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Abstract

A nonlocal multiscale continuum damage model is developed for brittle composite materials.
A triple-scale asymptotic analysis is generalized to account for the damage phenomena occur-
ring at micro-, meso- and macro- scales. A closed form expressions relating microscopic,
mesoscopic and overall strains and damage is derived. The damage evolution is stated on the
smallest scale of interest and nonlocal weighted phase average fields over micro- and meso-
phases are introduced to alleviate the spurious mesh dependence. Numerical simulation con-
ducted on a composite beam made of Blackglas/Nextel 2D weave is compared with the test
data.

1.0  Introduction

Damage phenomena in composite materials are very complex due to significant heterogene-

ities and interactions between microconstituents. Typically, damage can be either discrete or

continuous and described on at least three different scales: discrete for atomistic voids and lat-

tice defects; and continuous for micromechanical and macromechanical scales, which

describe either distributed microvoids and microcracks or discrete cracks whose size is com-

parable to the structural component. Here, attention is restricted to continuum scales only. On

the micromechanical scale, the Representative Volume Element (RVE) is introduced to model

the initiation and growth of microscopic damage and their effects on the material behavior.

The RVE is defined to be small enough to distinguish microscopic heterogeneities, but suffi-

ciently large to represent the overall behavior of the heterogeneous medium. Most research in

this area is focused on the two-scale micro-macro problems with homogeneous microconstitu-

ents. For certain composite materials systems, such as woven composites [43], the two-scale

model might be insufficient due to strong heterogeneities in one of the microphases. The ques-

tion arises as to how to account for damage effects in these heterogeneous phases. Most com-

monly, macroscopic-like point of view [12], [30], [32], [34], [39] is adopted by idealizing the
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heterogeneous phases as anisotropic homogeneous media. Anisotropic continuum damage

theory is then employed to model damage evolution in each phase. As an alternative, which is

explored here, is to define smaller scale RVE(s) for the heterogeneous phases and then to carry

out multiple scale damage analysis with various RVEs at different length scales.

The objective of this paper is to extend the two-scale (macro-micro) nonlocal damage theory

developed in [22] to three scales in attempt to account for evolution of damage in heteroge-

neous microphases. Throughout the manuscript we term the larger scale RVE(s) as mesos-

copic while RVE(s) comprising heterogeneous meso-phases as microscopic. In Section 2, the

three-scale (macro-, meso- and micro-) damage theory within the framework of the mathemat-

ical homogenization theory is developed. The triple-scale asymptotic expansions of damage

and displacements lead to closed form expressions relating local (microscopic and mesos-

copic) fields to overall (macroscopic) strains and damage. In Section 3, the nonlocal phase

fields for multi-phase composites are defined as weighted averages over each phase in the

mesoscopic and microscopic characteristic volumes with piecewise constant weight functions.

A more general case of weight functions is discussed in [22]. In Section 4, a simplified variant

of the nonlocal damage model for the two-phase composite materials is developed. The com-

putational framework including stress update procedure and consistent tangent stiffness are

presented in Section 5. In Section 6, we first study the axial loading capacity of the Blackglas/

Nextel 2-D woven composite [11][43]. Numerical results obtained by the present three-scale

formulation are compared with those obtained by the two-scale model [22]. We then consider

a 4-point bending test conducted on the composite beam made of Blackglas/Nextel 2-D

woven composite and compare the simulation results with the experiments data provided by

[11]. Discussion and future research directions conclude the manuscript.

2.0  Mathematical Homogenization for Damaged Composites

As shown in Figure 1 , the composite material is represented by two locally periodic RVEs on

the meso-scale (Y-periodic) and the micro-scale (Z-periodic), denoted by  and , respec-

tively. Let  be the macroscopic coordinate vector in the macro domain ;  be the

mesoscopic position vector in  and  be the microscopic position vector in .

