Tetrahedron Letters No.34, pp. 2371-2377, 1964. Pergamon Press Ltd. Printed in Great Britain.

THE FOUR CHROMOSES FROM CHROMOMYCIN A₃ M.Miyamoto, Y.Kawamatsu, M.Shinohara Takeda Chemical Industries, Juso, Osaka, Japan K.Nakanishi, Y.Nakadaira and N.S.Bhacca^{*} Department of Chemistry, Tohoku University, Sendai, Japan. (Received 25 May 1964; in revised form 6 July 1964)

Chromomycin is the name given to a group of cancerostatic antibiotics produced by <u>Streptomyces griseus</u> No.7, and is a mixture of several closely related compounds¹⁾. The principal constituent, which is commercially available, has been designated chromomycin $A_3^{(1)}$. The isolation of closely related compounds has been reported by several groups: <u>e.g.</u>, aureolic acid²⁾, aburamycin³⁾, LA-7017⁴⁾, M5-18903⁵⁾, NSCA-649⁶⁾, mithramycin⁷⁾, olivomycin⁸⁾.

These antibiotics apparently belong to a new class of compounds, but their structures remain unclarified. This and following communications^{9),10)} deal with the structural elucidation of chromomycin A_3 , $C_{51}H_{72}O_{23}$.

Chromomycin A_3 can be hydrolysed to the four 2,6-dideoxysugars, chromoses A^{11} , B, C and D, and the aglycone chromomycinone⁹⁾ by boiling in 50% aqueous acetic acid. Chromose A has been established¹¹⁾ to belong to the D-series and its

On leave from Varian Associates, Palo Alto, California.

2371

structure along with those of chromoses B, C and D is shown in FIG.1.

FIG.1.

2,6-Dideoxy-3-C-methyl-4-O-acetyl-L-<u>arabo</u>-hexopyranose (L-<u>chromose B</u>), $C_{9}H_{16}O_{5}$, is an oil^{*} with v_{cm}^{CHCl} 3 1733(OAc), and $[\alpha]_{D}^{21} = -26^{\circ}(c = 1,1 \text{ in } H_{2}O, \text{ immediately after preparation}),$ and -24° after 40 min. or longer. Hydrolysis of chromose B with potassium carbonate gave acetic acid and deacetylchromose B, $C_{7}H_{14}O_{4}$, m.p. 109°, $[\alpha]_{D}^{22} = -15^{\circ}(c = 1.0 \text{ in } H_{2}O, \text{ immediately}$ after preparation), $[\alpha]_{D}^{22} = -22^{\circ}(\text{after 1 hour and longer}).$

FIG.2 shows the 100 mc spectrum, including spin-decoupling data of deacetylchromose B dissolved in D_2^{0} containing a small amount of sodium 2,2-dimethyl-2-silapentane-5-sulfonate the

^{*} The analyses of all compounds described in this communication agreed with the molecular formulae although some could not be obtained crystalline.

latter acting as internal reference*.

FIG.2 NMR spectrum and decoupled traces of deacetylchromose B in D₂0, ppm from DSS.

The NMR spectrum was measured immediately after dissolving the sample in D_2^0 . The tall peaks at 1.30 and 1.32 are due to C_3 -Me and C_5 -Me respectively. The latter is coupled with a spin coupling constant of 6 cps to its adjacent proton whose resonance appears at 3.56. H_5 is further coupled to H_4 with a characteristic axial-axial coupling constant of 10 cps.

The nonequivalent protons at C_2 resonate at 1.67 and 2.12, and exhibit a geminal coupling constant of 12 cps. C_2 -H_a and C_2 -H_e are further coupled to C_1 -H with coupling constants of 9.5(axial-axial) and 2.8(axial-equatorial) cps. The peaks

^{*} See Preface II in N.S.Bhacca, D.P.Hollis, L.F.Johnson and E.A.Pier, "NMR Spectra Catalog" Volume 2. Varian Associates 1963.

corresponding to C_1 is located at 4.97 and the width of resonance pattern is 13 cps. However, after three days, the intensity of the quartet at 4.97 is reduced and a triplet (5 cps wide) of corresponding intensity is observed at 5.33. This indicates that axial-axial and axial-equatorial couplings of 9.5 and 2.8 has now been supplemented by a pattern which has axial-equatorial and equatorial-equatorial couplings of 2.5 cps. Thus anomerization takes place at C_1 .

3-epimycarose

FIG.3 The chemical shifts¹²⁾ (in ppm) calculated using sodium 2,2-dimethyl-2-silapentane-5sulfonate as internal reference.

The NMR spectrum of deacetylchromose B is very similar to that of mycarose¹²⁾ and 3-epimycarose¹²⁾ which are quite similar to each other (see FIG.3). Comparisons of FIG.2 and 3 indicate that deacetylchromose B has the 3-epimycarose structure, namely <u>1</u>, or <u>2</u>. The negative direction of mutarotation in deacetylchromose B (-15° to -22°) is accompanied by the change in NMR signals of the anomeric C₁-proton (axial to equatorial). Thus deacetylchromose B belongs to the L-series and is the yet unknown¹³⁾ 3-epi-L-mycarose.

Chromose B has an acetate group. The attachment of this function can be readily determined by comparing the NMR spectra

— · — · — · — · — · _ _ mirror

of deacetylchromose B with that of chromose B. The signals corresponding to the proton at C_4 shift down from 3.26 to 4.63 due to the replacement of hydroxyl by a more electronegative acetoxyl group. Therefore the acetate group must be located at C_4 in the equatorial position. This is further substantiated by the fact that L-chromose B itself does not consume periodic acid.

