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Abstract

This paper is aimed at developing a non-local theory for obtaining a numerical approximation to a boundary-value problem
describing damage phenomena in a ceramic composite material. The mathematical homogenization method based on double-scale
asymptotic expansion is generalized to account for damage effects in heterogeneous media. A closed-form expression relating local

fields to the overall strain and damage is derived. Non-local damage theory is developed by introducing the concept of non-local
phase fields (stress, strain, free energy density, damage release rate, etc.). Numerical results of our model were found to be in good
agreement with experimental data from 4-point bend tests conducted on composite beams made of BlackglasTM/Nextel 5-harness
satin weave. # 2001 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Damage in composite materials occurs through dif-
ferent mechanisms that are complex and usually involve
interaction between microconstituents. During the past
two decades, a number of models have been developed
to simulate damage and failure processes in ceramic
composites, among which the damage-mechanics
approach is particularly attractive in the sense that it
provides a viable framework for the description of dis-
tributed damage including material stiffness degrada-
tion, initiation, growth and coalescence of microcracks
and voids. Various damage models for brittle compo-
sites can be classified into micromechanical (or
mesomechanical) and macromechanical approaches. In
the macromechanical damage approach, a composite
material is idealized (or homogenized) as an anisotropic
homogeneous medium and damage is introduced via
internal variable whose tensorial nature depends on
assumptions about crack orientation [9,15,16,19,21,18].
The micromechanical damage approach, on the other
hand, treats each microphase as a statistically homo-
geneous medium. Local damage variables are defined to
represent the state of damage in each phase and phase

effective material properties are defined thereafter. The
overall response is subsequently obtained by homo-
genization [1,17,22].
From the mathematical formulation stand point, both

approaches can be viewed as a two-step procedure. The
main difference between the two approaches is in the
chronological order in which the homogenization and
evolution of damage are carried out. In the macro-
mechanical approach, homogenization is performed
first followed by application of damage mechanics
principles to homogenized anisotropic medium, while in
the micromechanical approach, damage mechanics is
applied to each phase followed by homogenization.
The primary objective of the present manuscript is to

simultaneously carry out the two steps (homogenization
and evolution of damage) by extending the framework
of the classical mathematical homogenization theory [2–
4] to account for damage effects. This is accomplished
by introducing a double scale asymptotic expansion of
damage parameter (or damage tensor in general). This
leads to the derivation of the closed form expression
relating local fields to overall strains and damage. The
second salient feature of our approach is in developing a
non-local theory by introducing the concept of non-
local phase fields (stress, strain, free energy density,
damage release rate, etc.). Non-local phase fields are
defined as weighted averages over each phase in the
characteristic volume in a manner analogous to that
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currently practiced in concrete [6,7] with the only
exception being that the weight functions are taken to
be C0 continuous over a single phase and zero else-
where. On the global (macro) level we limit the finite
element size to ensure a valid use of the mathematical
homogenization theory and to limit localization. We
consider a 4-point bend test conducted on the ceramic
composite beam made of BlackglasTM/Nextel 5-harness
satin weave and compare our numerical simulations to
experiments [8].

2. Mathematical homogenization for damaged compo-
sites

In this section we extend the classical mathematical
homogenization theory [2] for statistically homogeneous
composite media to account for damage effects. The
strain-based continuum damage theory is adopted for
constructing constitutive relations at the level of micro-
constituents. Closed form expressions of local strain and
stress fields in a multi-phase composite medium are
derived. Attention is restricted to small deformations.
The microstructure of a composite material is

assumed to be locally periodic (Y-periodic) with a per-
iod defined by the representative volume element
(RVE), denoted by �. Let x be a macroscopic coordi-
nate vector in macro domain � and y�x=& be a micro-
scopic position vector in �. Here, & denotes a very small
positive number compared with the dimension of �,
and y�x=& is regarded as a stretched coordinate vector
in the microscopic domain. When a solid is subjected to
some load and boundary conditions, the resulting
deformation, stresses, and internal variables may vary
from point to point within the RVE due to the high
level of heterogeneity. We assume that all quantities
have two explicit dependencies: one on the macroscopic
level x, and the other one on the level of micro-
constituents y�x=&. For any Y-periodic response func-
tion f, we have f(x,y)=f(x,y+ky) in which vector y is
the basic period of the microstructure and k is a 3 by 3
diagonal matrix with integer components. Adopting the
classical nomenclature, any Y-periodic function f can be
represented as f& xð Þ � f x; y xð Þð Þ with superscript &
denoting a Y-periodic function f. The indirect macro-
scopic spatial derivatives of f& can be calculated by the
chain rule as with the comma followed by a subscript
variable xi denoting a partial derivative with respect to
the subscript variable (i.e. f;xi � @f=@xi). Summation
convention for repeated subscripts is employed, except
for subscripts x and y.
The constitutive equation on the microscale is derived

