mRNA [31].

Kinetic dissection of partial reactions within the

translation process

Even higher resolution mechanistic information can be

accessed by observing individual ribosomes as they

undergo partial reactions, such as aa-tRNA selection and

translocation, within a single elongation cycle (Figure 1c).

Using ribosomal elongation complexes carrying either a

donor-labeled peptidyl-tRNA [32��,33–38] or a donor-

labeled ribosome [37], several groups have directly

observed acceptor-labeled aa-tRNA selection in real time

and have probed the response of individual ribosomes to

the delivery of aa-tRNAs: firstly, to mRNA codons contain-

ing one or more base pair mismatches relative to the aa-

tRNA anticodon (known as near-cognate and non-cognate

codons, respectively) [32��,33,37,38]; secondly, in the pre-

sence of ribosome-targeting antibiotics that perturb aa-

tRNA selection [32��,33,34,37]; and/or thirdly, that are

misacylated with incorrect amino acids [35]. Collectively,

these smFRET experiments have revealed new reaction

intermediates, transiently sampled conformational states,

and thermally activated structural fluctuations that are

important aspects of the mechanism of aa-tRNA selection,
www.sciencedirect.com
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Figure 3
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Total internal reflection fluorescence (TIRF) microscopy and zero-mode waveguides (ZMWs). (a) A typical TIRF system for smFRET studies of

translation is shown. A laser excitation source is totally internally reflected at the interface formed between the quartz microfluidic flowcell and the

aqueous buffer in which ribosomal complexes are tethered. This results in the generation of an evanescent field that propagates into the buffer and

decays exponentially as a function of increasing distance from the quartz–buffer interface, thereby selectively exciting FRET donor fluorophores on

ribosomal complexes that are localized within �300 nm of the quartz–buffer interface (top inset). Fluorescence emission from the FRET donor and

acceptor fluorophores is collected by an objective, wavelength-separated using dichroic beamsplitters, and directed at an electron-multiplying

charge-coupled device (EMCCD) camera for detection (middle inset). The separated donor and acceptor fluorescence intensities emerging from

single, optically resolved ribosomal complexes can then be quantified and plotted as a function of time (bottom inset). (b) The experimental system

used by Puglisi and co-workers to monitor multiple rounds of the elongation cycle with single-codon resolution using ZMWs is shown. A ribosomal

initiation complex carrying a P site-bound, Cy2-labeled fMet-tRNAfMet and programmed with an mRNA encoding fMet (M) followed by a series of Phe

(F)-Lys (K) repeats is tethered to the bottom of the ZMW, and translation is triggered by the delivery of Cy5-labeled Phe-tRNAPhe, Cy2-labeled Lys-

tRNALys, EF-Tu, EF-G, and GTP. Three laser lines with wavelengths of 488 nm, 532 nm, and 642 nm were simultaneously used to directly excite the

Cy3, Cy5, and Cy2 fluorophores, respectively, and the fluorescence emission from all three fluorophores was simultaneously detected. Adapted with

permission from Nature Publishing Group, # 2010, from [30��]. (c) Schematic of the results expected from the experiment described in (b). The top

panel depicts a plot of the expected Cy3 (green), Cy5 (red), and Cy2 (blue) fluorescence emission pulses versus time trajectory that is generated as

Cy5-labeled Phe-tRNAPhe and Cy2-labeled Lys-tRNALys are alternately delivered and transit through a ribosomal complex initially carrying a P site-

bound, Cy3-labeled fMet-tRNAfMet. The first few tRNA arrival and dissociation events as well as the first round of the elongation cycle are denoted by

arrows. The bottom panel plots the transit of tRNAs through the ribosomal complex as a function of time as determined by an analysis of the plot of the

expected Cy3, Cy5, and Cy2 fluorescence emissions versus time shown in the top panel. Adapted with permission from Nature Publishing Group, #

2010, from [30��]. (d) A representative, experimentally observed Cy3, Cy5, and Cy2 fluorescence emission pulses versus time trajectory obtained from

performing the experiment was described in (b) and schematized in (c). This particular trajectory was recorded using 200 nM concentrations of both

Cy5-labeled Phe-tRNAPhe and Cy2-labeled Lys-tRNALys. Adapted with permission from Nature Publishing Group, # 2010, from [30��].

www.sciencedirect.com Current Opinion in Chemical Biology 2011, 15:853–863
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but that have been difficult or impossible to characterize

using ensemble biochemical approaches or structural

studies.

