Supplementary Methods

Ribosomes, buffers, translation factors and mRNAs

Tight-coupled 70S ribosomes were purified from *Escherichia coli* MRE600 S30 as reported by Noller *et al.*¹ and Wintermeyer, *et al.*². 30S and 50S subunits were purified from 70S ribosomes by dialysis against Tris-polymix buffer (see below) at 1 mM Mg²⁺ followed by sucrose gradient ultracentrifugation in the same buffer.

The composition of our buffer system has been adjusted to optimize the activity of purified ribosomes using *in vitro* translation assays as described ³. The optimal buffer conditions for *in vitro* translation was 50 mM Tris-OAc ($pH_{25^{\circ}C} = 7.5$), 100 mM KCl, 5 mM NH₄OAc, 0.5 mM Ca(OAc)₂, 5 mM Mg(OAc)₂, 6 mM β -mercaptoethanol, 5 mM putrescine and 1 mM spermidine. Single-molecule experiments were performed in the same buffer system at 15 mM Mg(OAc)₂.

Initiation factors IF-1, IF-2 and IF-3 from *E. coli* were purified from overexpressing strains (a kind gift from Prof. Claudio Gualerzi University of Camerino, Italy) as reported ^{4,5}.

Elongation factors, EF-Tu, EF-Ts and EF-G, were PCR cloned from *E. coli* C600 genomic DNA into the pProEX HT-b plasmid system⁶. All mRNAs were chemically synthesized and contained a 5 -biotin followed by a 25 nucleotide spacer region, a strong (UAAGGA) Shine-Dalgarno ribosomal binding site and twelve codons derived from the open reading frame of T4 gene product 32. mRNAs differ only in the sequence identity of the second codon: UUU (cognate), CUU (near-cognate) and AAA (non-cognate).

tRNA aminoacylation and formylation.

Plasmids encoding *E. coli* methionyl tRNA synthetase and formylmethionyltRNA formyltransferase (a kind gift from Prof. Sylvain Blanquet, CNRS-Ecole Polytechnique, Palaiseau Cedex, France) were over-expressed and purified as described ⁷. The formyl donor, 10-formyltetrahydrofolate, was prepared as described ⁸. Aminoacylation and formylation of tRNA^{fMet} and tRNA^{fMet}(Cy3-s⁴U) was achieved as reported⁹ and aminoacylation of tRNA^{Phe} was achieved following standard protocols ¹⁰.

Fluorescent labeling of tRNAs.

Labeling of tRNA^{fMet} with Cy3-maleimide at the s⁴U8 position and labeling of tRNA^{Phe} with Cy5-NHS ester at the acp³U47 position were performed following published procedures¹⁰⁻¹³. Met-tRNA^{fMet}, dye labeled at the α-amino group of methionine was prepared by aminoacylation of tRNA^{fMet} as previously described ⁷, and subsequent labeling with Cy3- or Cy5-NHS ester following published procedures¹⁴. Dye-labeled tRNAs were purified from unlabeled tRNA by HPLC using a TSK-phenyl 5-PW column.

70S complex formation.

70S complexes were initiated on gene32-derived mRNA *in vitro* in Tris-polymix buffer at 5 mM Mg(OAc)₂ using slight modifications of previouisly reported protocol ¹⁵. Initiation complexes were purified by sucrose density ultracentrifugation in Tris-polymix buffer at 20 mM Mg(OAc)₂.

The EF-Tu(GTP)aa-tRNA complex.

Phe-tRNA^{Phe} or Phe-tRNA^{Phe}(Cy5-acp³U) was complexed with EF-Tu(GTP) in three steps. (1) A 10 mM GTP charging mixture was prepared by incubating 10mM GTP, 30 mM phosphoenolpyruvate and 12 U/mL pyruvate kinase in Tris-polymix buffer at 15 mM Mg(OAc)₂. (2) Nucleotide exchange was accomplished by addition of 10 mM GTP charging mixture to a solution of 12 μ M EF-Tu and 12 μ M EF-Ts in Tris-polymix buffer (excluding putrescine and spermidine) to a final concentration of 1 mM GTP. (3) 10 μ M Phe-tRNA^{Phe} was added to the reaction to achieve a final concentration of 1.5 μ M in PhetRNA^{Phe}.