from continuum damage theory based on the thermo-
dynamics of irreversible processes and internal state
variable theory. We define a scalar damage parameter !&

as a function of microscopic and macroscopic position

vectors, i.e. !& =!(x,y) The anisotropy of damage is
introduced through damage shape functions to be for-
mulated later.
Based on the strain-based continuum damage theory,

the free energy density has the form of

� !&; "&ij

� �
¼ 1� !&ð Þ�e "

&
ij

� �
ð1Þ

where !& 2 0; 1½ Þ is the damage parameter. For small
deformations, elastic free energy density is given as
�e

�
"&ij
� ¼ 0:5 Lijkl"

&
ij"
&
kl. The constitutive equation, ther-

modynamic force (also known as a damage energy
release rate) and dissipative inequality follow from (1)

�&ij ¼
@� !&; "&ij

� �
@"&ij

;Y ¼ �
@� !&; "&ij

� �
@!&

;Y!
: &5 0: ð2Þ

With this brief glimpse into the constitutive theory,
we proceed to outline the strong form of the governing
differential equations on the fine scale—the scale of
microconstituents. We assume that microconstituents
possess homogeneous properties and satisfy equili-
brium, constitutive, kinematics and compatibility equa-
tions. The corresponding boundary value problem is
governed by the following set of equations:

�ij;j þ bi ¼ 0; �&ij ¼ 1� !&ð ÞLijkl"
&
kl; "

&
ij ¼ u&i;jð Þ on �

ð3Þ

u&l ¼ u� i on �u; �
&
ijnj ¼ t

:
i on �t: ð4Þ

where !& is a scalar damage parameter; �&ij and "
&
ij are

components of stress and strain tensors; Lijkl represents
components of elastic stiffness; bi is a body force
assumed to be independent of y; u&l denotes the compo-
nents of the displacement vector; the subscript pairs
with parentheses denote the symmetric gradients; �
denotes the macroscopic domain of interest with
boundary �; �u and �t are boundary portions where
displacements u�i and tractions t

:
i are prescribed, respec-

tively; ni denotes the normal vector on �.
The mathematical homogenization method based on

the double-scale asymptotic expansion is employed to
account for microstructural effects on the macroscopic
response without explicitly representing the details of
the microstructure in the global analysis. As a starting
point, we approximate the displacement field, u&l (x)=
ui(x,y), and the damage parameter, !&(x)=! (x,y), in
terms of double-scale asymptotic expansions on � x �:

ui x; yð Þ � u0i x; yð Þ þ &u1i x; yð Þ þ . . . ;

! x; yð Þ � !0 x; yð Þ þ &!1 x; yð Þ þ . . .
ð5Þ
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Strain expansions on the composite domain � x �
can be obtained by substituting (5) into (3) with con-
sideration of the indirect differentiation rule

"ij x; yð Þ � 1

&
"�1
ij x; yð Þ þ "0ij x; yð Þ þ &"1ij x; yð Þ þ . . . ð6Þ

"�1
ij ¼ "yij u

0
� �

; "sij ¼ "xij u
sð Þ þ "yij usþ1

� �
;

"xij u
sð Þ ¼ us

i;xjð Þ; "yij u
sð Þ ¼ us

i;yjð Þ
ð7Þ

Stresses and strains for different orders of & are rela-
ted by the constitutive Eq. (3)

��1
ij ¼ 1� !0

� �
Lijkl"

�1
kl ;

�sij ¼ 1� !0
� �

Lijkl"
s
kl þ

Xs
r¼0

!s�rþ1Lijkl"
r�1
kl :

ð8Þ

The resulting asymptotic expansion of stress is given
as

�ij x; yð Þ � 1

&
��1
ij x; yð Þ þ �0ij x; yð Þ þ &�1ij x; yð Þ þ . . . ð9Þ

Inserting the stress expansion (9) into equilibrium Eq.
(3) and making use of the equation yield the following
equilibrium equations for various orders:

