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Abstract

The kinetics of biomolecular systems can be quantified by calculating the stochastic rate
constants that govern the biomolecular state vs time trajectories (i.e., state trajectories)
of individual biomolecules. To do so, the experimental signal vs time trajectories (i.e.,
signal trajectories) obtained from observing individual biomolecules are often idealized
to generate state trajectories by methods such as thresholding or hidden Markov
modeling. Here, we discuss approaches for idealizing signal trajectories and calculating
stochastic rate constants from the resulting state trajectories. Importantly, we provide an
analysis of how the finite length of signal trajectories restricts the precision of these
approaches and demonstrate how Bayesian inference-based versions of these
approaches allow rigorous determination of this precision. Similarly, we provide an anal-
ysis of how the finite lengths and limited time resolutions of signal trajectories restrict
the accuracy of these approaches, and describe methods that, by accounting for the
effects of the finite length and limited time resolution of signal trajectories, substantially
improve this accuracy. Collectively, therefore, the methods we consider here enable a
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rigorous assessment of the precision, and a significant enhancement of the accuracy,
with which stochastic rate constants can be calculated from single-molecule signal
trajectories.

1. INTRODUCTION

In single-molecule, kinetic studies of biomolecular systems, experi-

mental data consisting of a signal originating from an individual biomolecule

are collected as a function of time (Tinoco &Gonzalez, 2011). This signal is,

or can be converted into, a proxy for the underlying biomolecular state of

the system. For instance, the intramolecular fluorescence resonance energy

transfer (FRET) efficiency (EFRET) that is measured between two

fluorophore-labeled structural elements of an individual biomolecule in a

single-molecule FRET (smFRET) experiment depends on the distance

between the two structural elements and can therefore be converted into

a proxy for the conformational state of the biomolecule (Roy, Hohng, &

Ha, 2008). Similarly, the distance that is measured between two optically

trapped microbeads that are tethered to each other by an individual biomol-

ecule in a single-molecule force spectroscopy experiment is a proxy for the

conformational state of the biomolecule (Greenleaf, Woodside, & Block,

2007; Moffitt, Chemla, Smith, & Bustamante, 2008). Investigating the

kinetics of biomolecular systems using such single-molecule approaches

eliminates the ensemble averaging that is inherent to bulk approaches. Thus,

these approaches can reveal transient and/or rare kinetic events that are typ-

ically obscured by ensemble averaging, but that can often be critically

important for elucidating biological mechanisms. In order to take full advan-

tage of the unique and powerful mechanistic information provided by

single-molecule experiments, however, the observed signals must be sensi-

tive enough to unambiguously resolve the biomolecular states that are sam-

pled during the experiment.

To obtain relevant kinetic information about a biomolecular system

from such single-molecule experiments, the inherently noisy, experimental

signal vs time trajectories (i.e., signal trajectories) obtained from observing

individual biomolecules are typically transformed, or idealized, into biomo-

lecular state vs time trajectories (i.e., state trajectories). This idealization pro-

cess is not trivial, as limitations in signal and temporal resolution can easily

obscure the relevant biomolecular states. Under the most favorable
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conditions, a researcher can sometimes manually select the signal data point

where the biomolecule transitions to a new state. Unfortunately, this process

is subjective and time consuming, and often the data are not sufficiently

resolved to use this approach. A second method involves manually setting

a signal threshold that, once crossed by the experimental signal, indicates

a transition to a new state but this approach is still subjective and difficult

to implement when more than two biomolecular states are present.

A third, more rigorous and widely adopted method uses hidden Markov

models (HMMs) to transform the inherently noisy signal trajectories into

state trajectories by estimating the underlying, “hidden” state responsible

for producing the signal during each measurement period in a signal trajec-

tory (Colquhoun&Hawkes, 1977, 1981). An advantage of using HMMs for

this transformation is that they can manage many states simultaneously and

that methods have been developed to select the correct number of states pre-

sent in the trajectory (Bronson, Fei, Hofman, Gonzalez, & Wiggins, 2009;

Bronson, Hofman, Fei, Gonzalez, & Wiggins, 2010; van de Meent,

Bronson, Wiggins, & Gonzalez, 2014; van de Meent, Bronson, Wood,

Gonzalez, & Wiggins, 2013). Regardless of the method that is used to ide-

alize a signal trajectory into the corresponding state trajectory, the state tra-

jectories can then be used to calculate stochastic rate constants and obtain

kinetic information about the observed biomolecular system.

Herein, we begin by comparing the deterministic rate constants that are

obtained from ensemble kinetic studies with the stochastic rate constants that

are obtained from single-molecule kinetic studies as a means for introducing

the conceptual framework that is typically used to analyze and interpret

single-molecule kinetic data. We then clarify the basis of several approaches

for calculating stochastic rate constants from single-molecule state trajecto-

ries. We go on to describe how the finite lengths of signal trajectories restrict

the precision of these approaches and demonstrate how Bayesian inference-

based versions of these approaches provide a natural method to account for

the precision of the calculated stochastic rate constants. We then end by

addressing how the finite lengths and limited time resolutions of signal tra-

jectories restrict the accuracy of these approaches, and describing methods to

correct for the effects of the finite length and limited time resolution of

the signal trajectories in order to increase the accuracy of these approaches.

The methods we examine here for assessing the precision and improving the

accuracy of the approaches that are currently used to calculate stochastic rate

constants from single-molecule data greatly improve the analysis and inter-

pretation of single-molecule kinetic experiments.
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2. SINGLE-MOLECULES AND STOCHASTIC RATE
CONSTANTS

In bulk kinetic experiments, the large number of molecules present in

an ensemble yields well-defined, ensemble-averaged approaches to equilib-

rium that mask the individual behaviors of the underlying molecules

(McQuarrie, 1963). Thus, these approaches to equilibrium are traditionally

described as time-dependent changes in the concentrations of reactants,

reaction intermediates, and/or products that are modeled using phenome-

nological, differential rate equations (Van Kampen, 2007). Notably, bulk

reaction kinetics and the rate equations that are used to model them are:

(i) continuous in that individual molecules are not observed to undergo

reactions, but rather the reaction is observed and described in terms of

changes in concentrations, and (ii) deterministic in that an initial set of con-

centrations determines the subsequent values of the concentrations. By

fitting changes in the concentrations of reactants, reaction intermediates,

and/or products as they approach their equilibrium concentrations to these

deterministic rate equations, one can obtain the deterministic rate constants

that characterize the kinetics of the bulk system (Zhou, 2010).

In contrast with bulk reaction kinetics, however, single-molecule reac-

tion kinetics are: (i) discrete in that individual molecules are observed to

undergo reactions and (ii) stochastic in that, even at equilibrium, reactions

occur at random times that are often, but not always, independent of pre-

vious conditions. These differences between bulk and single-molecule reac-

tion kinetics make it inappropriate to use the deterministic rate equations

used to describe bulk reaction kinetics to account for the stochastic reactions

that are observed at the single-molecule level (McQuarrie, 1963). There-

fore, in order to describe single-molecule reaction kinetics, stochastic

approaches like the chemical master equation and the stochastic simulation

algorithm were developed to model the time evolution of discrete reactions

in which the behavior of individual molecules could be observed

(Gillespie, 1976, 1977, 2007; McQuarrie, 1967; Van Kampen, 2007;

Zwanzig, 2001). These stochastic methods aim to quantify the kinetics of

the molecular system by modeling the occurrence of individual reactions

with probability distributions that are governed by stochastic rate constants,

as opposed to modeling changes in concentrations with differential equa-

tions that are governed by deterministic rate constants. In order to quantify

the kinetics of biomolecular systems observed in signal trajectories recorded
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using single-molecule biophysical techniques, therefore, we must adopt

such a stochastic approach.

Consider the reaction coordinate of a biological process, such as protein

folding or ligand binding. Due to the multiplicity of interactions present in

biomolecular systems, the forward and reverse reactions along this reaction

coordinate can often be considered as separate, elementary reactions that

occur randomly and independently of the history of the system (i.e., in what

states the biomolecule has been in and for how long) (Colquhoun &

Hawkes, 1995; Zwanzig, 1997). Such stochastic reactions are called

Markovian when the probability of a reaction occurring (i.e., a transition

between states) depends only upon the current state of system; when these

probabilities are time dependent, or, rather, depend upon the previous

state(s) of the system, the reaction is called non-Markovian. As a result of

the constant transition probability of Markovian reactions, the lengths of

time that a biomolecule spends in a particular state before a transition occurs,

called the dwell times, t, are distributed according to an exponential distri-

bution of the form

p tij kið Þ¼ kie
�kiti , (1)

where p(tijki) is the probability density function (PDF) of a dwell time in the

ith state lasting length ti given the stochastic rate constant ki, where

ki¼
P

j 6¼i kij. Here, ki is the net stochastic rate constant out of the ith state,

and kij are the stochastic rate constants governing the individual Markovian

reactions out of the ith state. For instance, if there are multiple, parallel,

Markovian reactions out of the ith state, the net stochastic rate constant that

describes the length of time spent in the ith state, ki, will be the sum of the

individual stochastic rate constants governing each of the parallel reactions,

kij. Effectively, the dwell times in the ith state, ti, even if they are sorted into

only those that transition to the jth state, will be distributed according to

this net stochastic rate constant, ki. It follows then that, regardless of the final

state, the average dwell time spent in the ith state, htii, is the reciprocal of this
net stochastic rate constant, ki. Finally, while it is not possible to distinguish

among the collection of stochastic rate constants, kij, that describe the indi-

vidual Markovian reactions exiting the ith state by analyzing the observed

dwell times spent in the ith state, ti, the number of times that an individual

molecule enters a particular jth state will depend upon the stochastic rate

constant kij and can therefore be used to quantify kij.
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Interestingly, the ergodic hypothesis asserts that the dwell time PDF for

an individual molecule observed for a very long amount of time is equivalent

to the dwell time PDF comprised of many identical, individual molecules,

each observed for very short periods of time (Van Kampen, 2007). Thus,

because many experimental factors, such as the photobleaching of

fluorophores, limit the length of time that an individual biomolecule can

be continuously observed, the latter approach of observing many individual

biomolecules for very short periods of time is often taken. Regardless of

which approach is taken, Onsager’s regression hypothesis (Onsager, 1931;

