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Abstract

A nonlocal multiscale continuum damage model is developed for brittle composite materials.
A triple-scale asymptotic analysis is generalized to account for the damage phenomena occur-
ring at micro-, meso- and macro- scales. A closed form expressions relating microscopic,
mesoscopic and overall strains and damage is derived. The damage evolution is stated on the
smallest scale of interest and nonlocal weighted phase average fields over micro- and meso-
phases are introduced to alleviate the spurious mesh dependence. Numerical simulation con-
ducted on a composite beam made of Blackglas/Nextel 2D weave is compared with the test
data.

1.0 Introduction

Damage phenomena in composite materials are very complex due to significant heterogene-
ities and interactions between microconstituents. Typically, damage can be either discrete or
continuous and described on at least three different scales: discrete for atomistic voids and lat-
tice defects; and continuous for micromechanical and macromechanical scales, which
describe either distributed microvoids and microcracks or discrete cracks whose size is com-
parable to the structural component. Here, attention is restricted to continuum scales only. On
the micromechanical scale, the Representative Volume Element (RVE) is introduced to model
the initiation and growth of microscopic damage and their effects on the material behavior.
The RVE is defined to be small enough to distinguish microscopic heterogeneities, but suffi-
ciently large to represent the overall behavior of the heterogeneous medium. Most research in
this area is focused on the two-scale micro-macro problems with homogeneous microconstitu-
ents. For certain composite materials systems, such as woven composites [43], the two-scale
model might be insufficient due to strong heterogeneities in one of the microphases. The ques-
tion arises as to how to account for damage effects in these heterogeneous phases. Most com-
monly, macroscopic-like point of view [12], [30], [32], [34], [39] is adopted by idealizing the




heterogeneous phases as anisotropic homogeneous media. Anisotropic continuum damage
theory is then employed to model damage evolution in each phase. As an alternative, which is
explored here, is to define smaller scale RVE(S) for the heterogeneous phases and then to carry
outmultiple scale damage analysis with various RVEs at different length scales.

The objective of this paper is to extend the two-scale (macro-micro) nonlocal damage theory
developed in [22] to three scales in attempt to account for evolution of damage in heteroge-
neous microphases. Throughout the manuscript we term the larger scale Rvilaggoas

copic while RVE(s) comprising heterogeneous meso-phasescasscopic In Section 2, the
three-scale (macro-, meso- and micro-) damage theory within the framework of the mathemat-
ical homogenization theory is developed. The triple-scale asymptotic expansions of damage
and displacements lead to closed form expressions relating local (microscopic and mesos-
copic) fields to overall (macroscopic) strains and damage. In Section 3, the nonlocal phase
fields for multi-phase composites are defined as weighted averages over each phase in the
mesoscopic and microscopic characteristic volumes with piecewise constant weight functions.
A more general case of weight functions is discussed in [22]. In Section 4, a simplified variant
of the nonlocal damage model for the two-phase composite materials is developed. The com-
putational framework including stress update procedure and consistent tangent stiffness are
presented in Section 5. In Section 6, we first study the axial loading capacity of the Blackglas/
Nextel 2-D woven composite [11][43]. Numerical results obtained by the present three-scale
formulation are compared with those obtained by the two-scale model [22]. We then consider
a 4-point bending test conducted on the composite beam made of Blackglas/Nextel 2-D
woven composite and compare the simulation results with the experiments data provided by
[11]. Discussion and future research directions conclude the manuscript.

2.0 Mathematical Homogenization for Damaged Composites

As shown in Figure 1 , the composite material is represented by two locally periodic RVESs on
the meso-scale (Y-periodic) and the micro-scale (Z-periodic), denot®j by ©,and , respec-
tively. Let x be the macroscopic coordinate vector in the macro dofhawm= x7 ¢ be the
mesoscopic position vector i®,  ame y/q be the microscopic position vect®y in

Here, ¢ denotes a very small positive humbgeg X/ ¢ aedy/ ¢ are regarded as the
stretched local coordinate vectors. When a solid is subjected to some load and boundary con-
ditions, the resulting deformation, stresses, and internal variables may vary from point to point
within the RVE(s) due to a high level of heterogeneity. We assume that all quantities on the
meso-scale have two explicit dependences: one on the macraxscale  and the other on the




meso-scalgy . For the quantities on the micro-scale, additional dependence on the micro-scale
z is introduced. For any microscopically periodic response funcfion , we have
f(x,y,2) = f(x,y+Kky,z+ k2 in which vectorsy and are the basic periods in the
meso- and micro- structures akd is a 3 by 3 diagonal matrix with integer components.
Adopting the classical nomenclature, any locally periodic fundtion can be represented as

fe(x) =f(x, y(x), z(x ¥)) (1)

where superscript indicates that the corresponding fun€tion is locally periodic and is a
function of macroscopic spatial variables. The indirect macroscopic spatial derivative of  is
calculated by the chain rule as

15,00 = 1% D+ 21,0603 D + 51,063, @
| [ 7 c (|
where the comma followed by a subscript variable denotes the partial derivative (i.e.

f,xi = 0f/0x, ). Summation convention for repeated subscripts is employed, except for sub-
scriptsx ,y andz .
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FIGURE 1. Three-Scale Composite Materials

To model the isotropic damage process in meso- and micro- constituents, we define a scalar
damage variableo® = w(X,y, 2 . The constitutive equation can be derived from the strain-
based continuum damage theory based on the thermodynamics of irreversible processes and
internal state variable theory. We assume that micro-constituents possess homogeneous prop-
erties and satisfy equilibrium, constitutive, kinematics and compatibility equations as well as
jump conditions at the interface. The corresponding boundary value problem on the smallest
(micro) scale of interest is described by the following set of equations:




Oy +h =0 in Q 3)

of = (1-w)Ljuen in Q 4)
gf = u(ﬁyxj) in Q (5)
us = u on T, (6)
osn =t on I, )

i

wherew® 0[O0, 1) is a scalar damage variable governed by a strain history parameter (see

Section 4);0f angs are components of stress and strain teh§grs; represents compo-
nents of elastic stiffness satisfying symmetry

Li(}kl = quikl = Li(}lk = Lﬁnj (8)
and positivity
0 Cy>0, Lﬁklzﬁfﬁ ZCOEicj ﬁ Daicj = jci )

conditions;b, is a body force assumed to be independent of local position wectorz and ;
us denotes the components of the displacement vector; the subscript pairs with parentheses

denote the symmetric gradients defined as

o= 1 S +ys
us .y = §(Ui,xj U (10)

Q denotes the macroscopic domain of interest with bounBary, ; T'and are boundary
portions where displacements and tractidns are prescribed, respectively, such that
r,nr,=0 andl =T,0T, ;n denotes the normal vector bn . We assume that the

interface between the phases is perfectly bondeq,d-,ﬁéi,-] =0 [whd= O at the inter-
face,l;,, , wheren; is the normal vectorltg, gndi iS a jJump operator.