O &�2
� �

: ��1
ij;yj

¼ 0; O &�1
� �

: ��1
ij;xj

þ �0ij;yj ¼ 0;

O &0
� �

: �0ij;xj þ �1ij;yj þ bi ¼ 0:
ð10Þ

Remark. For modeling damage in woven or textile
composites it is often necessary to introduce additional
scale to model microcracking of matrix in the bundle. In
this case we can approximate the microscopic displace-
ment field, u&(x)�u(x,y,z), and the damage variable,
!&(x)�!(x,y,z), in terms of the triple-scale asymptotic
expansions on �x�yx�z:

umic � u0 xð Þ þ &u1 x; yð Þ þ &2u2 x; y; zð Þ ð11Þ

!mic � !0 x; y; zð Þ þ &!1 x; y; zð Þ þ &2!2 x; y; zð Þ ð12Þ

where z represents the microscale. Asymptotic expan-
sion on �x�yx�z can be then obtained in a similar
manner as for two scales. For more details we refer to
[23].
From the O(& �2) equilibrium Eq. (10) we arrive at the

classical result u0i ¼ u0i xð Þ.
We proceed to the O(& �1) equilibrium Eq. (10). From

(7) and (8) follow

1� !0
� �

Lijkl "xkl u
0

� �þ "ykl u1� �� �� �
;yj
¼ 0 on � ð13Þ

To solve for (13) up to a constant we introduce the
following separation of variables

u1i x; yð Þ ¼ Hikl yð Þ "xkl u0
� �þ d!kl xð Þ� � ð14Þ

where Hikl is a Y-periodic function. We assume that
d!kl xð Þ is macroscopic damage-induced strain driven by
the macroscopic strain "�kl � "xkl u

0
� �

. More specifically
we can state that if "�kl ¼ 0, then d!kl xð Þ and !0(x,y)=0.
Based on the decomposition given in (14), the O(&�1)

equilibrium equation takes the following form:n
1� !0
� �

Lijkl

h
Iklmn þ Gklmnð Þ"xmn u

0
� �

þ Gklmnd
!
mn xð Þ

io
;yj

¼ 0 in �
ð15Þ

where

Iklmn ¼ 1

2
�mk�nl þ �nk�mlð Þ;

Gklmn yð Þ ¼ H k;ylð Þmn yð Þ
ð16Þ

and �mk is the Kronecker delta, while Gklmn is known as
a polarization function. It can be shown that the inte-
grals of the polarization functions in � vanish due to
periodicity conditions. Since Eq. (15) should be valid for
arbitrary macroscopic fields, we may first consider the
case of d!kl xð Þ=0 (and !0=0) but "�kl 6¼ 0, which yields
the following equation in �:

Lijkl Iklmn þH k;ylð Þmn

� �� �
;yj
¼ 0 ð17Þ

Eq. (17) together with the Y-periodic boundary con-
ditions is a linear boundary value problem in �. By
exploiting the symmetry with respect to the indexes (m,
n), the weak form of (17) is solved for 3 right hand side
vectors in 2-D and 6 right hand side vectors in 3-D (see
for example [11,14]). In the absence of damage, the
asymptotic expansion of strain (6) can be expressed in
terms of the macroscopic strain "�ij as follows

"ij ¼ Aijkl"�kl þO &ð Þ; Aijkl ¼ Iijkl þ Gijkl: ð18Þ

The elastic homogenized stiffness L� ijkl follows from
the O(&0) equilibrium equation [17]:

L� ijkl � 1

�j j
ð
�

LijmnAmnkld�

¼ 1

�j j
ð
�

AmnijLmnstAstkld� ð19Þ

where �j j is the volume of a RVE.
After solving (17) for Himn, we proceed to find d!mn

from (15). Premultiplying it by Hist and integrating it by
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parts with consideration of Y-periodic boundary condi-
tions yieldsð
�

1� !0
� �

GijstLijkl Aklmn"xmn u
0

� �þ Gklmnd
!
mn xð Þ� �

d� ¼ 0

ð20Þ

from where the expression of the macroscopic damaged
induced strain can be shown to be

d!mn xð Þ ¼ �
ð
�

1� !0
� �

GijstLijklGklmn d�

� ��1

ð
�

1� !0
� �

GijstLijklAklpb d�

� �
"�pb

ð21Þ

Let  
* �  �ð Þ yð Þ� �n

1
be a set of C�1 continuous func-

tions, then the damage parameter !0(x,y) is assumed to
have the following decomposition