Zwanzig, 2001) asserts that this “microscopic” dwell time PDF of an indi-

vidual molecule is equivalent to the “macroscopic” relaxation to equilib-

rium of an ensemble of molecules described by traditional chemical

kinetics. Therefore, when monitoring the reaction of one biomolecule,

or of multiple, identical, individual biomolecules, the observed single-

molecule reaction kinetics are equivalent to those that would be measured

in bulk, if it were possible to observe them despite the ensemble averaging—

this is especially significant for situations where the biomolecular population

or event of interest is too rarely sampled to observe using a bulk, ensemble-

averaged signal.

Before describing how to quantify the single-molecule stochastic rate

constants ki and kij described earlier, we must note the several complications

that have already arisen. First, the exponential dwell time PDF described

earlier assumes that time is continuous, but single-molecule signal trajecto-

ries are comprised of a sequence of discrete measurements that are spaced by,

at minimum, the acquisition period of the measurement during which the

signal was time averaged to acquire a single data point. Errors can therefore

be introduced into these stochastic rate constant calculations if the dis-

cretized state trajectories misrepresent the temporal behavior of the

molecule(s) as it samples state space (i.e., the finite set of states available

to it). Second, these stochastic rate constant calculations require several

assumptions about the observed single-molecule data, including that a suf-

ficient number of events were observed to accurately represent the ensemble

average, that there are no subpopulations present in the sample, and that the

system is at equilibrium and will not change over time, resulting in non-

Markovian behavior. These assumptions are inherently difficult to confirm

due to the small amounts of information present in a state trajectory from an

individual molecule.
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3. CALCULATING STOCHASTIC RATE CONSTANTS
FROM SIGNAL TRAJECTORIES

3.1 Approaches to Calculating Stochastic Rate Constants
As mentioned earlier, stochastic rate constants govern the Markovian nature

with which a single-molecule samples state space during a reaction. The

dwell time, t, in a particular state is governed by the sum of all of the sto-

chastic rate constants exiting that state, while the number of transitions

between particular states depends upon the particular stochastic rate constant

describing that reaction. Later, we discuss how stochastic rate constants for

Markovian reactions can be quantified by considering the distribution of

dwell times, or the probability of transitioning between particular states.

Before describing these methods, however, we will briefly discuss how

the properties of state trajectories that facilitate stochastic rate constant cal-

culations can be quantified such that they can be easily incorporated into the

various stochastic rate constant calculation methods.

The state trajectories described earlier are each composed of a series of

sequential, discretized data points, where each data point indicates the state

occupied, during a measurement period of length τ, by the single molecule

corresponding to the signal trajectory being analyzed; it is worth noting that

this state was inferred from a time-averaged signal collected during the mea-

surement period τ. From these sequential data points that comprise a state

trajectory, we can obtain a dwell time list, nij, where each entry is the num-

ber of contiguous measurement periods, τ’s, that the single molecule is

observed to spend in a state, i, before transitioning to a second state, j. This

is a discretized list of the dwell times in state i, ti, that transition to state j, and

it has the form: nij¼ [5, 13, 12, 7,…]. Additionally, we can construct a cou-

nting matrix, M, for each state trajectory where the matrix elements, Mij,

represent the number of times that the state trajectory began in state i at mea-

surement n (i.e., at time t¼ 0) and ended in state j at measurement n+1 (i.e.,

at time t¼ τ). M is related to nij such that the off-diagonal elements of M,

Mij, are the number of entries in the corresponding nij, and the on-diagonal

elements of M, Mii, are

M ii ¼
X

j 6¼i
Σnij
� ��M ij

� �
, (2)
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where
P

nij is the sum of the entries in nij.M may be row normalized, such

that each element in a row (i.e., with the same i) is divided by the sum of that

row to yield the transition matrix, P. The off-diagonal elements of the tran-

sition matrix P, Pij, give the frequency that an individual molecule in state i

has transitioned to state j at the next measurement period. Later, we detail

several methods to explain how the stochastic rate constants that characterize

kinetic processes may be obtained from the calculated dwell time list, nij,

counting matrix, M, or transition matrix, P.

3.1.1 Dwell Time Distribution Analysis
Onemethod to calculate stochastic rate constants from a state trajectory is by

analyzing the distribution of observed dwell times. A state trajectory can be

thought of as a sequence of discrete measurements that report on whether a

transition has occurred between twomeasurements. These “transition trials”

are reminiscent of a series of repeated Bernoulli trials from probability theory

(Resnick, 1992), which are events where the outcome is either a success

with probability p, or a failure with probability 1�p. In this analogy, a suc-

cessful Bernoulli trial would be when the single-molecule transitions from

state i at measurement period n to state j at measurement period n+1,

whereas a failed Bernoulli trial would be when, instead, the single molecule

remains in state i at measurement period n+1.

The number of repeated, failed trials before a success (i.e., a transition)

occurs is distributed according to the geometric distribution probability mass

function (PMF) (Resnick, 1992),

P njpð Þ¼ p 1�pð Þn, (3)

where n is the number of failed trials and p is the probability of a success.

Therefore, the PMF of the number of measurement periods until a transition

occurs in a Markovian state trajectory can be modeled using the geometric

distribution. From the geometric distribution, we expect that the mean

number of successive measurement periods in state i, hnii, until a transition
out of state i occurs is

nih i¼ 1�Pi

Pi

, (4)

where Pi is the probability of a successful transition out of state i to any other

state, j. Given a particular state trajectory in a Markovian system, an estimate

of the mean number of measurement periods before a transition out of state i

occurs, hnii, would then allow the probability of a successful transition out of
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state i to be calculated by solving this equation. The maximum-likelihood

estimate of hnii is the total number of measurement periods observed to be in

state i divided by the total number of transitions out of state i,

nih i¼
X

j
Σnij
� �

X
j 6¼i
Mij

, (5)

where
P

nij is the sum of all entries in nij and theMij are the total number of

observed transitions from state i to state j. Solving this equation yields the

probability of a successful transition,

Pi ¼
X

j 6¼i
MijX

j 6¼i
Mij +

X
j
Σnij
� � : (6)

As mentioned in the previous section, the dwell times that a single mol-

ecule will spend in a particular state before transitioning to a different state,

t’s, in a Markovian system are distributed according an exponential distribu-

tion. Therefore, for such a Markovian system, the probability that a transi-

tion out of state i occurs within a measurement period, τ, in a signal

trajectory is the integral of the exponential distribution PDF from t¼ 0

to t¼ τ, the measurement period, which is

Pi¼
Z τ

0

kij � e�ki � t � dt¼ 1� e�ki � τ� �
: (7)

This equation implies that a stochastic rate constant can be calculated as

ki¼� ln 1�Pið Þ
τ

, (8)

if the transition probability, Pi, can be quantified as described earlier.

Notably, the stochastic rate constant obtained by considering the dwell times

in a particular state will be a sum of multiple stochastic rate constants, except

in cases when there is only one state to transition to (e.g., two-state systems).

Analyzing only the dwell times that a single molecule spends in state i before

transitioning to a particular state j still yields the same sum of the stochastic

rate constants, and not the associated kij. The major advantage of analyzing

the distribution of dwell times, however, is that deviations from Markovian

behavior can be observed as nongeometric distribution and then this non-

Markovian behavior can be analyzed.
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Interestingly, a careful consideration of these equations reveals a limita-

tion in the application of this dwell time distribution analysis method, which

is the fact that the geometric distribution requires the state trajectories to

have discrete dwell times that last {0, 1, 2, …} measurement periods, τ,
before a transition occurs. Unfortunately, in a state trajectory, dwell times,

t, of zero measurement periods, τ, are never included in the dwell time lists,

nij, because a dwell time must be at least one measurement period, τ, long for
it to be associated with a particular state. The result is an undercounting ofM

due to the exclusion of all zero measurement period-long dwell times (n¼ 0,

or, equivalently, t< τ), and a subsequent miscalculation of Pi. This

undercounting is exacerbated by the fact that, from the geometric distribu-

tion, the highest probability dwell times are the zero measurement period-

long dwell times (n¼ 0). As a result, stochastic rate constants calculated using

the dwell time distribution analysis method are misestimates and, more

specifically, underestimates of the true stochastic rate constant. Nonetheless,

this underestimate can easily be accounted for by conditioning the geo-

metric distribution PMF such that only dwell times that are greater than

zero measurement periods, τ, in length are considered (n> 0, or, equiva-

lently, t> τ).
Here, we will condition the geometric distribution PMF so that it only

considers n> 0, and denote these discrete dwell time lengths with

n? 2 1,2, :::f g to maintain clarity. From the law of conditional probability,

we note that

P n?jp,n> 0ð Þ¼P njp,n¼ 0\n> 0ð Þ
P njp,n¼ 0ð Þ ,

P n?jpð Þ¼ p 1�pð Þn?