2,6-Dideoxy-D-arabo-hexopyranose(D-chromose C), the sugar eluted from the cellulose powder column was an oil that analysed for $C_6H_{12}O_4$; the $[\alpha]_D^{21}$ value of +22°(c = 1.4, in H_2O) remained constant, and thus the oil is already an equilibrium mixture of anomers. Its 60 mc NMR spectrum in D_2O solution showed two quartets of equal intensity at 5.33 ppm(J: 1.5, 4 cps) and 4.90 ppm(J: 2, 10 cps), which could be assigned to the equatorial and axial C_1 -H, respectively. Periodic oxidation of the oil yielded acetaldehyde and formic acid. Treatment of the oil with 10% HC1-MeOH gave methyl chromoside C, $C_7H_{14}O_4$,

2375

b.p._{1.0} 126-129°, $[\alpha]_D^{23} = +87^{\circ}(c = 1.2 \text{ in } H_2^{\circ}).$

The 60 mc spectrum of methyl chromoside C, dissolved in $CDCl_3$ containing a trace amount of tetramethylsilane, showed the following signals:

The resonance at 4.72 was assigned to the proton at C_1 . It shows two small coupling constants (3.5 and 1.5 cps) to its adjacent methylene group protons. This establishes equatorial configuration for H_1 . Since signals at C_4 exhibit two 9 cps couplings, all three protons at C_3 , C_4 and C_5 must be axial. This leads to a 2-deoxyrhamnose structure for the sugar. The rotation of the anomeric mixture of 2-deoxy-L-rhamnose¹⁴) is $[\alpha]_D^{14} = -18.2^\circ$, which is opposite that of the present sugar. Accordingly chromose C belongs to the D-series (see FIG.1).

2,6-Dideoxy-3-O-acetyl-D-<u>lyxo</u>-hexopyranose(D-<u>chromose D</u>), $C_8H_{14}O_5$, was obtained in the form of crystals, m.p. 128°, $(\alpha)_D^{23} = +87^{\circ}(c = 1.5 \text{ in } H_2^{\circ}), v_{cm}^{CHQ1}3 1715(OAc), \delta_{ppm}^{D_2^{\circ}O} 2.13(OAc),$ 1.21(sec-Me).

Chromose D consumes one mole of periodic acid. Upon treatment with potassium carbonate it gives acetic acid and deacetylchromose D, $C_6H_{12}O_4$, $[\alpha]_D^{2O}$ +53°(c = 1.2 in H_2O); the latter is identical with demethyl D-chromose A(demethylation

2376

· . .

with boron trichloride¹⁵). The structure of this sugar is thus also established (see FIG.1).

We are indebted to Professor R.U.Lemieux, Alberta, Canada, for valuable discussions.

REFERENCES

- M.Shibata, K.Tanabe, Y.Hamada, K.Nakazawa, A.Miyake, H.Hitomi, M.Miyamoto and K.Mizuno, <u>J.Antibiotics</u>, Ser. B 13, 1 (1960) K.Mizuno, <u>J.Antibiotics</u>, Ser. A <u>16</u>, 22 (1963)
- J.E.Philip and J.R.Schenck, <u>Antibiot. and Chemoth.</u>, <u>3</u>, 1218 (1953)
- 3) H.Nishimura, R.Kimura, K.Tawara, K.Sasaki, N.Nakajima, N.Shimaoka, S.Okamoto, M.Shinohara and J.Isono, <u>J.Antibiotics</u>, Ser. A <u>10</u>, 205 (1957)
- P.Sensi, A.M.Greco and H.Pagani, <u>Antibiot. and Chemoth</u>., <u>δ</u>, 241 (1958)
- R.M.Gale, M.H.Hoehn and M.H.Cormick, <u>Antibiot. Ann</u>., <u>1958/1959</u>, 489 (1959)
- 6) H.Schemitz, B.Heinmann, J.Lein and I.R.Hooper, Antibiot. and Chemoth., <u>10</u>, 740 (1960)
- 7) K.V.Rao, W.R.Cullen and B.O.Sobin, <u>Antibiot, and Chemoth.</u>, <u>12</u>, 182 (1962)
- 8) M.G.Brazhnikova, E.B.Kruglyak, I.N.Kovsharova, N.V.Konstantinova and V.V.Proshlyakova, <u>Antibiotiki</u>, <u>7</u>, 39 (1962)
- 9) M.Miyamoto, K.Morita, Y.Kawamatsu, S.Noguchi, R.Marumoto, K.Tanaka, S.Tatsuoka, K.Nakanishi, Y.Nakadaira, and N.S.Bhacca, <u>Tetrahedron Letters</u>, this issue.
- 10) M.Miyamoto, K.Morita, Y.Kawamatsu, M.Sasai, A.Nohara, K.Tanaka, S.Tatsuoka, K.Nakanishi, Y.Nakadaira and N.S.Bhacca, <u>Tetrahedron Letters</u>, this issue.
- 11) M.Miyamoto, Y.Kawamatsu, M.Shinohara, Y.Asahi, Y.Nakadaira, H.Kakisawa, K.Nakanishi and N.S.Bhacca, <u>Tetrahedron Letters</u>, 693 (1963)
- 12) W.Hofheinz, H.Griesebach and H.Friebolin, <u>Tetrahedron</u>, <u>18</u>, 1265 (1962)
- F.Korte, U.Claussen and K.Gohrig, <u>Tetrahedron</u>, <u>18</u>, 1257 (1962)
 D.M.Lemal, P.D.Pacht and R.B.Woodward, <u>Tetrahedron</u>, <u>18</u>, 1275 (1962)
- 14) B.Iselin and T.Reichstein, <u>Helv. Chim. Acta</u>, <u>27</u>, 1146 (1944)
- 15) S.Allen, T.G.Bonner, E.J.Bourne and N.M.Saville, <u>Chem. and Ind.</u>, 630 (1958)