Total Internal Reflection Microscopy.

Preparation of quartz microscope slides and glass coverslips for use in total internal reflection fluorescence microscopy was derived from Ha et al.¹⁶ The flow-cell constructed from the quartz slide and glass coverslip was passivated with a solution of 10 μ M bovine serum albumin and 10 μ M duplex DNA (14 base pairs) in order to prevent nonspecific binding of ribosome complexes and EF-Tu(GTP)Phe-tRNA^{Phe}(Cy5-acp³U) ternary complex.

A lab-built, prism-based total internal reflection (TIR) apparatus, based on an inverted microscope, was used for all experiments. Cy3- or Cy5-labeled molecules were excited using a diode-pumped 532 nm laser or a 635 nm diode laser. Fluorescence emission was collected by a 1.2 NA/60X water-immersion objective and imaged onto a cooled, back-illuminated CCD camera with 9 pixel-binning at 100 ms exposure time. Stopped-flow delivery was achieved using a custom-built, motor-driven syringe injection system where the dead time for complete mixing following delivery of substrates is estimated at ~500 ms.

To extend the lifetimes and reduce the noise of Cy3 and Cy5 fluorescence for fluorescence microscopy, an oxygen scavenging system composed of 1% β -D-glucose, 25 U/mL glucose oxidase and 250 U/mL catalase was added to all samples.

Missing event analysis

Two missing-event corrections were applied to the near-cognate aa-tRNA data set. The first missing event correction was applied to the number of near-cognate aatRNAs transitioning from 0.35 FRET to 0 FRET. A histogram of the time spent by nearcognate aa-tRNA in the 0.35 FRET state before transitioning to 0 FRET follows a single exponential decay with a lifetime of 55 ms \pm 1.6 (**Supplementary Fig. 9a** online). A Monte-Carlo simulation reveals that, given the 100 ms recording time per image of our video camera, approximately 81% of events with a lifetime of 55 ms would not yield a FRET signal \geq 0.25 (the noise threshold used for data analysis) and would thus be missed. Applying this missing event correction, the 126 *observed* near-cognate aa-tRNAs progressing from 0.35 to 0 FRET actually correspond to approximately 674 *real* events (**Supplementary Table 1** online).

The second missing event correction involves the number of near-cognate aatRNAs transitioning from 0.35 FRET to FRET \ge 0.5. In addition to the 35 events that are directly observed to transition from 0.35 FRET to FRET \ge 0.5, we observe 46 events that progress directly from FRET \le 0.25 to a FRET value \ge 0.5 without an explicit data point at 0.35 FRET. We assume that these 46 events *must* have passed through 0.35 FRET and were added to the 35 events explicitly observed to transition from 0.35 FRET to FRET \ge 0.5 . Therefore, 81 total events transition from 0.35 FRET to FRET \ge 0.5 and we calculate that a total of 11% of near-cognate aa-tRNAs advance past the initial selection step (**Supplementary Table 1** online).

Missing event corrections similar to those made for the near-cognate aa-tRNA data set can be applied to the cognate aa-tRNA data set. In this case, the majority of events at 0.35 FRET advance to FRET \geq 0.5, only 10 events are observed to transition from 0.35 FRET to 0 FRET. Using this limited data set, a histogram of the time spent by cognate aa-tRNA in the 0.35 FRET state before transitioning to 0 FRET follows a single exponential decay with a lifetime of 72 ms ± 8.8 (**Supplementary Fig. 9b** online). However, a better lifetime fit is obtained by using the larger cognate EF-Tu(GDPNP)aa-tRNA data set; this leads to a lifetime of 55 ms ± 6 (**Supplementary Fig. 8** online). Once again, Monte-Carlo simulations using a lifetime of 55 ms reveal that approximately 81% of the events are missed. Applying this correction, the 10 observed cognate aa-tRNA transitioning from 0.35 FRET to 0 FRET actually correspond to approximately 53 *actual* events (**Supplementary Table 1** online).