1� 1� 1� pð Þ0+ 1
� � ,

P n?jpð Þ¼ p 1� pð Þn?�1 ¼ 1

1�p
� P njpð Þ:

(9)

Therefore, the geometric distribution PMF conditioned upon all dwell

times being greater than zero measurement periods in length is equivalent to

the regular geometric distribution PMF divided by 1�p. Because P n?j pð Þ is
proportional to P njpð Þ in a manner that does not depend upon n, the expec-

tation values of p n?jpð Þ (e.g., the mean) are also proportional to those of

P njpð Þ in the same manner due. Therefore,

n?h i¼ 1

1�p
nh i: (10)
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We can then follow the same derivation of Pi above in Eq. (6), but sub-

stitute this expression for n?h i in place of hni. This yields,

n?i
� �¼

X
j
ΣnijX

j 6¼i
Mij

¼ 1

1�Pi

� 1�Pi

Pi
, and therefore

Pi¼
X

j 6¼i
MijX

j
Σnij

: (11)

Interestingly, this is the identical result for the transition probability Pij
that is obtained with the transition probability expansion analysis described

in the following section.

For further insight into this expression, consider that, from the Poisson

distribution, the expected value for the number of transitions out of state i is

Mih i¼ ki �Ti, where Ti is the total time spent in state i. Then, from Eq. (11),

we find that

Pi ¼
X

j 6¼i
MijX

j
Σnij

�
Ti

X
j
kij

Ti=τ
¼
X

j
kijτ¼ kiτ: (12)

Note that the expression for the Pi that is calculated here is different then

in Eq. (7). From the Taylor series

ex¼ 1+
x1

1!
+
x2

2!
+…, (13)

we see that Eq. (12) is the Taylor series expansion of the transition proba-

bility given by Eq. (7), but truncated after the first-order term. Notably,

since this expression in Eq. (12) is conditioned upon only the observation

of dwell times, t’s, that are greater than zero measurement periods, τ’s, in
length, this conditioned, dwell time distribution analysis is insensitive to

the types of missed dwells in state i that are less than one measurement

period, τ, long. As we will show further below, however, it is sensitive to

other types of missed events.

Finally, it is worth noting that stochastic rate constants for a particular

reaction pathway out of state i, kij, can be calculated from ki by equating

the splitting probability, pij
split, and the observed branching ratios as
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p
split
ij ¼ kijX

j
kij
,

MijX
j 6¼i
Mij

� kij

ki
, and therefore

kij ¼ MijX
j 6¼i
Mij

� ki: (14)

Since we will not discuss this approach in the section on Bayesian infer-

ence further below, we note here that the calculation of the kij described

earlier can be recast with a Bayesian inference approach by utilizing a

Dirichlet distribution as the conjugate prior and a multinomial distribution

as the likelihood function (vide infra). Regardless, while this dwell time dis-

tribution analysis approach to calculating individual stochastic rate constants

is quite effective, and it has the benefit of allowing the dwell times to be

checked for non-Markovian behavior that would render the calculated sto-

chastic rate constants much less meaningful, a more straightforward method

to calculate the stochastic rate constants for each parallel reaction pathway of

an individual molecule is to analyze the transition probabilities for each

pathway.

3.1.2 Transition Probability Expansion Analysis
Another method for calculating stochastic rate constants is to consider the

observed frequency with which a single-molecule transitions from one

state to another. For the discrete state trajectories considered here, this is

equivalent to determining whether the single molecule in state i during

a measurement period, n, is in state j during the subsequent measurement

period, n+1. Since these data consist of multiple Bernoulli trials of

whether or not the transition has occurred, the probability of a particular

transition can be modeled with the binomial distribution. The binomial

distribution is appropriate for modeling the number of successful trials

(i.e., transitions from state i to state j, Mij) from a certain number of per-

formed trials (i.e., the number of times the single molecule was in state i in

the state trajectory,
P

nij) that can each succeed with a fixed probability

(i.e., Pij), and is written as

P mjn,pð Þ¼ n

m

� �
pm 1� pð Þn�m

, (15)
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wherem is the number of successful trials, n is the total number of trials, and p

is the probability of a successful trial. From the mean of the binomial distri-

bution, mh i¼ np, we will take frequentist approach to statistics and

substitute

Mij �
X

j 6¼i
Σnij
� �� �

Pij ¼
X
j

Mij

 !
Pij: (16)

Here, we have equated Pijwith the observed frequency of the transitions

from state i to state j. However, in an experiment, only a finite number

of transitions from state i to state j are observed; as such, the equality will

only be approximate. Regardless, according to the central limit theorem,

as the number of measurements increase, Mij should approach the mean

value dictated by the binomial distribution; thus, barring a small number

of measurements (e.g., less than �100 measurements), we might reasonably

estimate that

Pij ¼ MijX
j
Mij

, (17)

and from this expression, estimate kij using Eq. (8).

Now, we will consider the accuracy of calculating a stochastic rate

constant in this manner. Interestingly, given a particular amount of

time spent in state i in a state trajectory, Ti, the Poisson distribution indi-

cates that

Mij

� �¼ kij �Ti� kij �
X

j
Mijτ

� �
, (18)

where the substitution for Ti is generally accurate, excepting the types of

missed events which we will discuss further below. With this in mind, by

substituting Eq. (18) into Eq. (17), we find that

Pij ¼
kij �
X

j
Mij � τX

j
Mij

¼ kij � τ: (19)

Therefore, rather than being corrected to a Taylor series expansion of the

transition probability truncated at the first-order term, as was the case in the

dwell time distribution analysis approach described in the previous section,

this method of calculating transition probabilities is inherently a Taylor series
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expansion of the transition probability truncated at the first-order term.

Regardless, the transition probability expansion analysis approach described

here and the dwell time distribution analysis approach described earlier are

therefore equivalent methods of calculating stochastic rate constants, which

are accurate only when kijτ is small (i.e., much less than one) and the higher-

order terms of the Taylor series expansion are therefore negligible.

When kijτ is large (i.e., approaching and greater than one), however, the
probability of experimentally recordingmeasurements where more than one

state is occupied during a measurement period becomes substantially high.

Neither the process of idealizing a signal trajectory into a state trajectory nor

performing the first-order expansion of the Taylor series is well justified in

such a situation. Regardless, before discussing the precision associated with

calculating stochastic rate constants from individual molecules, we would

like to note here that the transition probability expansion analysis approach

described in this section has the added benefit of being insensitive to missed

dwells, as will be discussed further below. Finally, as will also be discussed

further below, this type of analysis approach is analogous to using the tran-

sition matrix from an HMM for Pij.

3.2 Methods for Calculating Stochastic Rate Constants
3.2.1 Manual Idealization of Signal Trajectories
In order to calculate stochastic rate constants using either the dwell time

distribution- or transition probability expansion analysis methods described

earlier, a signal trajectory must first be idealized into a state trajectory. This

state trajectory can then be quantified as described earlier to obtain the

parameters necessary to calculate stochastic rate constants. One approach

to idealizing a signal trajectory is to identify the states that are sampled by

the signal trajectory, as well as the measurement periods during which tran-

sitions between the states take place, by visual inspection (e.g., as in Ha et al.,

1999; Zhuang et al., 2000, 2002). Even in cases where the experimental sig-

nals corresponding to the various states are well separated and the signal tra-

jectory has an excellent signal-to-noise ratio, however, it is still difficult and

time consuming to locate the exact measurement period during which a

transition occurs. In cases where the signals are insufficiently separated

and/or the signal trajectory has a poor signal-to-noise ratio, therefore, this

method can become quite subjective, such that different researchers, who

will generally have slightly different criteria for what constitutes a state or

a transition, can produce different state trajectories from the same signal tra-

jectory, and thus different stochastic rate constants.
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Amore robust approach is to systematically employ a user-defined signal

threshold such that transitions from one state to another state can be

pinpointed by identifying the measurement periods in a signal trajectory

during which the signal crosses the threshold (e.g., as in Blanchard,

Gonzalez, Kim, Chu, & Puglisi, 2004; Blanchard, Kim, Gonzalez,

Puglisi, & Chu, 2004; Gonzalez, Chu, & Puglisi, 2007; Lee, Blanchard,

Kim, Puglisi, & Chu, 2007). Typically, thresholds are defined by generating

a histogram of all of the signal values that are sampled throughout the entire

signal trajectory, and subsequently identifying signal boundaries (i.e., thresh-

olds) for each state that minimize overlap of the signal values corresponding

to neighboring states. When more than two states are present, different

thresholds can be used to define each state so as to allow for more flexibility

when dealing with multiple states; however, it can be difficult to unambig-

uously specify these thresholds. Unless the signals corresponding to the var-

ious states are well separated and the signal-to-noise ratio of the signal

trajectory is exceptional, there is often significant overlap between the signal

values corresponding to neighboring states. As a result, natural fluctuations

in the signal due to noise can result in spurious transitions that cross the

threshold. This will result in the misidentification of transitions in the state

trajectory, which can propagate into a misestimation of the stochastic rate

constants. One approach to guard against the effects of these spurious tran-

sitions, as well as to dispel concern about the subjectivity of a user-defined

signal threshold, is to repeat the process of idealizing the signal trajectory and

calculating the stochastic rate constants using several, slightly different values

for the user-defined signal thresholds (e.g., favoring one state, favoring the

other state, exactly between, etc.), and demonstrating the robustness of the

calculated stochastic rate constants to the choice of threshold (e.g., as in

Gonzalez et al., 2007; Lee et al., 2007).