Similarly, the mechanism of translocation has been inves-

tigated by several groups employing smFRET signals

developed using fluorescently labeled ribosomes, tRNAs,

and/or EF-G [24,39��,40–42,43��,44��,45�,46�,47–55].

The majority of these studies have revealed that follow-

ing peptide bond formation, the ribosome and ribosome-

bound tRNAs undergo large-scale, thermally activated

structural fluctuations that allow the entire ribosomal pre-

translocation complex to transiently sample a critical

structural intermediate on the translocation pathway

[39��,40–42,43��,44��,45�,46�,47–55]. Detailed studies

of the effect that Mg2+ concentration [42], temperature

[53], ribosome–tRNA interactions [43��,44��,45�,46�,55],

tRNA structure and stability [55], small-molecule trans-

location inhibitors [24,41,42,44��,48–52], and EF-G bind-

ing [41,43��,44��,45�,46�,49,50,52,54,55] have on these

dynamics strongly suggest that translocation is at least

partially driven by a Brownian motor mechanism. In this

view, the architecture of the ribosome, the structure and

stability of the ribosome-bound tRNAs, and the nature of

ribosome–tRNA interactions collaborate so as to bias the

thermally activated fluctuations of the pre-translocation

complex towards formation of the relevant translocation

intermediate. Binding of EF-G to the pre-translocation

complex then transiently stabilizes this intermediate as

part of the mechanism through which EF-G promotes the

translocation reaction.

Expanding beyond the elongation cycle, smFRET stu-

dies are also providing significant insight into the mech-

anisms of partial reactions within the initiation [56],

termination [57], and ribosome recycling [57] stages of

protein synthesis (Figure 1b). Taken together with the

growing body of ensemble biochemical studies of these

partial reactions and structural investigations of functional

ribosomal complexes involved in these stages of protein

synthesis (reviewed recently in [18,58–65]), we expect

that ongoing and future smFRET investigations will help

better define the mechanisms that govern each of the

stages of protein synthesis.

In vivo imaging of ribosome-catalyzed protein
synthesis
Despite the enormous potential that fluorescence ima-

ging holds for enabling mechanistic studies of complex

biochemical reactions in their native environments within

living cells, the application of in vivo fluorescence ima-

ging techniques to single-molecule studies of protein

synthesis has progressed at a much slower rate than their

in vitro counterparts described above. This is primarily

because of technical challenges, including cellular auto-

fluorescence [66], the limited brightness of genetically

encodable fluorescent proteins [66], the relatively small
Current Opinion in Chemical Biology 2011, 15:853–863
number of methods that allow more photophysically

robust organic fluorophores to be genetically encoded

[67], and the dearth of cell membrane-permeable organic

fluorophores suitable for single-molecule imaging [66],

among others that must be overcome in order to localize

single fluorophores with high spatial and temporal resol-

ution in living cells. Nevertheless, a handful of studies

over the past several years have successfully overcome

these challenges, introducing methods for in vivo single-

molecule fluorescence imaging of ribosomes and protein

synthesis.

Quantifying gene expression in living cells

In a series of groundbreaking articles over the past five

years, Xie and co-workers have successfully imaged the

synthesis of single protein molecules in vivo [68,69�,70]. In

the first of these articles, the authors quantified the number

and timing of single protein synthesis events in live Escher-
ichia coli cells (Figure 4a and b) [69�]. This was accom-

plished using a cell line in which the native lacZ gene that is

naturally under the control of a repressed lac promoter was

replaced with a single copy of a gene encoding the mem-

brane-targeting protein Tsr fused to a fast-maturing variant

of yellow fluorescent protein (YFP). By monitoring the

appearance of fluorescence from individual, membrane-

bound Tsr-YFP proteins arising from the translation of

single mRNA molecules that were themselves produced

by the rare and spontaneous dissociation of lac repressor

from the operator region of the tsr-yfp gene, the authors

demonstrated that protein synthesis under these con-

ditions proceeds through randomly occurring and

temporally uncorrelated bursts of protein production.