Fidelity calculations

In the near-cognate data set, 674 events are estimated to have been rejected at the initial selection step, transitioning from 0.35 FRET to 0 FRET, whereas an estimated 81 events transition from 0.35 FRET to FRET states \geq 0.5. Conservatively assuming that we did not undercount the number of events transitioning to FRET \geq 0.5, we observe a total of 755 attempts for near-cognate aa-tRNAs to advance past the initial selection step. Of these, 3 events advance past both the initial selection and proofreading steps and stably accommodate at the 0.75 FRET state. Dividing the number of stably accommodated near-

cognate aa-tRNAs by the total number of attempts yields an overall accommodation ratio of 4×10^{-3} . By comparison, approximately 53 events in the cognate data set transition from 0.35 FRET to 0 FRET and are rejected at the initial selection step, while 97 events are estimated to progress from 0.35 FRET to FRET ≥ 0.5 . This yields a total of 150 attempts for cognate aa-tRNAs to progress past initial selection. Of these, 84 events advance past both the initial selection and proofreading steps to accommodate at a stable 0.75 FRET state, yielding an overall accommodation ratio of 0.56. The overall error frequency of aa-tRNA selection in our system at 15 mM Mg²⁺ and 25 °C is obtained by dividing the near-cognate over the cognate accommodation ratios and yields a value of 7.1×10^{-3} .

- 1. Powers, T. & Noller, H.F. A functional pseudoknot in 16S ribosomal RNA. *EMBO (Eur. Mol. Biol. Organ.) J.* **10**, 2203-2214 (1991).
- 2. Robertson, J.M. & Wintermeyer, W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. *J. Mol. Biol.* **151**, 57-79 (1981).
- 3. Chambliss, G.H., Henkin, T.M. & Leventhal, J.M. Bacterial in vitro proteinsynthesizing systems. *Methods Enzymol.* **101**, 598-605 (1983).
- 4. Dahlquist, K.D. & Puglisi, J.D. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. *J. Mol. Biol.* **299**, 1-15 (2000).
- 5. Soffientini, A. *et al.* Purification Procedure for Bacterial Tranlational Initiation Factors IF2 and IF3. *Protein Expr. Purif.* **5**, 118-124 (1994).
- 6. Blanchard, S.C., Kim, H.D., Gonzalez Jr., R.L., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. *Proc. Natl. Acad. Sci. U. S. A.*, (In Press) (2004).
- 7. Fourmy, D., Meinnel, T., Mechulam, Y. & Blanquet, S. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase. *J. Mol. Biol.* **231**, 1068-1077 (1993).
- 8. Kahn, D., Fromant, M., Fayat, G., Dessen, P. & Blanquet, S. Methionyl-transfer-RNA transformylase from Escherichia coli. Purification and characterisation. *Eur. J. Biochem.* **105**, 489-497 (1980).
- Schmitt, E., Blanquet, S. & Mechulam, Y. Crystallization and preliminary X-ray analysis of Escherichia coli methionyl-tRNAMet(f) formyltransferase complexed with formyl-methionyl-tRNAMet(f). *Acta Crystallogr. Sect. D Biol. Crystallogr.* 55 (Pt 1), 332-334 (1999).

- 10. Carbon, J. & David, H. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds. *Biochemistry* **7**, 3851-3858 (1968).
- Watson, B.S. *et al.* Macromolecular arrangement in the aminoacyltRNA.elongation factor Tu.GTP ternary complex. A fluorescence energy transfer study. *Biochemistry* 34, 7904-7912 (1995).
- 12. Carbon, J. & David, H. Thiobases in escherichia coli transfer RNA: 2thiocytosine and 5-methylaminomethyl-2-thiouracil. *Science* **161**, 1146-1147 (1967).
- Plumbridge, J.A., Baumert, H.G., Ehrenberg, M. & Rigler, R. Characterisation of a new, fully active fluorescent derivative of E. coli tRNA Phe. *Nucleic Acids Res.* 8, 827-843 (1980).
- 14. Reuben, M.A., Kusnezov, I.J. & Wickstrom, E. Inhibition of deacylation and improvement in N-hydroxysuccinimide ester modification of phenylalanyl-tRNA by dimethyl sulfoxide. *Biochim. Biophys. Acta* **565**, 219-223 (1979).
- 15. Pavlov, M.Y. & Ehrenberg, M. Rate of Translation of Natural mRNAs in an Optimized in vitro System. *Arch. Biochem. Biophys.* **328**, 9-16 (1996).
- 16. Ha, T. *et al.* Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. *Nature* **419**, 638-641 (2002).