Here,  denotes a very small positive number;  and  are regarded as the

stretched local coordinate vectors. When a solid is subjected to some load and boundary con-

ditions, the resulting deformation, stresses, and internal variables may vary from point to point

within the RVE(s) due to a high level of heterogeneity. We assume that all quantities on the

meso-scale have two explicit dependences: one on the macro-scale  and the other on the
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meso-scale . For the quantities on the micro-scale, additional dependence on the micro-scale

 is introduced. For any microscopically periodic response function , we have

 in which vectors  and  are the basic periods in the

meso- and micro- structures and  is a 3 by 3 diagonal matrix with integer components.

Adopting the classical nomenclature, any locally periodic function  can be represented as

(1)

where superscript  indicates that the corresponding function  is locally periodic and is a

function of macroscopic spatial variables. The indirect macroscopic spatial derivative of  is

calculated by the chain rule as

(2)

where the comma followed by a subscript variable denotes the partial derivative (i.e.

). Summation convention for repeated subscripts is employed, except for sub-

scripts ,  and .

FIGURE 1.    Three-Scale Composite Materials

To model the isotropic damage process in meso- and micro- constituents, we define a scalar

damage variable . The constitutive equation can be derived from the strain-

based continuum damage theory based on the thermodynamics of irreversible processes and

internal state variable theory. We assume that micro-constituents possess homogeneous prop-

erties and satisfy equilibrium, constitutive, kinematics and compatibility equations as well as

jump conditions at the interface. The corresponding boundary value problem on the smallest
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(3)

(4)

(5)

 (6)

 (7)

where  is a scalar damage variable governed by a strain history parameter (see

Section 4);  and  are components of stress and strain tensors;  represents compo-

nents of elastic stiffness satisfying symmetry

 (8)

and positivity

(9)

conditions;  is a body force assumed to be independent of local position vectors  and ;

 denotes the components of the displacement vector; the subscript pairs with parentheses

denote the symmetric gradients defined as

(10)

 denotes the macroscopic domain of interest with boundary ;  and  are boundary

portions where displacements  and tractions  are prescribed, respectively, such that

 and ;  denotes the normal vector on . We assume that the

interface between the phases is perfectly bonded, i.e.  and  at the inter-

face, , where  is the normal vector to  and is a jump operator. 

In the following, the contracted (matrix) notation is adopted. The indices of the contracted
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Clearly, the straightforward approach attempting at discretization of the entire macro domain

with a grid spacing comparable to that of the microconstituents or even meso-scale features is

not computationally feasible. Instead, a mathematical homogenization method based on the

triple-scale asymptotic expansion is employed to account for meso- and micro- mechanical

effects without explicitly representing the details of local structures in the global analysis. As

a starting point, we approximate the microscopic displacement field, , and

the damage variable, , in terms of the triple-scale asymptotic expansions

on : 

(11)

(12)

where the superscripts on  and  denote the length scale of each term in the asymptotic

expansions. The strain expansion on  can be obtained by substituting (11) into (5)

with consideration of the indirect differentiation rule (2)

(13)

where the strain components for various orders of  are given as

(14)

(15)

(16)

We further define scale-average strains by integrating (13) in  and  with consider-

ation of Y- and Z- periodic conditions, respectively:
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(18)
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where the macroscopic strain  in , represents the average strain on meso-scale and

 is the local oscillatory part of mesoscopic strain in . The asymptotic expansion of

the microscopic strain (13) can be expressed in a similar fashion as 

(20)

where the mesoscopic strain in , , represents the average strain on the micro-

scale, whereas  is the local oscillatory part of the microscopic strain in . 

Stresses and strains for different orders of  are related by the constitutive equation (4) and

the expansion of the damage variable (12): 

(21)

(22)

(23)

The resulting asymptotic expansion of stress is given as

(24)
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(30)

(31)

where  is a history-dependent microscopic stiffness.