!0 x; yð Þ ¼
Xn
�¼1

 �ð Þ yð Þ! �ð Þ xð Þ ð22Þ

where  (�)(y) is a damage shape function on the micro-
scale. If experimental data is available damage direc-
tionality can be introduced through these shape
functions. Rewriting (21) in terms of strain concentra-
tion function Aijkl and manipulating it with (19) and
(22) yields

d!mn xð Þ ¼ Dklmn xð Þ"�mn ð23Þ

where

Dklmn xð Þ ¼ Iklst �
Xn
�¼1

B
�ð Þ
klst!

�ð Þ xð Þ
 !�1 Xn

�¼1

B
�ð Þ
stmn!

�ð Þ xð Þ
 !

ð24Þ

B
�ð Þ
ijkl ¼

1

�j j
� L~ ijmn � L� ijmn

� ��1
ð
�

 �ð ÞGstmnLstpqGpqkl d�

ð25Þ

C
�ð Þ
ijkl ¼

1

�j j
� L~ ijmn � L� ijmn

� ��1
ð
�

 �ð ÞGstmnLstpqApqkl d�

ð26Þ

L~ ijmn ¼ 1

�j j
ð
�

Lijmn d� ð27Þ

In conjunction with (14) and (23), the asymptotic
expansion of strain field (6) can be finally cast as

"ij x; yð Þ ¼ Aijmn yð Þ"�mn xð Þ þ Gijkl yð ÞDklmn xð Þ"�mn xð Þ þO &ð Þ

ð28Þ

where Gijkl(y) can be interpreted as a damage strain
influence function. Note that the asymptotic expansion
of the strain field is given as a sum of mechanical fields
induced by the macroscopic strain via elastic strain
concentration function and thermodynamical fields gov-
erned by damage-induced strain, d!kl xð Þ=Dklmn(x)"�mn(x),
through the damage strain influence function.
Finally, we integrate the O(&0) equilibrium Eq. (10)

over �. The
Ð
��

1
ij;yj

d� term vanishes due to periodicity
which yields the macroscopic equilibrium equation

�� ij;xj þ bi ¼ 0 and Lijmn"�mn

� �
;xj
þbi ¼ 0 ð29Þ

where Lijmn is an instantaneous secant stiffness given as

Lijmn ¼ L� ijkl þ
Xn
�¼1

! �ð Þ

�j j
ð
�

 �ð ÞLijstAstkld�

 !

� Iklmn þDklmnð Þ � L~ ijkl þ
Xn
�¼1

! �ð Þ

�j j
ð
�

 �ð ÞLijkld�

 !
�Dklmn

ð30Þ

and the macroscopic stress �� ij is defined as �� ij �
1
�j j
Ð
��

0
ij d�.

Accumulation of damage leads to strain softening and
loss of ellipticity. The local approach, stating that in the
absence of thermal effects, stresses in a material at a
point are completely determined by the deformation
and the deformation history at that point, may result in
a physically unacceptable localization of the deforma-
tion [5]. The principal fault of the local approach, as
indicated in [4,5,7,20], is that the energy dissipation at
failure is incorrectly predicted to be zero and the corre-
sponding finite element solution converges to this spur-
ious solution as the mesh is refined. To remedy the
situation, a number of approaches have been devised to
limit strain localization and to circumvent mesh sensi-
tivity associated with strain softening [10]. One of these
approaches is based on the non-local damage theory
[4,7], the essence of which is to smear solution variables
causing strain softening over the characteristic volume
of the material.
Following [5] and [7], the non-local damage para-

meter !� (x) is defined as:

!� xð Þ ¼ 1

�Cj j
ð
�C

’ yð Þ!0 x; yð Þ d� ð31Þ

2218 J. Fish, Q. Yu /Composites Science and Technology 61 (2001) 2215–2222



where ’(y) is a weight function; �C is the characteristic
volume [6,13]. In the present manuscript, we redefine
the representative volume element (RVE) as the max-
imum required from the statistically homogeneity point
of view for which the local periodicity assumption is
valid and the characteristic volume.
We further assume that the microscopic damage dis-

tribution function  (�)(y) introduced in (22) is a piece-
wise function, i.e. it is continuous within the domain of
microphase, � �ð Þ � �C � �, but vanishes elsewhere, i.e.