3.2.2 Hidden Markov Models
HMMs are a popular method to analyze signal vs time trajectories obtained

from biophysics experiments (Andrec, Levy, & Talaga, 2003; Bronson et al.,

2009; Chung, Moore, Xia, Premkumar, & Gage, 1990; McKinney, Joo, &

Ha, 2006; Qin, Auerbach, & Sachs, 2000; van de Meent et al., 2014)—

detailed descriptions can be found elsewhere (Bishop, 2006;

Colquhoun & Hawkes, 1995). Briefly, in an HMM, the time-averaged sig-

nal recorded during each measurement period, τ, in a signal trajectory is

assumed to be representative of some “hidden” state (i.e., the state trajec-

tory). The underlying, hidden state trajectory, which is not directly
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observed, is then assumed to behave as a Markovian process that is governed

according to transition probabilities. As discussed earlier, the transition prob-

abilities of a single molecule in a Markovian system are related to stochastic

rate constants governing the biomolecular system. With an HMM, the

probability that a signal originates from a particular hidden state is calculated

while considering the hidden state of the previous time period in order to

explicitly account for the transition probability. Notably, in an HMM, the

values of the signal that are observed when a single molecule is in a particular

hidden state are typically assumed to be distributed according to a normal

distribution PDF (i.e., the observed signals will be a Gaussian mixture

model). Using this approach, one “estimates” an HMM that describes the

signal in terms of a discrete number of states, and that provides, as parame-

ters, the signal emission probabilities of each state as well as the transition

probabilities as a transition probability matrix, P, from each state.

With the optimal estimate of the HMM describing a signal trajectory,

two different methods can be used to calculate stochastic rate constants.

In the first method, the idealized, state trajectory can be obtained from

the HMM and then quantified as described for use with the dwell time dis-

tribution, or transition probability expansion analysis approaches. This ide-

alized, state trajectory is obtained by applying the Viterbi algorithm to the

HMM in order to generate the Viterbi path (Viterbi, 1967). The Viterbi

path, which gives the idealized state trajectory directly, is the most likely

sequence of hidden states that not only would yield the observed signal

values given the optimal signal emission probabilities, but that would most

likely have arisen from the optimal transition probabilities. As such, it is

important to note that, by using an HMM to idealize a signal trajectory,

the resulting idealized state trajectory and emission- and transition probabil-

ities have been forced to be as Markovian as possible. Therefore, if there is

any non-Markovian behavior present in the biomolecular system under

investigation, it will be masked and made to appear Markovian. To avoid

this shortcoming of HMMs, the idealized state trajectory can be generated

using a different approach, such as thresholding.

The second method for calculating stochastic rate constants from the

optimal HMM estimate involves directly using the transition probabilities

obtained from the HMM.While, on its surface, this method seems to bypass

the use of idealized, state trajectories, the process of estimating the optimal

HMM that describes the data inherently involves estimating the hidden

states that generated the signal trajectory and therefore involves the use of

idealized, state trajectories. From an HMM, individual stochastic rate
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constants can be calculated using Eq. (8) and the transition probability

matrix, which is analogous to that calculated from an idealized, state trajec-

tory. This approach is equivalent to transition probability expansion analysis.

As with calculating stochastic rate constants from the Viterbi path, it must be

noted that this second HMM method also enforces Markovian behavior.

Finally, we note that in the smFRET literature alone, there are several

software packages available for HMM-based analysis of EFRET trajectories.

Of these packages, there are two types of approaches to estimating the opti-

mal HMM that describes the data: maximum-likelihood approaches (e.g.,

QuB (Qin, Auerbach, & Sachs, 1997), HaMMy (McKinney et al., 2006),

and SMART (Greenfeld, Pavlichin, Mabuchi, & Herschlag, 2012)) and

Bayesian approaches (e.g., vbFRET (Bronson et al., 2009; Bronson et al.,

2010) and ebFRET (van deMeent et al., 2014, 2013)). There are many ben-

efits to using Bayesian HMMs over maximum-likelihood HMMs. First,

unlike Bayesian HMMs, maximum-likelihood HMMs are fundamentally

ill-posed mathematical problems—essentially, individual states can

“collapse” onto single data points, which yields a singularity with infinite

likeliness that is not at a reasonable HMM estimate. Second, as we will dis-

cuss in the next section, Bayesian approaches naturally incorporate the pre-

cision with which a certain amount of data can determine the parameters of

the HMM by learning the probability distribution of the transition proba-

bilities instead of finding one set of transition probabilities. In addition to

providing the precision, this allows one to combine the results from multi-

ple, individual molecules, and simultaneously learn consensus, stochastic rate

constants from an ensemble of single molecules. Third, while maximum-

likelihood approaches can result in HMMs that are significantly overfit

and that consequently overestimate the number of hidden states present

in a signal trajectory, Bayesian approaches are inherently able to select the

correct number of hidden states present in a signal trajectory. For example,

with maximum-likelihoodHMMs, a better HMM estimate of the signal tra-

jectory is obtained simply by adding additional hidden states; in the extreme

case, there would be one hidden state for each data point. Although the

HMM in this extreme case would fit the data perfectly, it would not be very

meaningful, nor would it be a useful model for predicting the future behav-

ior of the system. While the use of heuristic approaches such as the Bayesian

and Akaike Information Criteria (BIC and AIC, respectively) has been pro-

posed to help select the correct number of states in maximum-likelihood

HMMs, these are approximations to true Bayesian approaches that are valid

only under certain conditions and that, in practice, we find do not work well
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for the HMM-based analysis of smFRET data. Additionally, Bayesian

HMMs have been shown to be more accurate than maximum-likelihood

HMMs for the analysis of signal trajectories where the dwell times, t’s, in

the hidden states are transient relative to the measurement period, τ
(Bronson et al., 2009). Finally, there is effectively no added computational

cost between the maximum-likelihood and Bayesian approaches to HMMs,

as both implement the same algorithms to calculate the probabilities associ-

ated with the HMM (e.g., the forward–backward algorithm), so speed is not

a concern. Given the benefits of the Bayesian approach over the maximum-

likelihood approach for HMMs, we recommend using Bayesian HMMs

when analyzing signal trajectories from single-molecule biophysical

experiments.

4. PRECISION OF CALCULATED RATE CONSTANTS

4.1 Using Bayesian Inference to Quantify Precision
The finite length of a signal trajectory ensures that only a finite number of

randomly distributed dwell times and transitions will be observed during the

duration of the signal trajectory. The fact that only a finite number of dwell

times and transitions are observed in a signal trajectory limits the precision

with which a stochastic rate constant can be calculated from that signal tra-

jectory. With the observation of more dwell times and transitions, this pre-

cision will increase, and eventually the value of the calculated stochastic rate

constant will converge to the value of the “true” stochastic rate constant.

Here, we demonstrate how to rigorously quantify this precision, and there-

fore the amount of information contained in a single signal trajectory,

through the use of Bayesian inference.

One simplistic attempt to account for variability in the number of dwell

times and transitions that are observed is to report the statistical uncertainty

in the calculated stochastic rate constant in the context of “bootstrapping”

of the data (Efron, 1979). Bootstrapping is an attempt to simulate the data

of future experiments from a set of observed data. From the analysis of

bootstrapped, “future” data, any variation in subsequently calculated prop-

erties can be attributed to the uncertainty present in the original dataset. For

example, when calculating stochastic rate constants from a state trajectory as

described earlier, the bootstrapping process would involve creating a res-

ampled dataset, nij
0, by randomly sampling from nij with replacement such

that, after each sample is drawn, the sampled data point is placed back into

the population before the next sample is drawn. The new, bootstrapped
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transition probability, Pij
0, can then be calculated from nij

0, and this yields

new, bootstrapped stochastic rate constants, kij
0. The bootstrapping process

is then repeated several times, and the reported stochastic rate constant kij is

given as the mean of the set of bootstrapped kij
0, with the uncertainty of the

reported kij given as the standard deviation of the set of bootstrapped kij
0. It is

important to note, however, that bootstrapping inherently assumes that the

collected data accurately represent the characteristics of an infinitely large

amount of data. Consequently, bootstrapping artificially inflates the dataset

in a way that perpetuates anymisrepresentations of an infinitely large amount

of data that are present in the actual dataset. The smaller the collected dataset

is, the more likely it is to misrepresent this infinitely large amount of data.