To solve for (30) we introduce the following decomposition:

(32)

where the third order tensor  is symmetric with respect to indices  and 

[19][22] and Z-periodic in . We assume that  is mesoscopic damage-induced

strain driven by mesoscopic strain . More specifically, we can state that if

, then  and . However, vice versa is not true, i.e., if  or

, the mesoscopic strain  may not be necessarily zero. 

Based on the decomposition given in (32),  equilibrium equation takes the following

form:

(33)

where  is identity matrix and

(34)
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where  is elastic strain concentration function in  defined as

 (37)

After solving (35) for , we proceed to finding  from (33). Premultiplying it by  and

integrating it by parts in  with consideration of Z-periodic boundary conditions yields

(38)

and the expression for the mesoscopic damage induced strain becomes
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(46)

where  is the overall stiffness on ;  is the elastic homogenized stiffness

[19][22];  denotes the volume of the micro-scale RVE. Note that the integrals in 

and  are history-independent and thus can be precomputed. This provides one of the

main motivations for the decomposition given in (40). 

Based on (32) and (41), the asymptotic expansion of the strain field (13) can be finally cast as 

(47)

where  is a local damage strain distribution function in . Note that the asymptotic expan-

sion of the strain field is given as a sum of mechanical fields induced by the mesoscopic strain

via elastic strain concentration function  and thermodynamical fields governed by the dam-

age-induced strain  through the distribution function .

We now consider the  equilibrium equation (28). By integrating (28) over , making

use of the Z-periodicity condition and the definition of the mesoscopic stress in (25), we get

(48)

which represents the mesomechanical equilibrium equation in . Based on the asymptotic

expansion of the strain field in (13) and (19), the constitutive equation in (21) and the decom-

position (47) we can rewrite (48) as

(49)

(50)

where  is a history-dependent mesoscopic stiffness matrix.
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where  is a Y-periodic third order tensor on the meso-scale, symmetric with

respect to indices  and ;  is the macroscopic damage-induced strain driven by the

macroscopic strain . Based on this decomposition, (49) becomes:

(52)

where 

(53)

is a polarization function on the meso-scale whose integral in  vanishes due to Y-periodic-

ity conditions. Once again, since (53) is valid for arbitrary macroscopic fields, we first con-

sider the case of damage-free, i.e.  and  but , which yields:

(54)

Equation (54) comprise a linear boundary value problem for  in the meso-scale domain 

subjected to Y-periodic boundary conditions. Based on the decomposition in (51) and in

absence of damage, the mesoscopic strain in (19) can be expressed in terms of the macro-

scopic strain  as:

(55)

where  is the mesoscopic elastic strain concentration function defined as

 (56)

After obtaining ,  can be obtained from (52) by premultiplying it with  and integrat-

ing it by parts in  with consideration of Y-periodic boundary conditions, which yields

(57)
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(59)

where

(60)

     (61)

To this end, the mesoscopic strain (19) and the asymptotic expansion of the microscopic strain

field (13) can be directly linked to the macroscopic strain as

(62)

(63)

where , the counterpart of  in , is a local distribution function of the damage-induced

strain in . 

Finally, we integrate the  equilibrium equation (29) over . The  and

 terms in the integral vanish due to periodicity and we obtain:

(64)

Substituting the constitutive relation (21), the asymptotic expansion of the strain field (63), the

microscopic and mesoscopic instantaneous stiffnesses in (31) and (50) into (64) yields the

macroscopic equilibrium equation
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3.0  Nonlocal Piecewise Constant Damage Model for Multi-Phase 
Materials

Accumulation of damage leads to strain softening and loss of ellipticity in quasi-static prob-

lems. The local approach, stating that in absence of thermal effects, stresses at a material point

are completely determined by the deformation and the deformation history at that point, may

result in a physically unacceptable localization of the deformation [4]-[7], [13], [24]. A num-

ber of regularization techniques have been developed to limit strain localization and to allevi-

ate mesh sensitivity associated with strain softening [4]-[10], [13], [14], [15]. One of these

approaches is based on smearing solution variables causing strain softening over the charac-

teristic volume of the material [4][6]. Following [6] and [22], the nonlocal damage variable

 is defined as:

(67)

where  and  are weight functions on micro- and meso-scale, respectively;  and

 are the characteristic volumes on the micro- and meso- scales with characteristic length

 and , respectively. The characteristic length is defined (for example) as a radius of the

largest inscribed sphere in a characteristic volume, which is related to the size of the material

inhomogeneties [6].  and  are the radii of the largest inscribed spheres in the Statistically

Homogeneous Volumes (SHV), which is the smallest volume for which the corresponding

local periodicity assumptions are valid. Several guidelines for determining the value of char-

acteristic length have been provided in [5] and [24]. The characteristic lengths,  and , as

indicated in [6], are usually smaller than the corresponding  and  in particular for ran-

dom local structures. Following the two-scale nonlocal damage model in [22], we redefine the

Representative Volume Element (RVE) as the maximum between Statistically Homogeneous

Volume and the characteristic volume. Schematically, this can be expressed as

(68)
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and macroscopic RVEs, respectively. Figure 2  illustrates the two possibilities for construction

of the RVE on the mesoscale in a two-phase medium: one for random microstructure where

RVE typically coincides with SHV, and another one for periodic microstructure, where RVE
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and SHV are of the same order of magnitude. Figure 2 is also applicable to the definition of

the microscopic RVE.

FIGURE 2.  Selection of the Representative Volume Element

In particular, we assume that the microscopic and mesoscopic damage distribution functions,

 and  in (40), are both piecewise constant;  is assumed to be unity

within the domain of the mesoscopic phase  which satisfies , and to van-

ish elsewhere, i.e.

(70)

where  and ;  is a product

of the number of different mesoscopic phases and the number of mesoscopic characteristic

volumes in the mesoscopic RVE ;  is unity within the microphase , such that

, but vanish elsewhere, i.e.

(71)

where  and ;  is the

product of the number of different microphases and the number of microscopic characteristic

volumes in .
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We further define the weight function in (67) as

    and    (72)

where the constants  and  are determined by the orthogonality conditions

(73)

(74)

 and  are the Kronecker deltas. Substituting (40) and (70)-(74) into (67) shows that

 coincides with the nonlocal phase average damage variable:

(75)

The average strains in each microphase, termed as microscopic phase average strain, are

obtained by integrating (63) over 
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(82)

(83)

We denote the volume fractions for phase  in  by  such that

. It can be readily seen that 

(84)

Similarly, the phase average strain in the mesoscopic RVE  can be obtained by integrating

(62) over , which yields

(85)

where the mesoscopic phase average strain concentration function  is defined as

     and     (86)

Also, we have the relation

(87)

where  is the volume fraction of phase  in  satisfying 

To construct the nonlocal constitutive relation between phase averages, we define the local

average stress in  as:

(88)

By combining (88) with microscopic constitutive equation (21), the asymptotic expansion of

strain in (13) and (47) and the piecewise constant damage variable defined in (40), (70) and

(71), we get
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where . Here, we assume that each phase in the micro-

scale RVE is homogeneous, i.e.  is assumed to be independent of the position vector 

within each phase .

The phase average stress in the mesoscopic RVE  is defined in a similar fashion to (88) as:

(90)

With the definition of  in (25), the microscopic constitutive equation (21), equations (31)

and (50), the definition in (90) can be restated as

(91)

where the macroscopic phase average instantaneous secant stiffness  in  is given as

(92)

and 

      and       (93)

which follows from (26) and (91). The mesoscopic instantaneous stiffness  can be

obtained from (59) in conjunction with the definition of the piecewise constant damage so that 

(94)

where the phase average stiffness  and the homogenized stiffness  are obtained

from (60) and (61):

     and     (95)

The constitutive equations (89) and (91) have a nonlocal character in the sense that they relate

between phase averages in the microscopic and mesoscopic RVEs, respectively. The response

characteristics between the phases are not smeared as the damage evolution law and thermo-
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mechanical properties of phases might be significantly different, in particular when damage

occurs in a single phase. In the next section we focus on the multiscale damage modeling in

woven composites.