In the following, the contracted (matrix) notation is adopted. The indices of the contracted
notation follow the definitionll= 1, 22= 2 33=3 12=4 13=5 an#83=6 . The scalar
guantities and tensor components are denoted by lightface letlers. X and denote the
transpose and inverse of matdx  (or vector), respectively; the subscriis.inX eo and
Xmac represent the scale on which the quantities are measuredX.je= X(X,Y, 2) :

Xmeso= X(X, y) andX;,= X(X) .




Clearly, the straightforward approach attempting at discretization of the entire macro domain
with a grid spacing comparable to that of the microconstituents or even meso-scale features is
not computationally feasible. Instead, a mathematical homogenization method based on the
triple-scale asymptotic expansion is employed to account for meso- and micro- mechanical
effects without explicitly representing the details of local structures in the global analysis. As

a starting point, we approximate the microscopic displacement @ig(&) = u(x, y, 2) , and
the damage variablep®(x) = w(x,y, 2) , in terms of the triple-scale asymptotic expansions
onQ xQ,x0,:
Unic = UO(X) + GUI(X, Y) + G2U*(X, Y, 2) (11)
wmicz (JOO(X, Ys Z) + C(Dl(X, Y, Z) + CZwZ(X’ Y, Z) (12)

where the superscripts an  aod  denote the length scale of each term in the asymptotic
expansions. The strain expansion®@mx O, x O, can be obtained by substituting (11) into (5)
with consideration of the indirect differentiation rule (2)

Emc=E(X, Y, 2) = £(X, Y, 2 +GE(X, Y, D) + CE(X, Y, 2) (13)

where the strain components for various orders of are given as

£ = ud+ul,+u’ (14)
g = ul,+u’ (15)
g = u’ (16)
We further define scale-average strains by integrating (18),in  Gandd, with consider-

ation of Y- and Z- periodic conditions, respectively:

EmesdX, V) = |é il £(x,y, 2 dO = uS +u), (7)
1
emac(x)sg I I £(x,y, 2 dO dO = & |I Emesod® = US (18)
yi

Following (17) and (18), the mesoscopic strain obeys the decomposition

_ 1
€meso ~ gmac+ U'y(X, y) (19)




where the macroscopic stragg,,(x) @ , represents the average strain on meso-scale and
u}y(x, y) is the local oscillatory part of mesoscopic strai®jp . The asymptotic expansion of
the microscopic strain (13) can be expressed in a similar fashion as

Emic = gmeso+ u,zz(xl yl Z) + O(C) (20)

where the mesoscopic strain®), &,..{X,y) , represents the average strain on the micro-
scale, whereaﬂ?z(x, y,2) is the local oscillatory part of the microscopic str&n in

Stresses and strains for different orderg of are related by the constitutive equation (4) and
the expansion of the damage variable (12):

00 = (1_(‘)0)Lmic£0 (21)
0! = (1-O)L ;. — W'L ;o (22)
02 = (1—°)L 8 — WL i€ — WL 1 oE° (23)

The resulting asymptotic expansion of stress is given as
— _ 0 1.1 2 2 3
Omic = O'(X, Y, Z) =0 (X: Y, Z) +CO (X, Y, Z) +CO (X1 Y, Z) + O(C ) (24)
Once again, we define the scale-average stresses by integrating@4) in ©, >aéd
o X, o%(x,y, z) dO© 25
mesd X ¥) = |@Z|j (XY, 2) (25)

- i_ 0 = 1

Inserting the stress expansion (24) into the equilibrium equation (3) and making use of indi-
rect differentiation rule (2) yields the following equilibrium equations for various orders:

O(¢?): 0%=0 (27)
O(¢c?): 0%+0L =0 (28)
0(¢%): o%+0y+03+b=0 (29)

Consider thed(¢2) equilibrium equation (27) first. From (13), (14), (17) and (21) follow




{Lmicsmic},z = {Lmic(smeso-l_ u,zz)},z =0 in ez (30)
I—mic = {1_(*)0()(: Y, Z)} I—mic (31)

whereL ;. is a history-dependent microscopic stiffness.

To solve for (30) we introduce the following decomposition:

U*(X, ¥, 2) = H(2){ Emesd X, ¥) + Apesd X ¥)} (32)

where the third order tensaf(z) = H,,(2) IS symmetric with respect to indices | and
[19][22] and Z-periodic in@, . We assume thdi. (X, Y) IS mesoscopic damage-induced
strain driven by mesoscopic strag)..{X,y) . More specifically, we can state that if
€meso = 0, thend .., = O and’ = 0 . However, vice versa is not true, Lelit,= 0 or
w’ = 0, the mesoscopic stragy,.., May not be necessarily zero.

Based on the decomposition given in (3Q),¢2) equilibrium equation takes the following
form:

{ I—mic{ (I +Gz)8meso+ szmes<} } i =0 in G)z (33)
wherel is identity matrix and
G,(2) = H (2= H(i,zj)kl(z) (34)

is a micro-scale polarization function. The integrals of the polarization functi®g in vanish
due to periodicity conditions. Since equation (33) should be valid for arbitrary mesoscopic
fields, we may first consider the case @f.,,= O (an®l = 0 ) &yt %z 0 , Which
yields:

{I—mic(I +Gz)},z =0 (35)

Equation (35) together with the Z-periodic boundary conditions comprise a linear boundary
value problem foH ir®, . The weak form of (35) is solved for three right hand side vectors

in 2-D and six in 3-D (see for example [21][26]). In absence of damage, the strain asymptotic
expansions (13) and (20) can be expressed in terms of the mesoscopi, strain as

Emic = Az Emeso+ O(C) (36)




whereA, is elastic strain concentration functior®in defined as
A, = 1+G, (37)

After solving (35) forH , we proceed to findird},.,, from (33). Premultiplying itby and
integrating it by parts i®, with consideration of Z-periodic boundary conditions yields

I@ G-zrl—mic(’A‘zameso"— szmesa do =0 (38)

and the expression for the mesoscopic damage induced strain becomes

1

0-d O
dmeso |j[ GZLmICG de% |:| GZLmICA degmeso (39)

Let f={f(y); a=1,2..} andg={g@®(z); a,=1,2 ..} be the two sets of
C-1 continuous functions, then the damage varialfléx, y, 2) is assumed to have the fol-
lowing decomposition

@(xy,2) = 3 T o)) 72 (40)

where w(x) is the macroscopic damage varialbe)(y) Is a damage distribution function
on the meso-scale RVE(®P)(z)  represents the damage distribution function in the micro-
scale RVE[ corresponding to phase in the meso-scale RVE. Rewriting (39) in terms of
A andw’(x,y, 2) yields

dmeso_ Dmesdgmeso (41)
where
Deso= H =5 T @(f(y) B“"H B 5 () (y) cH (42
a B a B
B®P = = (Lmeso—Lmesd I g@®(2)G,L .G, dO (43)
Iezl
c? = 5 |(Lmeso Lmesd _|’ 9P (2) G, L micA, dO (44)

~ 1
Lmeso = @I@ZLmic de (45)




= 1 1
Lmeso = @I@ZLmidA‘z do = @I@ZAILmicAZ do (46)

where Lmeso is the overall stiffness 0B, Lmeso Is the elastic homogenized stiffness
[19][22]; |©,] denotes the volume of the micro-scale RVE. Note that the integral$ th

and CP are history-independent and thus can be precomputed. This provides one of the
main motivations for the decomposition given in (40).