 �ð Þ yð Þ ¼ g �ð Þ yð Þ if y 2 � �ð Þ

0 otherwise

�
ð32Þ

where
Sn
i¼1

� �ð Þ ¼ � and � lð ÞT� �ð Þ ¼ 1 for l 6¼�, �=1,
2, . . ., n; n is the product of the number of different
microphases and the number of characteristic volumes
in RVE;  (�)(y) is a distribution function; g(�)(y) is a C0

continuous function in �(�); and !(�)(x) is a macro-
scopically variable amplitude. We further define the
weight function in (31) as

’ yð Þ ¼ � �ð Þ �ð Þ yð Þ ð33Þ

where the constant �(�) is determined by the orthogon-
ality condition

� �ð Þ

�Cj j
ð
�C

g lð Þ yð Þg �ð Þ yð Þ d� ¼ �l�;

l; � ¼ 1; 2; . . . ; n
ð34Þ

and �l� is Kronecker delta. Substituting (22) and (32)–
(34) into (31) yields

!� xð Þ ¼ � �ð Þ

�C

ð
�C

g �ð Þ yð Þ� �2
! �ð Þ xð Þ d� ¼ ! �ð Þ xð Þ ð35Þ

which provides the motivation for the specific choice of
the weight function. It can be seen that !(�) has a
meaning of the non-local phase damage parameter.
The average strains in each subdomain in RVE are

obtained by integrating (28) over �(�):

" �ð Þ
ij ¼ 1

� �ð Þ		 		
ð
� �ð Þ
"ij d�

¼ A
�ð Þ
ijkl"�kl þ G

�ð Þ
ijklDklmn"�mn þO &ð Þ ð36Þ

where

A
�ð Þ
ijkl ¼

1

� �ð Þ		 		
ð
� �ð Þ

Aijkl d�; G
�ð Þ
ijkl

¼ 1

� �ð Þ		 		
ð
� �ð Þ

Gijkl d�: ð37Þ

To construct the non-local constitutive relation
between the phase averages we define the local average
stress in �(�) as:

� �ð Þ
ij � 1

� �ð Þ		 		
ð
� �ð Þ
�0ij d�

¼ Iklmn � ! �ð ÞN �ð Þ
klmn

� �
L
�ð Þ
ijkl"

�ð Þ
mn ð38Þ

where

N
�ð Þ
klmn ¼ A�

�ð Þ
klst þ G�

�ð Þ
klpqDpqst

� �

� A
�ð Þ
mnst þ G

�ð Þ
mnijDijst

� ��1

ð39Þ

A�
�ð Þ
ijkl ¼

1

� �ð Þ		 		
ð
� �ð Þ

g �ð ÞAijkl d�;

G�
�ð Þ
ijkl ¼

1

� �ð Þ		 		
ð
� �ð Þ

g �ð ÞGijkl d�:

ð40Þ

The constitutive Eq. (38) has a non-local character in
the sense that it represents the relation between phase
averages. The response characteristics between the pha-
ses are not smeared as the damage evolution law and
thermomechanical properties of phases might be con-
siderably different, in particular when damage occurs in
a single phase.
For the isotropic strain-based damage model adopted

in this paper, the phase free energy density correspond-
ing to the non-local constitutive Eq. (38) is given as

� �ð Þ ! �ð Þ; " �ð Þ
ij

� �
¼ 1

2
Iklmn � ! �ð ÞN �ð Þ

klmn

� �
L
�ð Þ
ijkl"

�ð Þ
mn"

�ð Þ
ij ð41Þ

and the corresponding non-local phase damage energy
release rate can be expressed as

Y �ð Þ ¼ � @�
�ð Þ

@! �ð Þ ¼
1

2
N

�ð Þ
klmnL

�ð Þ
ijkl"

�ð Þ
mn"

�ð Þ
ij ð42Þ

As a special case we consider a composite material
consisting of two phases, matrix and reinforcement,
denoted by �(m) and �(f) such that �=�(m)

S
�(f).