4.0  Damage Evolution for Two-Phase Composites

As a special case depicted in Figure 1, we consider a three-scale composite whose mesoscopic

structure is composed of reinforcement phase  and matrix phase  such that

 and the volume fractions satisfy . We assume that the

matrix phase  in the mesoscopic RVE  is homogeneous and isotropic, i.e. the stiffness

of matrix is independent of any position vectors such that

(96)

Since the matrix phase in  is homogeneous, there are no microscopic structures for ,

and therefore  and  in . From (79)-(83), follows that

 (97)

For the reinforcement phase , we assume that it consists of a two-phase composite (rein-

forcement  and matrix ) characterized by the microscopic RVE , such that

 and .

For simplicity, we further assume that damage occurs in the matrix only. The expression of the

damage variable (40), (70) and (71) can be further simplified for this special case as

 (98)

Accordingly, the mesoscopic instantaneous stiffness for  and  in (94) becomes

    (99)
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(101)

The macroscopic phase average instantaneous stiffness  ( ) given in (92) takes

the following form:

    (102)

 (103)

The expression of  can be further modified by substituting (99) and (100)

(104)

The damage variable   is assumed to be a monotonically increasing func-

tion of nonlocal phase deformation history parameter  (see, for example, [12], [22], [24],

[27], [28] and [38]) which characterizes the maximum deformation experienced throughout

the loading history. In general, the evolution of phase damage at time  can be expressed as

(105)

where ; the operator  denotes the positive part, i.e.

; the phase deformation history parameter  is determined by the

evolution of the nonlocal phase damage equivalent strain, denoted by 

(106)

where  represents the threshold value of the damage equivalent strain prior to the initia-

tion of phase damage. Based on the strain-based damage theory [38] we defined the damage

equivalent strain  as 

(107)
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where  represents the principal nonlocal phase strain vector, i.e.

 and  is the mapping of  in the corresponding principal

strain directions;  denotes the weighting matrix aimed at accounting for different damage

accumulation in tension and compression

(108)

(109)

where  and  are constants selected to represent the contributions of each component of

the nonlocal principal phase strain to phase damage equivalent strain . Figure 3  illustrates

the influences of both constants. As an extreme case, when  and , the

weight function reduces to  so that the compressive principal phase

strain components have no contribution to the phase damage equivalent strain. 

FIGURE 3. Weight Functions for Principal Phase Average Strains

The phase average strain in (107) is defined as

(110)
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(111)

(112)

The arctangent form evolution law [22] 

(113)

is adopted, in which  are material parameters;  denotes the critical value of the
strain history parameter beyond which the damage will develop very quickly. 

Based on the definition of the phase damage equivalent strain  in (107), the damage evo-
lution conditions can be expressed as 

   (114)

(115)

where  denotes the rate of damage.

5.0  Computational issues

In this section, we describe the computational aspects of the nonlocal piecewise constant dam-

age model for the two-phase material developed in Section 4.0. Due to the nonlinear character

of the problem an incremental analysis is employed. Prior to the nonlinear analysis elastic

strain concentration factors,  and , are computed in the mesoscopic and micro-

scopic RVEs, respectively, using the finite element method. Subsequently, the phase average

elastic strain concentration factor  and the damage distribution factor  are precom-

puted using (86), (78) and subsequently  and  are evaluated.
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5.1  Stress update (integration) procedure

Given: displacement vector ; overall strain ; strain history parameters  and

; phase damage variables  and ; and displacement increment  calcu-

lated from the finite element analysis for the global problem. The left subscript denotes the

increment step, i.e.,  is the variables in the current increment, whereas  is a con-

verged variable from the last increment. For simplicity, we will omit the left subscript for the

current increment, i.e., , and use superscript   to denote the matrix

phases in both mesoscopic and microscopic RVEs.