Based on (32) and (41), the asymptotic expansion of the strain field (13) can be finally cast as
smic = (Az + Gszest)Emeso+ O(C) (47)

whereG, is a local damage strain distribution functio®jn . Note that the asymptotic expan-

sion of the strain field is given as a sum of mechanical fields induced by the mesoscopic strain
via elastic strain concentration functiég and thermodynamical fields governed by the dam-

age-induced straid, .o = Dmes€meso  through the distribution funci&n

We now consider th&®(¢™) equilibrium equation (28). By integrating (28) ®yer , making
use of the Z-periodicity condition and the definition of the mesoscopic stress in (25), we get

1 .
(Omesd y = a@j@ a’(x, Y, 2) de% =0 in©Q (48)
z Y

which represents the mesomechanical equilibrium equati@y in . Based on the asymptotic
expansion of the strain field in (13) and (19), the constitutive equation in (21) and the decom-
position (47) we can rewrite (48) as

{LmesEmesd y = {LmesdEmact Uy}, =0 in O, (49)
_ 1
I-meso - EJ‘O I-mic(Az + Gszesc) do (50)
Z] z
whereL ., IS a history-dependent mesoscopic stiffness matrix.
To solve for the mesomechanical equilibrium equation, we first note that (49) is similar to its

microscopic counterpart in (30). Thus, a similar procedure can be employed by introducing
the decomposition:

U6 Y) = HY) EmadX) + dmadX)} (51)




where I:|(y) = |:|ikl(y) is a Y-periodic third order tensor on the meso-scale, symmetric with
respect to indicek and d;,,{(x) is the macroscopic damage-induced strain driven by the
macroscopic straig,,,(X) . Based on this decomposition, (49) becomes:

{LmeS({(l +Gy)€mac+Gydmac}},y =0 in G)y (52)

where

G,(y) = Hy(y) =Hayn(y) (53)

is a polarization function on the meso-scale whose integi@) in vanishes due to Y-periodic-
ity conditions. Once again, since (53) is valid for arbitrary macroscopic fields, we first con-
sider the case of damage-free, dg,. = afdd= 0 ehyt# 0 , which yields:

{Lmesd! +Gy)},y =0 (54)

Equation (54) comprise a linear boundary value problerrlﬂfor in the meso-scale @main
subjected to Y-periodic boundary conditions. Based on the decomposition in (51) and in
absence of damage, the mesoscopic strain in (19) can be expressed in terms of the macro-
scopic straire,,,. as:

Smeso = Ay Smac (55)
whereA, is the mesoscopic elastic strain concentration function defined as
A, = 1+G, (56)

After obtainingH d,.c €an be obtained from (52) by premultiplying it with  and integrat-
ing it by parts in®, with consideration of Y-periodic boundary conditions, which yields
d —_

mac — macsmac

(57)

-1
O 0O 0

Diac = —gr GyLmes3,d00 [ GyLmesd,dO0 (58)
o O C} 0

y

wherelL ., In (50) is a history-dependent stiffness matrix. Based on the decomposition of
the damage variable in (4Q),,.s, IS given as
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(ap)

I-meso = S:meso— z z w(x)f(a)(y) LmeS%I +D mesc) (59)
_ gmeso_ z z w(x)f(q)(y) LEneBs)(%:)meso

where

~ (ap)

Lmeso = |@ I 9( B)(Z)Lmlc (60)
Lfﬁfs)o- 0 |J’ g@P(2)L icA, dO (61)
Z

To this end, the mesoscopic strain (19) and the asymptotic expansion of the microscopic strain
field (13) can be directly linked to the macroscopic strain as

Emeso = (Ay + Gmeac)E (62)

mac

€mic = (Az + Gszest)(Ay + Gmeac)emac+ O(C) (63)

whereG, , the counterpart &, @, , is alocal distribution function of the damage-induced
strain in©, .

Finally, we integrate th&(c%)  equilibrium equation (29) o< O, 'I]’wecrl do and
I 02dO terms in the integral vanish due to periodicity and we obtain: %
(©]

z

nl 1

E|O||O|.r I o0(x, y,z)d@d@D +b =0 in Q (64)
y| Z

Substituting the constitutive relation (21), the asymptotic expansion of the strain field (63), the
microscopic and mesoscopic instantaneous stiffnesses in (31) and (50) into (64) yields the
macroscopic equilibrium equation

(Gmac),x +b=0 and (Lmacsma(‘),x +b=0 (65)

where
1
Lmac = @I@yLmesc(Ay + Gmea(‘) do (66)

IS @ macroscopic instantaneous secant stiffness.
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3.0 Nonlocal Piecewise Constant Damage Model for Multi-Phase
Materials

Accumulation of damage leads to strain softening and loss of ellipticity in quasi-static prob-
lems. The local approach, stating that in absence of thermal effects, stresses at a material point
are completely determined by the deformation and the deformation history at that point, may
result in a physically unacceptable localization of the deformation [4]-[7], [13], [24]. A num-

ber of regularization techniques have been developed to limit strain localization and to allevi-
ate mesh sensitivity associated with strain softening [4]-[10], [13], [14], [15]. One of these
approaches is based on smearing solution variables causing strain softening over the charac-
teristic volume of the material [4][6]. Following [6] and [22], the nonlocal damage variable
w(x) is defined as:

S = BB, [, Oy, 2 o do "

whered(y) andp,(y) are weight functions on micro- and meso-scale, respeddyely; and
@Cy are the characteristic volumes on the micro- and meso- scales with characteristic length
e, andlCy , respectively. The characteristic length is defined (for example) as a radius of the
largest inscribed sphere in a characteristic volume, which is related to the size of the material
inhomogeneties [6]; ariqi|y are the radii of the largest inscribed spheres in the Statistically
Homogeneous Volumes (SHV), which is the smallest volume for which the corresponding
local periodicity assumptions are valid. Several guidelines for determining the value of char-
acteristic length have been provided in [5] and [24]. The characteristic lehgths, ICy and ,as
indicated in [6], are usually smaller than the correspontling Ifaynd in particular for ran-
dom local structures. Following the two-scale nonlocal damage model in [22], we redefine the
Representative Volume Element (RVE) as the maximum between Statistically Homogeneous
Volume and the characteristic volume. Schematically, this can be expressed as

lrve,, = max b ,lc} (68)
lrve,,., = maxX IHy ; le} (69)

wherelge ~andgg _ denote the radii of the largest inscribed spheres in the mesoscopic
and macroscopic RVES, respectively. Figure 2 illustrates the two possibilities for construction

of the RVE on the mesoscale in a two-phase medium: one for random microstructure where
RVE typically coincides with SHV, and another one for periodic microstructure, where RVE

12



and SHV are of the same order of magnitude. Figure 2 is also applicable to the definition of
the microscopic RVE.