In practice, bootstrapping single-molecule results, where there are often

only several hundreds of individual molecules in a dataset, perpetuates these

misrepresentations and leads to inaccurate rate constants, all the while not

providing a reasonable estimate of the statistical error present in the

calculation.

Consider the following, extreme, hypothetical calculation where only

one transition with a one measurement period-long dwell time (i.e.,

nij ¼ 1½ �) has been observed in one signal trajectory. Using the conditioned

dwell time distribution- or transition probability expansion analysis

approaches, we find that, in this case, Pij is equal to 1.0 and that all of

the bootstrapped Pij
0 are also equal to 1.0. Thus, in this case, there is no

uncertainty in the calculation of the transition probability, or, conse-

quently, in the stochastic rate constant, and this stochastic rate constant

is infinitely large. Nonetheless, we know intuitively that the stochastic rate

constant is probably not infinity and that there must be some uncertainty in

this calculation, even though it employs only one measurement. The

uncertainty lies in the fact that the one transition we have observed simply

cannot be representative of the stochastic rate constant governing an entire

ensemble or even an individual molecule. Likewise, we should suspect that

Pij is probably a poor estimate of the true transition probability. It is easy to

imagine that after recording a few more measurements from that hypothet-

ical single molecule, we might calculate a different value of Pij, and that the

extra data would give us a better sense of the uncertainty in Pij. This

extreme example illustrates how the analyses of the stochastic rate constant

calculations described earlier are insufficient by themselves, even when

supplemented by bootstrapping. Fortunately, in contrast to these intrinsic

shortcomings, Bayesian inference provides a statistically rigorous manner

with which to encode our intuition that the number of observations should
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change our knowledge about Pij, and systematically address the uncertainty

in the calculation of stochastic rate constants.

Bayesian inference is a statistical method grounded in the Bayesian

approach to probability (see Sivia & Skilling, 2006 for a pedagogical intro-

duction). In Bayesian inference approaches, the parameters of a model that

has been developed to describe experimentally observed data are treated as

probability distributions that reflect the consistency of the particular param-

eter values with the data. These probability distributions can then be updated

if new data is acquired so as to be consistent with the new, as well as any

previous, data. This approach is analogous to the way that a scientific

hypothesis is tested and then updated with each new laboratory experiment

(Sivia & Skilling, 2006). In the context of quantifying a state trajectory,

Bayesian inference allows us to formulate a hypothesis about the underlying

stochastic rate constants of a system (i.e., the probability of certain stochastic

rate constants producing the observed state trajectory) and then to update

that hypothesis as each transition, or lack thereof, is observed in the state tra-

jectory. In this way, we can use Bayesian inference to describe the proba-

bility distribution of a stochastic rate constant as each measurement

period in a signal trajectory is analyzed.

The foundation of Bayesian inference is Bayes’ rule, which can be writ-

ten mathematically as

P ΘjDð Þ∝P DjΘð Þ �P Θð Þ, (20)

where Θ represents the parameters of the model and D represents the data

values. The first, second, and third terms are referred to as the “posterior,”

the “likelihood,” and the “prior,” respectively. Bayes’ rule can be expressed

verbally as: the probability of the model’s parameter values after observing

the data is proportional to the product of (i) the probability of observing the

data given those particular parameter values and (ii) the initial probability of

those parameters. More succinctly, the posterior probability is proportional

to the product of the likelihood and the prior probability.

With a model for experimental data (i.e., expressions for the likelihood

and the prior probability distribution), we can calculate the posterior prob-

ability distribution and learn about the distribution of parameter values that

are consistent with the experimental data. Unfortunately, for some models,

these calculations can be analytically and numerically difficult, making their

practical use relatively intractable. However, there are certain conditions

that significantly simplify these calculations. Specifically, certain pairs of
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likelihood functions and prior distributions are complementary in that they

yield posterior distributions that are of the same algebraic form as the prior

distribution. In such a case, the prior is called the conjugate prior for that

particular likelihood function. The benefit of using a conjugate prior with

its corresponding likelihood function is that simple updating rules can be

applied to the parameters of the conjugate prior probability distribution

to yield the resulting posterior probability distribution. These calculations

typically amount to the addition of certain experimental values. As such,

the use of conjugate priors and likelihood functions circumvents the com-

putationally expensive need to calculate the posterior probability distribu-

tion for every possible point in the entire probability space.

Here we describe how to employ Bayesian inference using conjugate

priors and likelihood functions in both the dwell time distribution- and

the transition probability expansion analysis approaches described earlier

for calculating stochastic rate constants from state trajectories in a manner

that is extremely tractable, and easy to employ.

4.2 Bayesian Dwell Time Distribution Analysis
To perform Bayesian inference upon the exponentially distributed dwell

times that a single molecule will spend in a particular state in a state trajec-

tory, we must first identify the likelihood function and its conjugate prior

probability distribution that will serve as a model of the observed data. As

described earlier, the number of consecutive, discrete measurement periods,

n, that such a single molecule will spend in a particular state is distributed

according to the geometric distribution PMF. Therefore, in this model,

the geometric distribution PMF is the likelihood function for observing

some number of sequential measurements in state i before transitioning to

state j, and this depends only upon one parameter: the transition probability

out of state i, Pi. Mathematically, the geometric distribution PMF is con-

structed such that the conjugate prior for this likelihood function is the beta

distribution PDF,

p Pjα,βð Þ¼Pα�1 1�Pð Þβ�1=B α, βð Þ, (21)

where B(x,y) is the beta function of x and y.

The beta distribution PDF is often used to describe the probability of a

probability, P (in this case, of a successful transition out of state i, Pi), because,

much like a probability, the PDF is defined continuously between 0 and 1

(Bishop, 2006). Additionally, the beta distribution PDF is a function of only
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two parameters, α and β, which have intuitive interpretations relating to

probabilities. Notably, when α¼ β¼ 1, the beta distribution is flat, as all

values of P have equal probabilities. In this case, the beta distribution math-

ematically expresses a lack of knowledge about P in a similar manner as the

equal, a priori probability assumption of statistical mechanics (Van Kampen,

2007). Along these lines, larger values of α and/or β yield more defined and

peaked distributions, which expresses the increased knowledge about P. As

we will discuss later, the process of performing Bayesian inference amounts

to modifying the initial values of α and β in a data-dependent manner to

yield a posterior, beta distribution PDF with updated values of α and β.
In this sense, Bayesian inference mathematically encodes a method to

express the incremented knowledge that originates from new information.

By using the geometric distribution PMF as a likelihood function, and

the beta distribution PDF as its conjugate prior, we can now calculate the

posterior probability distribution of the transition probability, Pi, from a state

trajectory. We begin by assuming that all transition probabilities are initially

equally probable. Therefore, the prior probability distribution is a beta dis-

tribution PDF with α¼ β¼ 1. The posterior probability distribution will be

another beta distribution PDF where α and β are interpreted as α0 plus the
number of successful transitions, and β0 plus the number of unsuccessful

transitions, respectively, where the subscript 0 refers to the prior probability

distribution. Thus, for the transitions out of state i in a state trajectory, the

posterior probability distribution is a beta distributionwith α¼ 1+
X

j 6¼i
Mij

and β¼ 1+
X

j

P
nij

� �
. Therefore, since the mean of the beta distribution is

α= α+ βð Þ, the mean transition probability out of state i after having observed

the state trajectory is

Pih i¼
1+
X

j 6¼i
Mij

1+
X

j 6¼i
Mij +1+

X
j
Σnijð Þ : (22)

This mean value of the transition probability converges to the

maximum-likelihood estimate of Pi given in the previous section when

α≫1 and β≫1. Note that the maximum-likelihood estimate of Pi is equiv-

alent to the mode of the beta distribution PDF, which is

α�1ð Þ= α+ β�2ð Þ.
The benefit of this Bayesian inference approach is that the posterior

probability distribution of Pi not only provides a mean value but also speaks

to the uncertainty inherent in Pi due to limited number of dwell times
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observed in state i. This uncertainty can be expressed in the form of a cred-

ible interval. A credible interval, which is similar to the frequentist idea of a

confidence interval, is the range in which a certain percentage of the prob-

ability density of the PDF resides; typically one uses a 95% credible interval as

this is similar to �2σ for a normal distribution, but this choice is arbitrary.

The upper and lower boundaries of the credible interval can be found

through the inverse of the cumulative distribution function of the beta dis-

tribution. Many standard computational programs come with a function to

do this, which is sometimes called the “inverse function of the regularized

incomplete beta function,” Ix(α,β), where α and β are the posterior prob-

ability distribution parameters and x is the fraction of the boundary (e.g.,

0.025 for 2.5%). For instance, in Matlab this function is called betaincinv.

Finally, let us consider the application of this Bayesian approach to

observed data from a state trajectory where the length of a dwell time must

be at least one measurement period in length (n� 1) in order to be associated

with a particular state, as discussed earlier. Previously, we conditioned the

geometric distribution PMF to only consider dwell times of at least onemea-

surement period in length to address this problem. Now we must adapt our

Bayesian inference approach to allow for this conditioning. Due to the lin-

earity of this conditioning, and since the total likelihood function is the

product of the likelihood function from each individual data point, the con-

ditioned posterior probability distribution contains an extra term of

1

1�P

� 	 P
j 6¼i

Mij

� �
. This is equivalent to setting β0 ¼ β�Pj 6¼iMij, where

β0 is the parameter used in the beta distribution for the posterior probability

distribution, and β is the parameter calculated above. Using α and β0 as the
parameters for a beta distribution PDF, the posterior probability distribution

of the transition probability, Pi, can be accurately and precisely quantified as

a function of each successive, observed dwell time, even though dwell times

of zero length are missed in the state trajectory (Fig. 1). With a sufficient

number of measurements, this approach yields the same mean transition

probability as the maximum-likelihood estimate of the transition probability

expansion analysis, thereby rendering this approach insensitive to some types

of missed events that we will discuss further below.