Find: overall strain ; nonlocal strain history parameters  and ; nonlocal phase

damage variables  and ; overall stress  and nonlocal phase stresses  and

. 

The stress update procedure consists of the following steps:

step i.) Calculate the macroscopic strain increment, , and update macroscopic

strains through .

step ii.) Compute the damage equivalent strain  defined by (111) and (112) in terms of

 and .

step iii.) Check the damage evolution conditions (114) and (115). Note that  is defined by

(106) and  is integrated as . The procedure for strain and damage

variable updates is given as:

IF: elastic process,  and , THEN

set  and  with 

ELSE: damage process, 

update for  and  by solving the system of nonlinear equations (113); 

set 

IF: elastic process in mesoscopic matrix phase, i.e. , THEN

set  and ;

update for  and  by solving (113) with  only;

set 

ENDIF

IF: elastic process in microscopic matrix phase, i.e. , THEN
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set  and ;

update for  and  by solving (113) with  only;

set 

ENDIF

ENDIF

Since  is determined by the current phase average strains in the meso- and micro-scale

matrix phases, which in turn depend on the current damage variable, it follows that the dam-

age evolution laws in (113) comprise a set of nonlinear equations for . Using the New-

ton’s method we construct an iterative process for the damage variables on both scales:

(116)

The derivatives with respect to  and  in (116) can be evaluated by differentiating

(113) with   provided that the damage processes occur on both

scales, such that

,              (117)

      ,                 (118)

where  and  are given as
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The derivatives of the nonlocal damage equivalent strain  and  with respect to the

damage variables are presented in Appendix.
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(120)

where  is given in (117) for  and in (118) for .

step vi.) Update the nonlocal phase stresses,  and , using (91) with macroscopic

instantaneous stiffness  and  defined in (102) and (103), respectively. The macro-

scopic stress  can be finally obtained from (93).

5.2  Consistent tangent stiffness

To this end we focus on the computation of the consistent tangent stiffness matrix on the

macro level. We start by taking material derivative of the incremental form of the constitutive

equation (91)

,       (121)

where  can be obtained by taking time derivative of (102) and (103), which yields

(122)
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Following (99) and (100), the rate form of the mesoscopic stiffness is given as 
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From (124)-(127), the time derivative of  defined in (104) can be expressed as

(128)

where 

(129)

(130)

Substituting (124) and (128) into (122) and (123), the rate form of the macroscopic phase

stiffness becomes

(131)

(132)

where

(133)

(134)

(135)

(136)

To this end, the rate form of the constitutive equation (121) takes the following form
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(138)

In order to obtain  and , we make use of damage cumulative law (113) with consid-

eration of damage/elastic processes as described in Section 5.1. In the case of elastic process,

 and/or . For damage process,  and  are obtained by taking

time derivatives of (113). The derivation is detailed in Appendix and the final expressions can

be summarized as 

,       (139)

Substituting (139) into (137) and (138), we get the following relations between the rate of the

overall strain and the nonlocal phase average stresses in the matrix phases:

,       (140)

where

(141)

 (142)

The overall consistent tangent stiffness is constructed by substituting (140) into the rate form

of the overall stress-strain relation (93) 

(143)

(144)

Finally, we remark that the integrals in the mesoscopic RVE, (129) and (130), have to be eval-

uated at each Gaussian point in the global finite element mesh and for every load increment.

This may lead to enormous computational complexity, especially when the finer mesh is used

for mesoscopic RVE. A close look at the above formulations reveals that the source of the

computational complexity stems from the history-dependent form of . To remedy the

situation, we make use of Taylor expansion in (101) with respect to  so that the history-

dependent variable can be moved out of the integrals.