FIGURE 2. Selection of the Representative Volume Element

In particular, we assume that the microscopic and mesoscopic damage distribution functions,
g(@P)(z) and f(@)(y) in (40), are both piecewise constafift)(y) is assumed to be unity
within the domain of the mesoscopic ph@é) which sati@ﬁ,%)sﬂ ecy 0o, , and to van-
ish elsewhere, i.e.

ify 0 ©"

1 (70)
0 otherwise

fey) = A
0

where [ ] G)i,“) = 9, andOS)m @9) = 0O fori#] andi,j =1,2, ...,k, k, isaproduct

of the fumber of different mesoscopic phases and the number of mesoscopic characteristic
volumes in the mesoscopic RW&, g#P(z)  is unity within the micropmgg) , such that
el*P g G)g:) 00, but vanish elsewhere, i.e.

if z0 ©"P

1 (71)
0 otherwise

O
g (2) = O
0
where [] 0P = @ andol’n e = O for i#j andi,j =1,2, ....,kys ks is the
product of the number of different microphases and the number of microscopic characteristic
volumes in@™ .
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We further define the weight function in (67) as
by (y) = pofe@(y) and ¢,(2) = ufePgeb)(z) (72)

where the constan{g®  apd*f) are determined by the orthogonality conditions

e f f(a)(y)fw)(y) do=5,., aa=12..k (73)

| C|

“éaﬁ) a (O(B) = B =

MJ’ (u)g( O(2)g@P(2)do=8,,, BB =12..Kkg (74)
C, Oc;

d,, and 65@ are the Kronecker deltas. Substituting (40) and (70)-(74) into (67) shows that
w(®P coincides with the nonlocal phase average damage variable:

gy = K R o o (ap)
w(x) = o0 HG(G)‘I J’()w(x){f( )(y)g@P)(2)}* d© do = w@P(x) (75)

The average strains in each microphase, termed as microscopic phase average strain, are
obtained by integrating (63) ove&'®®

(aB) =

— (ap)
e |G)(GB)|I o Emic 00 = (AP + GEPDRLY (AP + GD o demee  (76)

where®!®® represents the domain of phse ©4H

GW=G, (yOoel™) and A® =1+G{® 77)
P - 1 G,(2)d® and ALP =|+Gy " (78)
|@£GB)| P
Dgr(lxgsoz Dmesc(xs y a e§a)) = a - zw(UB)B(UB)E %Sw(GB)C(GB)E (79)
B
and following (43)-(46) and (71) yields
(ap) _ ~(a) () T
B (Lmeso Lmes() GZLmiCGZ d@ (80)

| ( )| op)

(UB

(o)
P = o |(Ln‘?eso Lmesd | GlLyeA, 0O c
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~ (a) 1

= ——[ Lpid®© 82
meso |@§a)|_j.@gu) mic ( )
=(a) 1 1 T
L = — LmicA,dO = —— A,LniA, dO 83
meso |O§q)|‘[e§°‘) mic/\z |O§q)|‘[@§“) z mchz (83)
We denote the volume fractions for phage @aff’  viP =|0"?|/|0l) such that
ZB v = 1. It can be readily seen that
fidso= Emesd %, Y D O)) = Vel (84)
B

Similarly, the phase average strain in the mesoscopic ®y/E can be obtained by integrating
(62) overe{™ , which yields

1 — J—
SET]agC = I Emesode = (A§’a) + G§’G)Dma(‘)smac (85)
|@(G)| (@)
y y
where the mesoscopic phase average strain concentration fu;afﬁﬂon is defined as
—5(,) S G,(y) d© and ,&5“) = | +é§a) (86)
|@(0()| 0@
y y
Also, we have the relation
Emac = Ve (87)
a

wherev@ =|0(”|/|@,| is the volume fraction of phase @p satisfyyig v=1

To construct the nonlocal constitutive relation between phase averages, we define the local
average stress i@é‘” as:

1
oy

5laB) =

meso™— |

j o a%(x,y, 2) dO (88)
OZ

By combining (88) with microscopic constitutive equation (21), the asymptotic expansion of
strain in (13) and (47) and the piecewise constant damage variable defined in (40), (70) and
(71), we get

0fiedo = (1~ w@)LER SR (89)

mseo'meso
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where L8 = Loni(x, y 0O, z0 ©FP) . Here, we assume that each phase in the micro-
scale RVE is homogeneous, ilé®f) is assumed to be independent of the positioa vector
within each phas®{*?

The phase average stress in the mesoscopic@&VE is defined in a similar fashion to (88) as:

_ 1
GET?<’:)IC= |e§a)|‘l'®§,u)0-mesod@ (90)
With the definition ofo,,.., in (25), the microscopic constitutive equation (21), equations (31)
and (50), the definition in (90) can be restated as

0 = LiaEmac (91)
where the macroscopic phase average instantaneous secant dtifftiess @)(,“) in is given as
1
L0 = =/ . LmesdAy + G,Ding dO (92)
|ey | oy
and
_ CY (@) d L _ \U)L(a)
Omac = ZV Omac an mac ~ ZV mac (93)
a a
which follows from (26) and (91). The mesoscopic instantaneous stiffr{f&s can be

obtained from (59) in conjunction with the definition of the piecewise constant damage so that

Lineso= LmesdX, ¥y 0 ©;7) (94)
= a:meso— ZV(GB)Q)(QB)LST?Es)%l +D Eggs() - a:meso— zV(aB)w(aB)nggg%Dg?gso
where the phase average stiffn b B and the homogenized stEﬁ%&S are obtained

from (60) and (61):

~ (ap) = 1
Ln?eso = %J‘ Lmicd© and Lgr?fs)o = T<@p
|®z | of? |®z |

_[ . LmicA, dO (95)
eZ

The constitutive equations (89) and (91) have a nonlocal character in the sense that they relate
between phase averages in the microscopic and mesoscopic RVES, respectively. The response
characteristics between the phases are not smeared as the damage evolution law and thermo-
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mechanical properties of phases might be significantly different, in particular when damage
occurs in a single phase. In the next section we focus on the multiscale damage modeling in
woven composites.