To be concrete, we will use this Bayesian dwell time distribution analysis

approach to analyze the extreme, hypothetical case of the single observed

transition introduced in the previous section. The posterior probability dis-

tribution would be a beta distribution with α¼ 1+ 1ð Þ¼ 2, and
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β0 ¼ 1+ 1�1ð Þ¼ 1. This yields Pih i¼ 0:66, with a lower bound of

Pi¼ 0:16, and an upper bound of Pi¼ 0:99 for the 95% credible interval.

Notably, the mean value of the transition probability calculated using the

Bayesian dwell time distribution analysis approach is not infinitely large,

as was the estimate of Pi using the maximum-likelihood approach as

described earlier, and, by noting that the credible interval is consistent with

a wide range of transition probabilities, this method inherently accounts for

the large uncertainty in the transition probability that we intuitively expect

(Fig. 1).

The transition probabilities calculated with this approach can also be

transformed into the stochastic rate constants with Eq. (8). Therefore, this

Bayesian inference-based method also provides an intuitive, explicit expres-

sion for how the uncertainty in the stochastic rate constants, ki, diminishes

with additional observations. One interesting case is that when no
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Fig. 1 Maximum-likelihood vs Bayesian approaches to calculating transition probabil-
ities. (A) Graphical models of maximum-likelihood (ML) (left), and Bayesian (right)-based
methods for calculating the transition probability from state i to state j, Pij. Each model is
divided in half to give the dwell time distribution analysis (left) or the transition prob-
ability expansion analysis (right). Blue circles represent the observed variables, gray cir-
cles represent hidden variables, and black dots represent fixed parameters. The Bayesian
model expands upon the ML model by using a probability distribution to describe Pij.
(B) The calculations of Pij from three dwell times using ML (left)- and Bayesian (right)-
based approaches are plotted as a function of increasing measurement periods (i.e.,
observations in a state trajectory). The true transition probability is shown with a dashed
line. Both the ML value and the mean of the posterior probability distribution value of Pij
calculated with dwell time distribution analysis (stars) and transition probability expan-
sion analysis (circles) are shown. Additionally, for the Bayesian approach, the posterior
probability distributions are plotted for dwell time distribution analysis (filled curves) and
for transition probability expansion analysis (thin curves). The prior probability
distribution and the numbers of the dwell times are denoted in boxes. Notably, the
Bayesian-based approach yields nonzero transition probabilities and also provides
the uncertainty in Pij in the form of a probability distribution.
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measurements have been made, the posterior distribution of the rate con-

stants is equivalent to the prior distribution; all rate constants from 0 to

∞ are therefore equally probable. Thus, this analysis method is a very objec-

tive approach to analyzing transition probabilities from discrete state trajec-

tories, and it is one that intrinsically encodes a statistically rigorous approach

to the precision of such calculations.

4.3 Bayesian Transition Probability Expansion Analysis
We can also extend the transition probability expansion analysis approach to

account for the precision of these calculations in a statistically robust manner

with the application of Bayesian inference. Since the probability of under-

going a transition from state i to state j during a measurement period, n, was

modeled with the binomial distribution, the binomial distribution will be

the likelihood function used to perform Bayesian inference. The binomial

distribution depends upon a single parameter: the probability of a success, P,

which, in this case, is the transition probability Pij. Mathematically, the con-

jugate prior to the binomial distribution is also the beta distribution, which is

consistent with the interpretation of the beta distribution as describing the

probability of a probability. Without any foreknowledge of the transition

probability or, equivalently, the stochastic rate constant, we will use a flat,

uninformative prior of α0¼ β0 ¼ 1. From this prior probability distribution,

the resulting posterior probability distribution for Pij is a beta distribution

with α¼ 1+Mij, and β¼ 1+
X

j
Mij

� �
�Mij. Interestingly, while this pos-

terior probability distribution can be quantified for each observed transition

trial, it is equivalent to the posterior probability distribution calculated using

Bayesian dwell time distribution analysis once all of the transition trials that

comprise a particular dwell time have been analyzed (Fig. 1). For the

extreme example of a state trajectory with one transition from a one mea-

surement period-long dwell time (nij ¼ 1½ �) the posterior probability distri-
bution would then be α¼ 1+ 1ð Þ¼ 2, and β¼ 1+ 1�1ð Þ¼ 1. The mean

and the credible interval for the beta distribution can then be calculated

as described earlier, as can the stochastic rate constants related to these tran-

sition probabilities.

Interestingly, a more encompassing, Bayesian approach to inferring tran-

sition probabilities is obtained by considering all of the parallel reaction path-

ways out of state i at once. In this case, the multivariate generalization of the

binomial distribution, which is called the multinomial distribution, is more

appropriate for the likelihood function, as it models the probability of a
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Bernoulli trial where there are different types of successes—although only

one type of success is chosen at a time. The conjugate prior to the multino-

mial distribution is the Dirichlet distribution,

p xj αð Þ¼ 1

B αð Þ
YK

i¼1
xαi�1
i , (23)

where bold characters denote a vector andB(x) is the multinomial beta func-

tion of x. Unsurprisingly, the Dirichlet distribution is the multivariate gen-

eralization of the beta distribution; in fact, in the case of only one type of

success (i.e., in one dimension), they are equivalent. Analogously, we will

use a flat, uninformative prior of αij ¼ 1, such that each jth element of α
is unity. As a result, the posterior probability distribution is αij ¼ 1+Mij.

In order to analyze the transition probability of an individual reaction path-

way out of state i from this posterior probability distribution of the transition

probabilities for all the possible transitions, we can marginalize the posterior

Dirichlet distribution. The result is that the posterior probability distribution

for one of the reaction pathways is a beta distribution with α¼ αij ¼ 1+Mij,

and β¼ βij ¼
X

j
αij

� �
�αij ¼

X
j
1

� �
+
X

j
Mij

� �
� 1+Mij

� �
. This is

equivalent to the binomial result for a two-state system given at the start

of this section. Regardless, the most notable aspect of this treatment is that

the mean posterior probability distribution is equivalent to the transition

probability matrix that is calculated using an HMM. Notably, the Bayesian-

based HMMs go even further and utilize Dirichlet distributions such as this

one to describe the posterior probability distributions of the transition prob-

abilities (Bronson et al., 2009, 2010; van de Meent et al., 2014, 2013). As

such, both this Bayesian transition probability expansion analysis approach

and the Bayesian-based HMMs are able to describe the precision associated

with the transition probabilities calculated from a finite number of transitions

by calculating a credible interval from the marginalized distribution as

described earlier.

Importantly, unlike maximum-likelihood methods, the Bayesian

inference-based approach to transition probability expansion analysis enables

the statistically robust analysis of trajectories where there are not only zero

transitions to a particular state, but also when there are no transitions at all

during a state trajectory. In these cases, the on-diagonal elements ofM,Mii,

will reflect the measurements from the state trajectory that were assigned to

state i, even though the final state was unclear. In doing so, the prior prob-

ability distribution accounts for the numerical instability that would
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otherwise yield infinitely precise estimates of stochastic rate constants that

are zero when using the maximum-likelihood approach.

5. ACCURACY OF CALCULATED STOCHASTIC RATE
CONSTANTS

5.1 Characterizing Missed Events
While discretized, idealized state trajectories can be used to analyze the

single-molecule reactions, many factors complicate the quantification of

these state trajectories and limit the amount of information that can be

extracted from them. For instance, if the underlying single-molecule reac-

tion is faster than the time resolution (i.e., the integration time of each mea-

surement) of the experimental technique used to record the signal

trajectories from which the state trajectories originate, then there is a risk

that excursions to states with dwell times, t, that are significantly shorter than

the measurement period, τ, will be missed. The consequence of this type of

situation is that the idealized, discretized state trajectory will contain missing

transitions, misclassified transitions, and missed dwells such that it is no

longer a reasonable representation of the underlying single-molecule reac-

tion. As a rule of thumb, the effects of missed events in a state trajectory

begin to become pronounced when, for a stochastic rate constant, k, the

condition kτ> 0:1 is true (i.e., k is greater than about 1/10th of the acqui-

sition rate). This is because, for a Markovian reaction, the exponential

distribution dictates that when kτ¼ 0:1 about 10% of the dwell times will

be shorter than the measurement period, τ. This percentage increases as the
stochastic rate constant increases, leading to a substantial number of missed

events. In the sections that follow, we discuss how missing such events

when transforming signal trajectories into state trajectories complicates

the process of analyzing single-molecule kinetic data using state trajectories

(Fig. 2), and then discuss how one might correct for these effects in order to

ensure the accuracy of analyzing single-molecule kinetic data using state

trajectories.

5.1.1 Finite Length of Signal Trajectories
Many factors limit the length of the signal trajectories that can be collected

from individual biomolecules using single-molecule kinetic techniques.