6.0  Numerical Examples

We consider a woven composite material made of Blackglas/Nextel 2D 5-harness satin weave
as shown in Figure 4 . The fabric is made of 600 denier bundles of Nextel 312 fibers, spaced at
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46 threads per inch, and surrounded by Blackglas 493C matrix material. We will refer to this
material system as AF10. The micrograph in Figure 4 was produced at Northrop-Gruman. 

FIGURE 4. BlackglasTM/Nextel 5-harness Satin Weave

In this set of numerical examples, the mesoscopic RVE is defined as a two-phase material

(bundle/Blackglas 493C), while bundles consist of unidirectional fibrous composite (micro-

scopic RVE). The phase properties of RVEs on both scales are summarized below: 

Microscopic (bundle) RVE:

Blackglas 493C Matrix: volume fraction ; Young’s modulus

; Poisson’s ratio .

NextelTM 312 Fiber: volume fraction ; Young’s modulus

; Poisson’s ratio .

Mesoscopic RVE (AF10 woven composite architecture, Figure 4 ):

Blackglas 493C Matrix (with reduce stiffness): volume fraction ; Young’s

modulus ; Poisson’s ratio = .

Bundle: volume fraction ; properties determined by the homogenized stiff-

ness of the microscopic RVE.

Note that the matrix phase in both RVEs is made of the same material. The stiffness reduction
of matrix phase in the mesoscopic RVE is due to initial inter-bundle cracks. The parameters of

v Fm( ) 0.733=

E Fm( ) 82.7GPa= 0.26

v Ff( ) 0.267=

E Ff( ) 151.7GPa= 0.24

v M( ) 0.548=

E M( ) 26.2GPa= 0.26

v F( ) 0.452=
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the damage evolution laws are chosen as ,  and  with

. For the matrix phase in the mesoscopic RVE, we choose . For the

matrix phase in the microscopic RVE we define .

We assume that the two matrix phases reach the critical value  at the same time under the

equal uniaxial strains, i.e.  with

 where . The damage evolution laws are depicted

in Figure 5 . 

FIGURE 5. Damage Evolution Law on Micro- and Meso- Scales

We further assume that the compressive principal strain components do not contribute to the

damage evolution. Thus, the parameters in (109) are chosen as  and 

. The microscopic RVE is discretized with 351 tetrahedral elements as shown in

Figure 6 . 

FIGURE 6. Microscopic RVE for the Bundle
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The finite element mesh of the bundle phase (mesoscopic RVE) is depicted in Figure 7 . The

finite element mesh of the mesoscopic RVE contains 6857 tetrahedral elements. We utilize our

model to predict the ultimate strength under uniaxial tension and the 4-point bending tests. 

FIGURE 7. Mesoscopic RVE of AF10 Woven Composites (only bundle displayed)

The stress-strain curve for the uniaxial tension in the weave’s plane is illustrated in Figure 8 .

FIGURE 8. Strain-Stress Curves for Uniaxial Tension in Weave Plane

To illustrate the importance of the three-scale model, we compare the results with the two-

scale model developed in [22], where the damage occurs in the matrix phase while the bundle

is assumed to remain elastic throughout the loading. It can be seen from Figure 8  that the
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post-ultimate loading curve obtained with the two-scale method has a significant loading

capacity due to bending of elastic bundles. On the other hand, the stress-strain curve of the

three-scale model shows two sharp drops due to successive failures of the matrix phases in the

two scales. The numerical simulation using the three-scale model gives  at

 compared with the ultimate experimental stress/strain values in the uniaxial

tension test of  at .