Superscripts m and f represent matrix and reinforcement
phases, respectively. For simplicity, we assume that
damage occurs in the matrix phase only, i.e. !(f)�0. The
volume fractions for matrix and reinforcement are
denoted as �(m) and �(f), respectively, such that
�(m)+�(f)=1. To further simplify the matters, we define
the microscopic damage distribution function  (�)(y)
(22) as a piecewise constant function. The correspond-
ing weight function becomes piecewise constant func-
tion with �(�)= � �ð Þ		 		=�C.
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The non-local isotropic damage state variable !(m) is
assumed to be a monotonically increasing function of
non-local phase deformation history parameter �(m)

[9,13,15,16] which characterizes the ultimate deforma-
tion experienced throughout the loading history. In
general, the evolution of matrix damage at time t can be
expressed as

! mð Þ x; tð Þ ¼ f � mð Þ x; tð Þ� � ð43Þ

The non-local phase deformation history parameter
�(m) is determined by the evolution of non-local phase
damage equivalent strain, denoted by #� mð Þ, as follows

� mð Þ x; tð Þ ¼ max #� mð Þ x; �ð Þj �4 tð Þ; � mð Þ
ini

n o
ð44Þ

where the threshold value for damage initiation in the
matrix, � mð Þ

ini , represents the extreme value of the equiva-
lent strain prior to the initiation of damage. The non-
local phase damage equivalent strain, #� mð Þ, is defined as
square root of the non-local phase damage energy
release rate

#� mð Þ �
ffiffiffiffiffiffiffiffiffi
Y mð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
L

mð Þ
ijkl"

mð Þ
ij "

mð Þ
kl

r
ð45Þ

We adopt an arctangent form of damage evolution
law

F mð Þ �; 	; ! mð Þ; � mð Þ; � mð Þ
0

� �

¼ ! mð Þ �
atan �

� mð Þ

� mð Þ
0

� 	
 !

þ atan 	ð Þ



2
þ atan 	ð Þ

¼ 0 ð46Þ

where �, 	 are material parameters; and � mð Þ
0 denotes the

threshold of the strain history parameter beyond which
the damage will develop very quickly. Computational
aspects of the non-local piecewise constant damage
model for two-phase materials have described in [12].

3. Numerical examples

We consider a 4-point bending problem carried out
on a composite beam made of BlackglasTM/ Nextel 5-
harness satin weave. The fabric designs used 600 denier
bundles of NextelTM 312 fibers, spaced at 46 threads per
inch, and surrounded by BlackglasTM matrix material.
The bundle is assumed to be linear elastic throughout
the analysis. The average transversely isotropic elastic
properties of the bundle were computed by the Mori–
Tanaka method. We will refer to this material system as
AF1O. The phase properties of RVE are: BlackglasTM

Matrix: volume fraction=0.548; Young’s modulus=
9.653 GPa; Poisson’s ratio=0.244; NextelTM 312 Fiber:
volume fraction=0.452; Young’s modulus=151.7 GPa;
Poisson’s ratio=0.26.
The microstructure of RVE is discretized with 6857

elements totaling 10,608 degrees of freedom as shown in
Fig. 1. The configuration of the composite beam is
shown in Fig. 1 where the loading direction (normal to
the plane of the weave) is aligned along the Y axis. The
finite element model of the beam (macrostructure) is
composed of 1856 brick elements totaling 7227 degrees
of freedom. The parameters for the damage evolution
law for BlackglasTM matrix are taken as �=7.1, 	=10.1
and � mð Þ

0 =0.22, which were chosen based on calibration
to the tensile and shear test data.
Comparison between tensile test data and the numer-

ical simulation for the uniaxial tension is shown in

Fig. 1. Configuration and FE mesh of the 4-point bending problem.
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Fig. 2. It can be seen that the ultimate experimental
stress/strain values in the uniaxial tension test are
�u=150�7 MPa and "u=2.5�10�3�0.3�10�3, while
the numerical simulation gives �u=152 MPa at
"u=3.2�10�3.
Experiments have been conducted on five identical

beams and the scattered experimental data of force ver-
sus the displacement at the point of load application in
the beam are shown by the gray area in Fig. 2. It can be
seen that the numerical simulation results are in good
agreement with the experimental data in terms of pre-
dicting the overall behavior. Both numerical simulation
and experimental data predict that the dominant failure
mode is tension/compression (so-called bending induced
failure)
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