For this particular genetic construct, individual cells exhib-

ited an average of 1.2 bursts per cell cycle with an average of

4.2 Tsr-YFP molecules produced per burst. The relatively

long waiting times between the observation of single Tsr-

YFP proteins within a burst (originating from the charac-

teristically slow chromophore maturation time of YFP) and

the considerably slow diffusion of individual, membrane-

bound Tsr-YFP proteins allowed this study to be per-

formed using relatively conventional epifluorescence

microscopy with diffraction limited spatial resolution

and long image acquisition times. Together with a number

of follow up studies [68,70], Xie and co-workers have

demonstrated that random events, which can only be

characterized using single-molecule approaches, play deci-

sive roles in driving gene expression, regulating the com-

position of the proteome, and controlling the observed

phenotype of living cells.

High-resolution tracking of ribosomes and ribosome-

associated factors in living cells

Expanding upon the groundwork laid by Xie and co-

workers, Dekker, Elf, and co-workers have used photo-

convertible GFPs (pcGFPs) and a stroboscopic time lapse

imaging approach to track ribosomes and a ribosome-

associated factor known as RelA with a sub-diffraction
www.sciencedirect.com
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Figure 4
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In vivo imaging of ribosomes and protein synthesis. (a) The experimental system used by Xie and co-workers to quantify gene expression in living cells is

shown. Rare and spontaneous dissociation of lac repressor from the operator region of the tsr-yfp gene allows for RNA polymerase binding and

transcription, yielding a single mRNA transcript. Translation of the mRNA transcript, folding and membrane insertion of the resulting Tsr-YFP protein, and

maturation of the YFP chromophore allows single, membrane bound Tsr-YFP proteins to be detected by fluorescence microscopy. Adapted with

permission from The American Association for the Advancement of Science,# 2006, from [69�]. (b) A sequence of images obtained using epifluorescence

microscopy (yellow) overlaid with images obtained from differential interference contrast (DIC) optical microscopy (grayscale) of E. coli cells expressing

Tsr-YFP as described in (a). The eight images shown here were obtained from a single field-of-view and were taken over 168 min using a 100 ms exposure

time for each image. After each image was recorded, an 1100 ms laser pulse was applied to photobleach the fluorophores in preparation for the next round

of imaging. Adapted with permission from The American Association for the Advancement of Science, # 2006, from [69�]. (c) The experimental system

used by Dekker, Elf, and co-workers to track ribosomes and ribosome-associated protein factors in living cells is shown. A short pulse from a violet

photoconversion laser is periodically used to stochastically photoconvert one or a few photoconvertible GFPs (pcGFPs). Photoconverted pcGFPs are

imaged using an acousto-optical modulator (AOM) to generate short pulses of a yellow excitation laser that are synchronized with an EMCCD camera such

that the laser pulses occur in the middle of each imaging frame. Adapted with permission from The National Academy of Sciences, # 2011, from [71��]. (d)

A representative path obtained by tracking a freely diffusing cytosolic pcGFP. The analysis of such paths allows the mean square displacement (MSD) to

be calculated and, ultimately, a diffusion coefficient to be determined. Adapted with permission from The National Academy of Sciences, (c) 2011, from

[71��]. (e) A plot of the MSDs as a function of the time interval between images is shown. Of the four data sets, two, pcGFP (mEos2) and pcGFP-labeled

ribosomes (L25), provide controls representing a freely diffusing cytosolic protein and a subdiffusing ribosome, respectively. Under amino acid-rich growth

conditions, the MSD as a function of the time interval obtained for RelA-pcGFP corresponds well with that observed for pcGFP-labeled ribosomes,

demonstrating that under amino acid-rich conditions, RelA remains bound to ribosomes. However, under L-serine hydroxamate (SHX)-induced starvation

conditions, the MSD as a function of the time interval obtained for RelA–pcGFP correlates more closely with that observed for cytosolic pcGFP. This latter

result suggests that, under the stress induced by amino acid starvation, RelA dissociates from the ribosome and, while free in the cytosol, synthesizes the

ppGpp alarmone associated with the stringent response. Adapted with permission from The National Academy of Sciences, # 2011, from [71��].