Superficially, the patience of the experimenter and the practical data storage

limitations of computers restrict this length. Practically, the stability of the

biomolecular system can limit the length of an experiment; for instance,
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many enzymes become inactive after a certain time spent at room temper-

ature under in vitro conditions, or, depending on the acid-base properties of

the reactants and products of the reaction being investigated, the buffering

capacity of a buffer might saturate. More commonly, however, is the fact

that the signal corresponding to an individual molecule can simply be lost,

for instance, by photobleaching of a fluorophore, or by dissociation of a

tether, and such an event terminates the signal trajectory. Regardless of

the cause, signal trajectories are finite in length and do not extend infinitely.

Thus, considering the ergodic hypothesis, the data from a single molecule

will consequently not contain enough information to completely character-

ize a system. In an extreme case, one can imagine a state trajectory where no

transitions occur before signal loss. Such a situation places a clear limitation

on the precision with which the dynamics of the single-molecule system can

be quantified. This consideration applies to all state trajectories generated

during the analysis of single-molecule kinetic data, because all of these tra-

jectories will have a finite length.

5.1.2 Missed Transitions
Consider a single molecule that dwells in a particular state, i, for some length

of time, t. Eventually, the single molecule will transition to a new state, j. If

the dwell time, t, in j is shorter than the measurement period, τ, there is a
chance that the single molecule might transition back to i during the

i

j

k

Missed transitions

Missed dwells Misclassified transition

j j ij ik

jk Xij X ij X

Fig. 2 Types of missed events. An example of a single-molecule’s path through state
space is shown in blue, and it transitions between three states (i, j, and k) shown in
red. Measurement periods over which the experimental signal is time averaged are
shown as alternating white and gray boxes. Missed transitions are shown in yellow, mis-
classified transitions are shown in green, and missed dwells are shown purple.
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measurement period (Fig. 2, yellow boxes). This is more likely to occur with

increasingly fast rate constants for the transition from j to i. In such a case,

neither the initial transition from i to j nor the subsequent transition from j to

i would be registered in the state trajectory. Instead, the single molecule

would appear to have remained in i throughout this measurement period,

n, —not having transitioned to the new state; this event is called a missed

transition, and they affect the nij, and thus M. The direct consequence of

the missed transition is that the number of transitions from i to j,Mij, would

be underestimated, ultimately resulting in an underestimation of kij. Addi-

tionally, as a result of the missed transition, the initial dwell time in i would

be overestimated, because it would be the combined length of the initial

dwell time and the following dwell time in i, consequently resulting in an

overestimation of Mii, and, ultimately, an underestimation of kij. Similarly,

in this example, the transition back from j to i is also missed, resulting in an

underestimation of Mji, and therefore an underestimation of kji.

5.1.3 Misclassified Transitions
A related occurrence is that of misclassified transitions, rather than of missed

transitions. In this case, a single molecule beginning in state i could transition

to state j, where it dwells for a period of time, t, that is less than the mea-

surement period, τ. Instead of transitioning back from j to i, as in the exam-

ple above, however, the single molecule could transition to a third, distinct

state, k. In this case, the initial dwell time in i can approximately be correctly

measured from the state trajectory, but the transition from i to j will be mis-

classified as a transition from i to k, and the transition from j to k will be

entirely missed (Fig. 2, green box). As a result of this misclassification, Mij

will be underestimated, while Mjk will be overestimated. These misestima-

tions result in an underestimation of kij, and an overestimation of kjk. More-

over, in cases where j is an obligatory intermediate in the transition from i to

k, such misclassified transitions could lead to an incorrect kinetic model in

which the fact that j is an obligatory intermediate is not deduced and, instead,

direct transitions from i to k are erroneously concluded to occur.

5.1.4 Missed Dwells
In the example of the missed transition from state i to state j given above, we

described a dwell time, t, in state j that was shorter than the measurement

period, τ. This transient dwell time, which resulted in the missed transition,

is called a missed dwell because it is so short that the time spent in j was not

registered in the state trajectory (Fig. 2, purple boxes). While the missed
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dwell is closely related to the missed transitions (it is causal), it and its effects

are conceptually distinct from a missed transition. The missed dwell in j

yields an underestimation of Mjj, and, consequently, an overestimation of

kjx, where x stands for any state accessible from j. However, it also can pro-

vide drastic overestimates of the entries in nix, which, as we show later, can

seemingly distort otherwise normal Markovian behavior.

5.2 Correcting Rate Constants for the Finite Length of Signal
Trajectories

Biomolecular systemsmay undergo very long-lived dwell times, t, relative to

the finite length of a signal trajectory. For example, in an smFRET exper-

iment, signal loss due to fluorophore photobleaching can occur before a

transition occurs. In such a case, the entire state trajectory is typically dis-

carded and is not included in any subsequent dwell time distribution analysis.

This is because the arbitrary experimental end-time of the signal trajectory

truncates the last and only dwell time, and it is therefore unclear to which nij
such a dwell time belongs. As a result, such long-lived dwell times are typ-

ically unclassified, and systematically excluded from further analyses, which

can result in a misestimated counting matrix, M, but also, it reduces the

amount of data in M to a point where any subsequent calculation of a sto-

chastic rate constant will be extremely imprecise.

Fortunately, there is a straightforward correction that can be employed to

correct for this loss of the excluded data, which relies on a control experi-

ment. By including the unclassified dwell times in the ith state into Mii, the

counting matrix is augmented to account for the effect of not having

observed a transition during the finite length of the signal trajectory. This

is true if the finite length of the trajectory is due to stochastic causes (e.g.,

photobleaching, or dissociation of a tether) or deterministic causes (e.g., pre-

maturely terminated data collection) (Wang, Caban, & Gonzalez, 2015).

Notably, the uncertainty in the transition probabilities quantified by the

Bayesian inference approaches introduced in the previous sections accounts

for the unobserved transitions. One complicating factor, however, is that

any resulting stochastic rate constant calculated from this counting matrix

will be the sum of the parallel reaction pathways of both the reaction under

consideration, as well as the stochastic causes of signal termination. Mathe-

matically, this can be expressed as

kobsij ¼ kij + kst, (24)
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where kij
obs is the observed stochastic rate constant from states i to j calculated

from the augmented counting matrix, and kst is the stochastic rate constant

governing the stochastic termination of the signal trajectory. Fortunately, kst
can be measured using a control experiment performed at the single-

molecule level or at the ensemble level (e.g., by measuring the rate of pho-

tobleaching or of dissociation of a tether. Therefore, the true stochastic rate

constant in the absence of these signal-terminating processes, kij, can be cal-

culated using Eq. (24). Finally, we note that this correction can easily be

extended to address additional considerations, such as inactive subpopula-

tions, as it simply entails modifying the on-diagonal elements of the counting

matrix, M, to account for otherwise ignored contributions.

5.3 Correcting Stochastic Rate Constants for Missed Dwells
and Transitions

One well-characterized method to correct for the effects of missed dwells

and missed transitions upon the calculation of stochastic rate constants is

through the augmentation of the kinetic mechanism with “virtual states”

(Crouzy & Sigworth, 1990). This method originated in the field of single-

molecule conductance measurements on ion channels, where researchers

such as Colquhoun and Hawkes pioneered the use of HMMs to analyze

the stochastic kinetics of individual ion channel opening and closing events

(Colquhoun &Hawkes, 1995). The general approach of this method to cor-

rect stochastic rate constants is to consider the expected number of missed

dwells in a particular state. These expected, missed dwells are then classified

into virtual states, which then account for any missed dwells without artifi-

cially contaminating the dwells that were actually observed. While this

method was developed in Crouzy and Sigworth (1990), and reviewed sev-

eral times since (Colquhoun & Hawkes, 1995; Stigler & Rief, 2012), we

briefly explore it here for completeness.

Assume that there is some “cutoff time,” τc, for which a dwell time

shorter than τc would become a missed dwell in a state trajectory. Interest-

ingly, τc is related to the distinction in signal between two states in a signal

trajectory, more than to a particular dwell time. For instance, if one is assig-

ning states in a state trajectory based upon the crossing of a threshold, then τc
is the amount of time in a state that yields a time-averaged signal that crosses

that threshold. Along these lines, τc is also related to the noise and other par-
ticulars of the recording equipment used in the experiment. Unfortunately,

it remains an open question as to how to determine τc exactly (Crouzy &

Sigworth, 1990; Stigler & Rief, 2012). For example, consider the
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asynchronicity of the stochastic transitions between states relative to the start

of a measurement period in a signal trajectory. For an arbitrary dwell time of

length t¼ τ, the measurement period length, a single molecule will, at least,

occupy the state for one-half of a measurement period, and, at most, for all of

a measurement period; the exact amount depends upon the exact times

when the transition occurred, and when the measurement began. Regard-

less, given an evenly spaced threshold, both of these observed dwell times of

length τ would time average the signal past the threshold—either during the

measurement period, n, where the transition occurred or during the neigh-

boring one, n+1. However, given several dwell times of the exact same

length τ=2< t< τ, only some of these dwell times would pass the threshold

and be detected; the success of these detections would depend only upon the

stochastic time of the transition relative to the beginning and end-time of the

measurement period. Therefore, any static value of τc stochastically excludes
only some, but not all, of the dwell times of these lengths. Regardless, τc
should hypothetically be between 0 and τ.