4.0 Damage Evolution for Two-Phase Composites

As a special case depicted in Figure 1, we consider a three-scale composite whose mesoscopic
structure is composed of reinforcement phése= F) and matrix pbasév) such that
o, = 0P 0o and the volume fractions satisfyF) +v(M) = 1 . We assume that the
matrix phase®(™ in the mesoscopic R€E  is homogeneous and isotropic, i.e. the stiffness
of matrix is independent of any position vectors such that

= ~ (M
LWso= Lineso= L&D, = constant (96)

Since the matrix phase @, is homogeneous, there are no microscopic structm@é‘@ for ,

and therefor&5,=0 and, =1 i®™ . From (79)-(83), follows that

DSnMe)soE 0 ©7)
For the reinforcement pha@@ , Wwe assume that it consists of a two-phase composite (rein-
forcementp = f and matri® = m ) characterized by the microscopic RYE , such that

o) = of" 0 eff™ and v(FD +y(Fm = 1

For simplicity, we further assume that damage occurs in the matrix only. The expression of the
damage variable (40), (70) and (71) can be further simplified for this special case as

OwM (x) y 0 oM™
0
0 y z
g o otherwise
Accordingly, the mesoscopic instantaneous stiffnessf5e S:haly in (94) becomes
Linaso = { Lmesom VML (14D g~ { Lmeso— vE Mo ™ Linedd DR, (99
Lieso = (1—w™)LOD, (100)

where

17



-1
DET"I:gSO_ (1 w(Fm)B(Fm)) w(Fm CFm (101)
The macroscopic phase average instantaneous stitifdssa = H, M ) given in (92) takes
the following form:
(F) — (F
Lmac = _|G§F)|I@;>L 1A, +G,D,,,)dO (102)
L0 = Loesd A + G D a0 (103)

The expression dD,,. can be further modified by substituting (99) and (100)

=1

U
mac [T[ Gy L (F)soGydO + I Gy esoGyde E (104)

O O
%l— L (F)S(Ay © +I Gy esdo‘yde 0
olf U

y

The damage variable™ (n =M,Fm) is assumed to be a monotonically increasing func-
tion of nonlocal phase deformation history parametét (see, for example, [12], [22], [24],
[27], [28] and [38]) which characterizes the maximum deformation experienced throughout
the loading history. In general, the evolution of phase damage at time can be expressed as

of(k™(x, 1)) 50

wM(x,t) = f(<kM(x,)=9™ >)  and 50 (105)
where n = M,Fm; the operator < >, denotes the positive part, i.e.
< e > =sup0, «};the phase deformation history paramelké’ﬂ_) is determined by the
evolution of the nonlocal phase damage equivalent strain, deno&(c?)by
= —(n)
KM(x,t) = max 9™ (x, 1)|(T<t) Si,?i} (106)

where Si\rzli} represents the threshold value of the damage equivalent strain prior to the initia-

tion of phase damage. Based on the strain-based damage theory [38] we defined the damage

equivalent straid™  as

O «/ (FMeM Lm0 Fma™y 0 =M Fm (107)

18



~n) L . .
where €mac  represents the principal nonlocal phase strain vector, i.e.
~ T ~ . . . . . .
e = [, e eM] andL\Ye is the mapping df™. in the corresponding principal
strain directionsF(™ denotes the weighting matrix aimed at accounting for different damage

accumulation in tension and compression

h" o0 o
F() = 0 h(zn) ol n=M,Fm (108)
0 0 h{V
1.1
h = h(e{M) = §+]—_[atar[c(1”)(a§”)—c(2”))] , £=123 (109)

wherec(l”) an¢(2”) are constants selected to represent the contributions of each component of

the nonlocal principal phase strain to phase damage equivaleniﬁéltlr)ain . Figure 3 illustrates
the influences of both constants. As an extreme case, mfﬁém 00 C(Z'Bnd 0 , the
weight function reduces to(e{V) = <gfW >, /e{"  so that the compressive principal phase
strain components have no contribution to the phase damage equivalent strain.

FIGURE 3. Weight Functions for Principal Phase Average Strains

The phase average strain in (107) is defined as

@) _ 1 1
3 = Emic dO dO 110
mac |O§G)||@£GB)|J.@§“)J-@§“B) mic ( )
When damage occurs in the matrix phase anff,= n = M, Fm , equation (110) is applied

to matrix phases on the two scales. Exploiting (76) and (85), we get
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1 f— —
Efrad = o] [ (AT +GEMDRLY (A, +G,Dinad dO Emg (111)
@§F)| oF

_ _ (112)
e = (A +GJ"D,,.0¢

mac mac

The arctangent form evolution law [22]

N _.(ﬂ.)
Damg=? =i >0 o B b

atang E =) .
| U
oM = 99 —™ =0, n=MFm (113
T+ atan(b™)
2
—\n
is adopted, in whica™, b are material parametéss; denotes the critical value of the

strain history parameter beyond which the damage will develop very quickly.

Based on the definition of the phase damage equivalent s‘ir‘ﬁin in (107), the damage evo-
lution conditions can be expressed as

it 8MW_xm =0, k>0 0O damage process)” > 0 (114)
it 9™ _kM <0 0
[l . :
or 0 O elastc processco(”) =0 (115)
a - (n) L]
if 9™ k™ = 0,k =00

)

wherew ~ denotes the rate of damage.

5.0 Computational issues

In this section, we describe the computational aspects of the nonlocal piecewise constant dam-
age model for the two-phase material developed in Section 4.0. Due to the nonlinear character
of the problem an incremental analysis is employed. Prior to the nonlinear analysis elastic
strain concentration factor§, (y) a@l(z) , are computed in the mesoscopic and micro-
scopic RVEs, respectively, using the finite element method. Subsequently, the phase average
elastic strain concentration fact&(yM) and the damage distribution fé&%r are precom-
puted using (86), (78) and subsequevgtif/M) ééFd") are evaluated.
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5.1 Stress update (integration) procedure

Given: displacement vectou,,,. ; overall stra#n,c ; Strain history param@(@f)s and
&M phase damage variables™  awf™  : and displacement incrément calcu-
lated from the finite element analysis for the global problem. The left subscript denotes the
increment step, i.€4, Al is the variables in the current increment, whereas is a con-
verged variable from the last increment. For simplicity, we will omit the left subscript for the
currentincrement, i.el] =:+a0d , and use superserigte M, Fm) to denote the matrix
phases in both mesoscopic and microscopic RVES.