www.sciencedirect.com Current Opinion in Chemical Biology 2011, 15:853–863



860 Molecular Imaging
spatial resolution of �44 nm and a time resolution of

4–50 ms (Figure 4c–e) [71��]. To accomplish this, the

authors generated three E. coli cell strains expressing free

pcGFP, ribosomes carrying a ribosomal protein L25–
pcGFP fusion protein, or a RelA–pcGFP fusion protein,

respectively. By stochastically photoconverting only one

or a few pcGFPs at a time and synchronizing short laser

excitation pulses with the frame time of their camera,

individual photoconverted pcGFPs are rendered optically

immobile within each imaging frame and can be localized

with subdiffraction-limit resolution. Using this approach,

the authors demonstrated that free pcGFPs exhibit free

diffusion characterized by a microscopic diffusion coeffi-

cient of �13 mm2 s�1 whereas pcGFP-labeled ribosomes

exhibit subdiffusive behavior characterized by a micro-

scopic diffusion coefficient of �0.5 mm2 s�1. In addition,

the data suggest that the observed subdiffusive behavior

of the ribosomes results from tethering to mRNAs that are

in turn tethered to DNA during coupled transcription–
translation in E. coli.

Using the RelA–pcGFP protein construct, the authors

were able to demonstrate that RelA, a factor involved in

the synthesis of the ppGpp alarmone during the

starvation-induced stringent response in E. coli, is tightly

bound to ribosomes during amino acid rich conditions and

dissociates from ribosomes for prolonged periods of time

(i.e. hundreds of ms) under conditions of amino acid

starvation. These observations led the authors to con-

clude that synthesis of ppGpp by RelA occurs off, rather

than on, the ribosome and does not require repetitive

binding and dissociation of RelA from ribosomes, thereby

resolving long-standing questions regarding the mechan-

ism of RelA function during the stringent response [72].

Given the abundance of aa-tRNAs, translation factors,

and regulatory factors that interact with the ribosome

during protein synthesis, it is quite easy to envision

how stroboscopic single-molecule tracking of ribosome-

associated factors beyond RelA would provide a greater

mechanistic understanding of translation in vivo. For

example, applications of this approach should make it

possible to characterize the mechanism and regulation of

translation initiation (Figure 1b), the organization and

timing of aa-tRNA binding and dissociation from elongat-

ing ribosomes, and the mechanism of coupled transcrip-

tion–translation, among others.

Conclusions
While current in vitro and in vivo single-molecule fluor-

escence imaging studies have greatly contributed to our

mechanistic understanding of ribosome-catalyzed protein

synthesis, much remains to be learned about the mechan-

ism and regulation of translation. As briefly mentioned in

the preceding sections, we expect that these techniques

will continue to expand into studies of co-translational

protein folding; regulatory events such as recoding; and

the initiation, termination, and ribosome recycling stages
Current Opinion in Chemical Biology 2011, 15:853–863
of protein synthesis. While, the single-molecule fluor-

escence imaging approaches described in this article have

thus far remained confined to E. coli-based translation

systems and E. coli cells, recent reports describing an in
vitro reconstituted yeast translation system [73], an X-ray

crystal structure of the yeast ribosome [74], and a strategy

for fluorescently labeling yeast ribosomes [75] should

facilitate single-molecule fluorescence imaging of eukar-

yotic ribosomes and protein synthesis. These approaches

will be especially valuable for elucidating the timing and

organization of molecular events during eukaryotic trans-

lation initiation, a highly dynamic process in which

approximately thirteen eukaryotic initiation factors direct

the assembly of a ribosomal initiation complex that is

primed to enter the elongation cycle [76].
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