To perform the stochastic rate constant correction, consider a single-

molecule experiment on a reversible, two-state system, 1Ð2, with forward

and reverse stochastic rate constants of k12 and k21, and where measurements

are made with a measurement time period, τ. For instance, this reaction
could be a conformational change, ligand binding event, or folding process

between states 1 and 2 of a biomolecular system. In this case, the forward

reaction occurs from state i¼1 only to state j¼2, while the reverse reaction

occurs from state i¼2 only to state j¼1. For a particular observed dwell time

in state 1, the following dwell time in state 2 can either be a missed dwell or

an observed dwell if it is of length t< τc, or t> τc, respectively. Since each
missed dwell can induce a missed transition in a state vs time trajectory, this

criterion also allows us to split the true number of transitions in a state tra-

jectory into those that are observed transitions, and those that are missed

transitions. Furthermore, by considering the mean of the Poisson distribu-

tion, an equivalent statement can be made for the stochastic rate constants;

therefore, the true stochastic rate constants can be partitioned as

ktrue ¼ kobserved + kmissed: (25)

From Eq. (25), we can calculate a corrected stochastic rate constant,

kcorrected, in place of ktrue, by utilizing a virtual state to account for the con-

tribution for kmissed. Since we know the dwell times assigned to the virtual

state are those that were missed, this expression can be written as
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kcorrected¼ kobserved + fmissed � kcorrected, (26)

where fmissed is the fraction of the total transitions that are missed transitions.

Because a missed dwell in the subsequent state causes a missed transition in

the state of interest, for a Markovian system, fmissed in state 1 is the fraction of

dwell times in state 2 that are less than τc, which is fmissed ¼ 1� e�k21τc . An

equivalent expression can be written for the fmissed in state 2. Therefore,

by substituting this expression into Eq. (26), we find

k12,corrected ¼ k12,observed � ek21,correctedτc ,
and

k21,corrected ¼ k21,observed � ek12,correctedτc : (27)

This resultant set of coupled equations is nonlinear, so the solution to the

corrected stochastic rate constants can be calculated numerically by mini-

mizing the sum of squares of these equations (Stigler &Rief, 2012).Without

the correction, the observed stochastic rate constants for a two-state system

begin to become inaccurate when the stochastic rate constants become faster

than one-tenth of the acquisition rate, τ�1. This correction increases the

region over which stochastic rate constants can be accurately calculated, such

that the corrected stochastic rate constants are now �90% accurate when

they approach the acquisition rate; the inaccuracy is partially due to an

unclear choice of τc, and also that the correction assumes a well-quantified

kobserved, which may not be the case, especially given any misclassified tran-

sitions. Additionally, there are sets of true stochastic rate constants that do

not provide a solution to these equations, and those that do unfortunately

have two solutions—one with faster stochastic rate constants and one with

slower stochastic rate constants—so, it can be challenging to pick the proper

solution (Crouzy & Sigworth, 1990).

5.3.1 Seemingly Non-Markovian Behavior Induced by Missed Dwells
While we have described how to partially account for missed dwells and

missed transitions when calculating stochastic rate constants from state tra-

jectories, the assumptions used to both calculate the observed stochastic rate

constants and correct the observed stochastic rate constants rely on the sys-

tem being Markovian. Experimentally, many single-molecule systems seem

to exhibit non-Markovian behavior (Austin, Beeson, Eisenstein,

Frauenfelder, & Gunsalus, 1975; English et al., 2006), and this is typically

assessed, if at all, by checking to see whether the discrete dwell times
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observed in a particular state are distributed according to the geometric dis-

tribution PMF (Markovian) or not (non-Markovian). Again, all of the

methods described earlier that directly address stochastic rate constants

assume Markovian behavior and should not be applied in the case of

non-Markovian behavior. Additionally, it is worth noting that model selec-

tion for HMMs depends upon this assumption as well (Bronson et al., 2009,

2010; van deMeent et al., 2014, 2013). With these limitations in mind, here

we demonstrate that one particularly detrimental consequence of missed

dwells in an otherwise Markovian state trajectory is the introduction of

seemingly non-Markovian behavior.

To demonstrate the introduction of seemingly non-Markovian behavior

into a Markovian system during the analysis of state trajectories, consider a

single-molecule kinetic experiment that is performed on a reversible, two-

state, Markovian system, 1Ð2, with forward and reverse rate constants k12
and k21, respectively. As before, in this case the forward reaction occurs from

state i¼1 only to state j¼2, while the reverse reaction occurs from state i¼2

only to state j¼1. If even one of these stochastic rate constants is relatively

fast compared to the acquisition rate, there will be many missed dwells for

that state. To be concrete, one such system might be where k12¼0.5 s�1,

k21¼10.0 s�1, and τ¼0.1 s; here k21 is equal to the acquisition rate, while

k12 is 20 times slower, and we therefore expect that there will be many mis-

sed dwells in state 2. The subsequent missed events can be readily observed

in a signal trajectory (Fig. 3).

After idealizing this signal trajectory into a state trajectory, perhaps by

using a threshold, the observed length of each dwell time is used to calculate

the stochastic rate constants.While the observed length of a dwell time in the

state trajectory depends upon the true length of the dwell time in question, it

also depends upon the true lengths of previous and subsequent dwell times.

This is evident by considering the effect that a missed dwell has upon the

state trajectory. Consider a dwell time in state 1 that is longer than the mea-

surement period, τ, which is followed by a dwell time in state 2 that is shorter

than the measurement period, τ (Fig. 2). Since this short dwell time in the

transiently occupied state 2 will be missed, the previous and subsequent

dwell times in state 1 are compounded together to create an overly long,

observed dwell time in the state trajectory. These compounded dwell times

can be composites of two, three, four, or higher integer numbers of dwells in

state 1; where the exact number is one more than the number of missed

events in state 2. This dwell time compounding phenomenon also occurs

for the dwell times in state 2, when the subsequent dwell time in state 1
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Fig. 3 Seemingly non-Markovian behavior from a Markovian, two-state system. (Left) Plot of the first 60 s of a signal trajectory from a sim-
ulated two-state, Markovian system. A state trajectory for this system was simulated for 2.5	106 s, and then the corresponding signal with
signal means of 0 and 1 for states 1 and 2, respectively, was time averaged for each measurement period to create a signal trajectory. A neg-
ligible amount of Gaussian noise was added for visibility. The purple line denotes the threshold used to idealize the data back into a state
trajectory for analysis. Many dwells in the upper state are so transient that they result in missed dwells and missed transitions. (Right) Histo-
grams of the observed dwell times for state 1 (top) and state 2 (bottom). The purple curves are geometric distribution PMFs conditioned upon
dwell times greater than one measurement period, which were calculated using the exact stochastic rate constants that were used for the
simulation. Deviations are the apparent non-Markovian behavior. Contributions from observed dwell times comprised of compounded dwell
times are shown as dashed curves.



is too short; nonetheless, in this example, there are rarely any missed dwells

in state 1 because k12 is so slow.

Observed dwell times that are actually several compounded dwell times

introduce seemingly non-Markovian behavior into the state trajectory. This

is apparent when inspecting the distribution of the lengths of the observed

dwells in the state trajectory (Fig. 3, left). If the system is Markovian, these

discrete dwell times should be distributed according to the geometric distri-

bution PMF as described earlier. However, it is clear that the geometric dis-

tribution PMF does not adequately describe the distribution of these

observed dwell times in this example, especially for the dwell times in state

1 (Fig. 3, right). Despite the Markovian behavior used to simulate this two-

state system, the fast stochastic rate constant k21 yields a dwell time distribu-

tion with behavior that is seemingly non-Markovian. As such, it is important

to recognize that, in this particular situation, analysis methods that assume

Markovian behavior would be deemed inappropriate for analyzing this data.

Beyond the problem of attempting to correct for missed events, in order to

accurately calculate stochastic rate constants from single-molecule kinetic

data recorded on systems governed by such fast stochastic rate constants, a

new approach must be developed that would effectively enable “temporal

superresolution” of the data collected from any single-molecule kinetic

technique. Recently, we have developed a Bayesian inference-based

method to do this that we call Bayesian inference for the analysis of sub-

temporal resolution data (BIASD) (manuscript in preparation).

6. CONCLUSIONS

While we highlighted several well-established methods for calculating

stochastic rate constants from state trajectories, the reporting of the precision

associated with the resultant stochastic rate constants has often been under-

appreciated. Here, we have shown that a common Bayesian inference-based

framework is able to provide the uncertainty associated with the analysis of

every data point in a statistically robust manner; thus, not only does it pro-

vide an intuitive method to integrate concerns about precision into stochas-

tic rate constant calculations, but it helps to maximize the efficiency of the

experiment by enabling the analysis of the entirety of the data. In addition,

we categorized the types of missed events that often appear after idealizing

signal trajectories into state trajectories and discussed the consequences of

these missed events as well as some of the methods that can be implemented

to account for them and improve the accuracy of stochastic rate constant
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calculations. Perhaps in the future, more detailed, statistical descriptions of

the underlying molecular dynamics present in the signal trajectories, such as

that offered by BIASD, will be developed to further overcome these

limitations.
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