Find: overall strairg,,,. ; nonlocal strain history parametef¥’ rAA : nonlocal phase

damage variablee&™) and™™ ; overall stress,. and nonlocal phase strff3ses and
(M)

o

mac*

The stress update procedure consists of the following steps:

step i.)Calculate the macroscopic strain incremekg,ac = Au , , and update macroscopic
strains througlEmac = €mact A€mac.

step ii.) Compute the damage equivalent stréfﬂ) defined by (111) and (112) in terms of
M andemac -

step iii.) Check the damage evolution conditions (114) and (115). Note {Hat is defined by
(106) andk™ s integrated a&k™ = k™ —«™ . The procedure for strain and damage
variable updates is given as:

IF: elastic pI’OCESSﬁ(M)StK(M) anﬂ(Fm)stK(Fm) , THEN

setw® = ™ ank™ = k™ witm =M, Fm
ELSE: damage process,
update fors™  ando™ by solving the system of nonlinear equations (113);
setk™ = ™

IF: elastic process in mesoscopic matrix phaseﬂ%? < k™ , THEN
seto™ = o™ anck™ = k™ .
update ford™ ando®™ by solving (113) with= Fm  only;
setk(Fm = gFm

ENDIF

IF: elastic process in microscopic matrix phase,ﬁ).bF.m) < k™ , THEN
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t(}‘)(Fm) (Fm)

andk™™ = k™ .
ando™ by solving (113) with= M only;

setFm =
update forg™

setk™ = g
ENDIF

ENDIF

Since 8" is determined by the current phase average strains in the meso- and micro-scale
matrix phases, which in turn depend on the current damage variable, it follows that the dam-
age evolution laws in (113) comprise a set of nonlinear equations{Tor . Using the New-
ton’s method we construct an iterative process for the damage variables on both scales:

-1

o™ 9™
ke igpM) | _ "M || 9™ geoFm oM (116
ket 1go(Fm) “wFm| o™ g™ ™ )
0™ 9 FM |y ()
The derivatives with respect o™ ansf™ in (116) can be evaluated by differentiating

)

(113) with k(M =9
scales, such that

(n =M, Fm) provided that the damage processes occur on both

I M)aa(M) g™ 9™
g =~ Vet g = YV aeEm ()
(Fm) q (Fm) (Fm) (Fm)
0P V(Fm)ae ’ 0P V(Fm)as (118)
O™ oM A(FM) AwFm)
wherey™ and/AF™ are given as
My (M) (n)
a'Vky'} /{12 + atan(b
yw = L& KA — L) =, N=MFm (119)
(k§M? +{a®@™ —8n) bWk My
The derivatives of the nonlocal damage equivalent sfain 9anc with respect to the

damage variables are presented in Appendix.

When damage process occurs only on one scale, either micro- or meso-scale, the set of nonlin-
ear equations (113) reduces to a single nonlinear function and the Newton’s iterative method
gives
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n=MorFm (120)

-1
1y = ko _ LT o)
@w(ﬂ)m

koM
whered®™/9w™ is given in (117) fap = M and in (118) fipr= Fm

step vi) Update the nonlocal phase stressgs$). e:\uo , using (91) with macroscopic
instantaneous stiffneds(). and™.  defined in (102) and (103), respectively. The macro-
scopic stres®nac  can be finally obtained from (93).

5.2 Consistent tangent stiffness

To this end we focus on the computation of the consistent tangent stiffness matrix on the
macro level. We start by taking material derivative of the incremental form of the constitutive
equation (91)

- (F) (F . - (M) (M .
Omac = Lgmz\camac"' LETI]:; mac s Omac —= Lgna)o‘-‘:mac"' LEnMa)camac (121)

whereL . can be obtained by taking time derivative of (102) and (103), which yields

"(F 1 “(F) -
LET'I;C = TI { LmES({Ay + Gmea() + LETII:éSOGmeaC} d@ (122)
|@y | oy’
(M - (M) — — — .
Limae = Lmesd AM™ + GID a0 + L%, G0 Dimac (123)

Following (99) and (100), the rate form of the mesoscopic stiffness is given as

Lgfgsoz LFT"I:gSCLO( m), |—$T1Me)so= L%Mgs@( ) (124)
where
S(F —(F)  ~(F) —(Fm)  ~(Fm), =(F)
Lgngso ={ (Lgngso— Lmesq —V(Fm)w(Fm)(LEn(?s)o— Lmesg} Dmeso (125)
~(F —(F ~ (Fm)
—V(Fm){ LEnen;)o"' (LEnen;)o— ng;c)DQﬁ:gs
=(M

Ene)so = —L%Ma)c (126)

andDineso in (125) is obtained by taking time derivativeD§flso (101)

AN . _2 .
DA =DR o™ = (I — wFMBFm)>CFm gFm) (127)
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From (124)-(127), the time derivative Df,,.  defined in (104) can be expressed as

bmac = DgﬁMa)cO'O(M) + DSTT;::)CL)(Fm) (128)
where
O 0
DM, = - D[ GILE)LG,do+ [ GILM. G.dop (129)
o o™ O

O N O
o G, T osd3,dOD .o+ i GyLinesA,do
o™ ol O

-1
O 0
DM = _ET[ GLRLGO+[ GO G dOn (130)
ol o™ O
| T
O GyLidsd5,dOD g, + [ G L(F)sﬁyd@g
y

)
@y

Substituting (124) and (128) into (122) and (123), the rate form of the macroscopic phase
stiffness becomes

F F
LEn;c = Lﬂ@ V4 LﬁnFefc) (Fm (131)
M F
LD, = LM M) 4 P (MB) (y(F™) (132)
where
(FM) _ L(F (M)
Linac = |O(F)|I@(F) SngSOGydeDmac (133)
y y
LER) = LO) (A +GD._)do+[ LE_G.doDEH
mac = = [T[ mesd y % mar) I meso>y mac[ ] (134)
|@( | ol O
LA = LO0 (AP + GID, L0 + LD, G DI (135)
Lo% = LM, M DS (136)

To this end, the rate form of the constitutive equation (121) takes the following form

- (F) : (M : (Fm
Omac = Lgrfall\f:)sma@ + quz(a'\:c)smac&) + L(F)Camac (137)
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- (M) (M . (Fm
GO = LM o™+ LMD e ™™+ LM (138)

3(Fm)

In order to obtairw' ~  and , we make use of damage cumulative law (113) with consid-
eration of damage/elastic processes as described in Section 5.1. In the case of elastic process,
'’ =0 andlor® " = 0 . For damage process, and" are obtained by taking
time derivatives of (113). The derivation is detailed in Appendix and the final expressions can
be summarized as

o™ = (W) emae, @™ = (WEMY e (139)