FIGURE 9. Configuration and FE Mesh of Composite Beam

The configuration of the composite beam used for 4-point bending test is shown in Figure 9 ,

where the loading direction (normal to the plane of the weave) is aligned along the Y axis. The

finite element model of the composite beam (global structure) is composed of 1856 brick ele-

ments. Numerical simulation results as well as the test data for 4-point bending problem are

shown in Figure 10 . Experiments have been conducted on five identical beams [11] and the

scattered experimental data of the applied load versus the displacement at the point of load

application in the beam are shown by the gray area in Figure 10 . It can be seen that the

numerical simulation results are in good agreement with the experimental data in terms of pre-

dicting the overall behavior and the dominant failure mode. Both the numerical simulation and

the experimental data predict that the dominant failure mode is in bending. Figure 11 and

σu 148MPa=

εu 3.1 3–×10=

σu 150 7MPa±= εu 2.5 3–×10 0.3 3–×10±=
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Figure 12 illustrate the distribution of the phase damage in the composite beam corresponding

to the ultimate point in the load-displacement curve in Figure 10 .

FIGURE 10. 4-Point Bending Flexure Strain-Stress Curves

FIGURE 11. Distribution of  at Ultimate Pointω M( )
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FIGURE 12. Distribution of  at Ultimate Point

7.0  Summary and Future Research Directions
A multiscale nonlocal damage theory for brittle composite materials has been developed

based on the triple-scale asymptotic expansions of damage and displacement fields. The

closed form expressions relating microscopic, mesoscopic and overall strains and damage

have been derived. The damage evolution is stated on the smallest scale of interest and the

nonlocality is taken into account to alleviate the spurious mesh dependence by introducing the

weighted phase average fields over the micro- and meso-phases. Numerical results revealed

the superior performance of the three-scale method over the two-scale damage model [22] for

woven composites.

The present work represents only the first step towards developing a robust simulation frame-

work for prediction of complex damage processes in composite materials. Several important

issues, such as interfacial debonding, coupled plasticity-damage effects, have not been

accounted for in our model. Moreover, the assumptions of local periodicity and uniformity of

macroscopic fields, which are embedded in our formulation, may yield inaccurate solutions in

the vicinity of free edges or in the case of the nonperiodic microstructures. These issues will

be studied in our future work.
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Appendix

In this section we present detailed derivations for   in (117) and

(118), and  in (139). We start with the first derivative by differentiating (107) with respect

to 

(A1)

where the vector  takes following form
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With the definition of  in (108), the derivative in (A1) can be expressed as 

(A3)

Since the three components of the vector in (A3) have a similar form, we simply denote them

by  with  and then by using (109) we have

(A4)

where
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To this end we need to compute the derivative of each component of principal strain  with

respect to the damage variable . The principal components of a second order tensor sat-

isfy Hamilton’s Theorem, i.e.
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where  and  are three invariants of  (or ) which can be expressed as
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where the derivative of the invariants with respect to  can be obtained by using (A7)-(A9)

such that

(A11)

(A12)

(A13)

Substituting (A10)-(A13) into (A4), gives 

(A14)

where  is given as
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Finally,  in (A1) can be written in a concise form by using (A3) and (A14),

which yields
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and the derivative on right hand side of (A16) can be evaluated by differentiating (111) and

(112) such that
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 (A19)

where for (A18)

(A20)

(A21)

(A22)

and for (A19)

(A23)

(A24)

(A25)

The time derivatives of the phase damage variable,  and , can be obtained by taking

time derivatives of damage evolution law (113) and making use of (A18) and (A19). From

(113) and assuming that damage processes occur on both scales, i.e. 

, we have

(A26)

 (A27)

where  and  are given in (119);  and  can be derived in a similar way as

for , which yields:

(A28)

εmac
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where  can be evaluated by using (A18) and (A19). From (A26) and (A18), we can get

 (A29)

where  and  are given as

(A30)

(A31)

(A32)

Similarly, from (A28) and (A19), we have

 (A33)

where  and  are given as

(A34)

(A35)

(A36)

Finally, solving for (A29) and (A33) yields

,       (A37)

where

(A38)

(A39)

The Jacobian matrix (116)-(118) follows from (A16), (A20), (A21), (A23), (A24), (A30),

(A31), (A34) and (A35): 

(A40)
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