Substituting (139) into (137) and (138), we get the following relations between the rate of the
overall strain and the nonlocal phase average stresses in the matrix phases:

O_r(n'_)c =0 r(ngcemam OI—r(T:V;)c =0 rg]“g)cémac (140)

where
08 = Lo emadw™) + LR emadw™) "+ L) (141)
OM = Lhae emadw™) "+ LOG emadwF™) "+ LM (142)

The overall consistent tangent stiffness is constructed by substituting (140) into the rate form
of the overall stress-strain relation (93)

c.)'mac =0 maﬁ'mac (143)

0,0 = VOO )+ v (M) (144)

mac

Finally, we remark that the integrals in the mesoscopic RVE, (129) and (130), have to be eval-
uated at each Gaussian point in the global finite element mesh and for every load increment.
This may lead to enormous computational complexity, especially when the finer mesh is used
for mesoscopic RVE. A close look at the above formulations reveals that the source of the
computational complexity stems from the history-dependent forl‘ff , . To remedy the
situation, we make use of Taylor expansion in (101) with respec{ t® so that the history-
dependent variable can be moved out of the integrals.

6.0 Numerical Examples

We consider a woven composite material made of Blackglas/Nextel 2D 5-harness satin weave
as shown in Figure 4 . The fabric is made of 600 denier bundles of Nextel 312 fibers, spaced at
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46 threads per inch, and surrounded by Blackglas 493C matrix material. We will refer to this
material system as AF10. The micrograph in Figure 4 was produced at Northrop-Gruman.

\ .: W) '.1_ e 'l' 3 - = 5

FIGURE 4. Blackglas'™/Nextel 5-harness Satin Weave

In this set of numerical examples, the mesoscopic RVE is defined as a two-phase material
(bundle/Blackglas 493C), while bundles consist of unidirectional fiborous composite (micro-
scopic RVE). The phase properties of RVEs on both scales are summarized below:

Microscopic (bundle) RVE:

Blackglas 493C Matrix: volume fractionv(Fm = 0.733 ; Young’s modulus
EF™ = 82.7GPa Poisson’s ratid.26 .
Nexte™ 312 Fiber: volume fraction v(F) = 0.267 ; Young’s modulus

E(FY = 151.7GPa; Poisson’s ratid.24 .

Mesoscopic RVE (AF10 woven composite architecture, Figure 4 ):

Blackglas 493C Matrix (with reduce stiffness): volume fractdw = 0.548 ; Young’s
modulusE™ = 26.2GPa; Poisson’s ratio €.26

Bundle: volume fractiorv(F) = 0.452 ; properties determined by the homogenized stiff-
ness of the microscopic RVE.

Note that the matrix phase in both RVEs is made of the same material. The stiffness reduction
of matrix phase in the mesoscopic RVE is due to initial inter-bundle cracks. The parameters of
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—\n
the damage evolution laws are choserads = 7.2 b™, = 16.3 and = 0.22 with
—\riny

n = M, Fm. For the matrix phase in the mesoscopic RVE, we ch8gge = 0 . For the
—(Fm)

matrix phase in the microscopic RVE we defidgi = ( /E(Fm)/E(M)_l)ééM) = 0.17

— Ul
We assume that the two matrix phases reach the critical §glue at the same time under the
. . . “(Fm) M T ) =) _
equal uniaxial strains, e. 9 —Fini =9 —=Yini = Yo with

h(eff™)eff™ = h(efM)ef wheref = 1, 2, or 3. The damage evolution laws are depicted
in Figure 5 .

o .2 n& nE D 1 .2
Corrge: Equwslas] Sioon [WPa

FIGURE 5. Damage Evolution Law on Micro- and Meso- Scales

We further assume that the compressive principal strain components do not contribute to the
damage evolution. Thus, the parameters in (109) are chose&q)as 10° c(zn)ando

(n = M, Fm). The microscopic RVE is discretized with 351 tetrahedral elements as shown in
Figure 6 .

FIGURE 6. Microscopic RVE for the Bundle
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The finite element mesh of the bundle phase (mesoscopic RVE) is depicted in Figure 7 . The
finite element mesh of the mesoscopic RVE contains 6857 tetrahedral elements. We utilize our
model to predict the ultimate strength under uniaxial tension and the 4-point bending tests.

FIGURE 7. Mesoscopic RVE of AF10 Woven Composites (only bundle displayed)

The stress-strain curve for the uniaxial tension in the weave’s plane is illustrated in Figure 8 .
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FIGURE 8. Strain-Stress Curves for Uniaxial Tension in Weave Plane

To illustrate the importance of the three-scale model, we compare the results with the two-
scale model developed in [22], where the damage occurs in the matrix phase while the bundle
is assumed to remain elastic throughout the loading. It can be seen from Figure 8 that the
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post-ultimate loading curve obtained with the two-scale method has a significant loading
capacity due to bending of elastic bundles. On the other hand, the stress-strain curve of the
three-scale model shows two sharp drops due to successive failures of the matrix phases in the
two scales. The numerical simulation using the three-scale model @jves148MPa at

€, = 3.1x10° compared with the ultimate experimental stress/strain values in the uniaxial
tension test ob, = 150+ 7MPa at, = 2.5x10°+ 0.310°

FIGURE 9. Configuration and FE Mesh of Composite Beam

The configuration of the composite beam used for 4-point bending test is shown in Figure 9 ,
where the loading direction (normal to the plane of the weave) is aligned along the Y axis. The
finite element model of the composite beam (global structure) is composed of 1856 brick ele-
ments. Numerical simulation results as well as the test data for 4-point bending problem are
shown in Figure 10 . Experiments have been conducted on five identical beams [11] and the
scattered experimental data of the applied load versus the displacement at the point of load
application in the beam are shown by the gray area in Figure 10 . It can be seen that the
numerical simulation results are in good agreement with the experimental data in terms of pre-
dicting the overall behavior and the dominant failure mode. Both the numerical simulation and

the experimental data predict that the dominant failure mode is in bending. Figure 11 and
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Figure 12 illustrate the distribution of the phase damage in the composite beam corresponding

to the ultimate point in the load-displacement curve in Figure 10 .
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FIGURE 10. 4-Point Bending Flexure Strain-Stress Curves

FIGURE 11. Distribution of w™) at Ultimate Point
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FIGURE 12. Distribution of w(f™ at Ultimate Point

7.0 Summary and Future Research Directions

A multiscale nonlocal damage theory for brittle composite materials has been developed
based on the triple-scale asymptotic expansions of damage and displacement fields. The
closed form expressions relating microscopic, mesoscopic and overall strains and damage
have been derived. The damage evolution is stated on the smallest scale of interest and the
nonlocality is taken into account to alleviate the spurious mesh dependence by introducing the
weighted phase average fields over the micro- and meso-phases. Numerical results revealed
the superior performance of the three-scale method over the two-scale damage model [22] for
woven composites.

The present work represents only the first step towards developing a robust simulation frame-
work for prediction of complex damage processes in composite materials. Several important
issues, such as interfacial debonding, coupled plasticity-damage effects, have not been
accounted for in our model. Moreover, the assumptions of local periodicity and uniformity of
macroscopic fields, which are embedded in our formulation, may yield inaccurate solutions in
the vicinity of free edges or in the case of the nonperiodic microstructures. These issues will
be studied in our future work.
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Appendix

In this section we present detailed derivations@?\)/aoo(”) AN =M Fm in (117) and
(118), andw "’ in (139). We start with the first derivative by differentiating (107) with respect
to w®

r A(FMET)

EIREY

6000) = (e (n))

: An=MFm (A1)

M A) (ﬂ)]

where the vectoe(”)_[e1 , 6, 65 takes following form

]
(€M) = = (FMenly) Limne (A2)
29
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With the definition of F(M) in (108), the derivative in (Al) can be expressed as

() ~ ~
a(F(n)gn?ac _ a(hgﬂ)sgﬂ)) a(h(zﬂ)séﬂ)) a(h(ﬂ) ﬂ))

(A3)
o™ o™ o™ o™

Since the three components of the vector in (A3) have a similar form, we simply denote them
by d(h{Vei™)/ (aw™) with & = 1, 2, 3 and then by using (109) we have

(n)
a(h{Mes ") Am)

(n)mﬁz . _
_DA h ) E_112$3 (A4)
600(” Emén) 3 [p ()\)
where
oW W/
(A5)
A -y
To this end we need to compute the derivative of each component of principa&“rsnﬁgain with
respect to the damage varialbd®") . The principal components of a second order tensor sat-
isfy Hamilton’s Theorem, i.e.
~(n),3 ~(),2  , ~(n)
(eg ) —li(ee”) +1gge —15=0 (A6)

wherel, 1, and, are three invariantse. éol. ) which can be expressed as

I, = g = SR IR (A7)
_ 1 E(S(n) ) s(”) (f])) (ﬂ) (n)+§£ﬂ) éﬂ) "(n)éiﬂ) (A8)
- (Mg _3eMe Mg + gMe(Me() = emame(n)
= = [(25 38 + €} k) = €1 € €3 (A9)
where the tensorial notations are adopteceft},  g{fia =€V . Differentiating (A6) with
respect taw®™ gives
~(n)
dgg ~(n),2 ~(n) EH 2(My2 al, 2 dl; O
o™ = {3(eg ) —2I,&¢ +|2} ()\( R €¢ +6 ()\)% (A10)
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where the derivative of the invariants with respe(m?B can be obtained by using (A7)-(A9)
such that

aw()\) = (p{") aogz)?)c = 6]k6|ka ™ (A1)
ol e ae(”)
s = (P 55 = (888 (A12)
al o ogl
aw(sx) = (p$") —awr?;‘)c (A13)
(n)
()() ()()1()() (M) ¢(n) D@E
% CE Er’r?m jlr] 28 ) nrr]'r16]k6 + Zar’r?m nrr]1 6jk6Ik|:B (A)
Substituting (A10)-(A13) into (A4), gives
()
(h(n)EE ) (N\T aEmac _
W = (@) 5pm- €123 (A14)

whereq!" is given as

g = D—(—55 +h‘”)E{3( 221,87 + 1) P E") - pes” + pM}  (a1s)

Finally, 99 /00™ in (A1) can be written in a concise form by using (A3) and (A14),
which yields

a9
o™ = (O (n))T U3 nz;a)c% AN =M Fm (A16)

where
om = z e(ﬂ)qgﬂ), n=M,Fm (A17)

and the derivative on right hand side of (A16) can be evaluated by differentiating (111) and
(112) such that

da%]Ma)C — S&M)dw(M) + sg\")dw(Fm) + SMdemac (A18)
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de(F = P dw™ + s dwF™ + SFdeyac (A19)
where for (A18)
as(M) —(M N M
o =S = G DinaEmac (A20)
ag(M) — (M = (F
a(o?::?:) ES&M) = G§/ )Dgna)lcemac (A21)
asm'\gC— M) = AM) L ~(M)
=S AM +cMp,_ (A22)
aamac
and for (A19)
OEmFa”g _ (Fm) (_(Fm)_l_c_;(Fm)D(F) ()G B(M) do ¢ (A23)
aw(’\") Si |@(F)|.[@(F) z z mes y~mac mac
L P - S5
) =
S = 5 |O(F)| j@(F) 2 Dmes{Ay +G,Dyyad (A24)
—(Fm) _(F)
+(Ar "+ Gy "D G, Dinad dO €.
65,(-5.2) = gFm) = J. A(Fm)+(__;gFm)D(F) A, +G,D 9 do (A25)
0€mac |G)(F)| (F) mes y y—ma
The time derivatives of the phase damage variabl€, and , can be obtained by taking

time derivatives of damage evolution law (113) and making use of (A18) and (A19). From
(113) and assuming that damage processes occur on both scalegMi.e. 9™

(n =M, Fm), we have

M) _ V(M)g(wl)
GFM = \Fm g Fm
wherey™ and/"™ are given in (11 add"
for 9™ /a0™ |, which yields:
8" = @)%, n=MFm

(A26)

(A27)

can be derived in a similar way as

(A28)
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Whereérﬂc can be evaluated by using (A18) and (A19). From (A26) and (A18), we can get

nME™ + nM ™ 4+ (rM)Tg e = 0 (A29)

wheren™, nM)and™) are given as

M = (OM) W —1/yM (A30)
g = (O0W)" s (A31)
(rM)T = (O s (A32)

Similarly, from (A28) and (A19), we have

' (M)

F (F
n(1 mw

+ n(sz)(b ™4 (r(Fm) )Témac =0 (A33)

wheren{F™ nffm and™ are given as

nFm = (OFm)TsFm (A34)
n%Fm) — (D(Fm))TS(ZFm)_l/y(Fm) (A35)
(SFm)T = (OFm)TgFm (A36)

Finally, solving for (A29) and (A33) yields

@™ = W) Enae, O™ = (WEM) e (A37)
where

NM) p(FM) _ (Fm) (M)
wM) = : : (A38)

n Fm)r(M) —-n M)r(Fm)
wFEm = ! 5 (A39)
ng-M)ngFm) _ n%M)ng-Fm)

The Jacobian matrix (116)-(118) follows from (A16), (A20), (A21), (A23), (A24), (A30),
(A31), (A34) and (A35):

j= y(M)n&M) y(M)nng)

y(Fm)nSFm) y(Fm)ngFm)

(A40)
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