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ABSTRACT

A hierarchical version of the composite grid method (denoted as HFAC), w
exploits the solution of the shell model in studying local effects via 3D solid mode
developed. Convergence studies on a beam/2D model problem indicate that the s
radius of the point iteration matrix for the HFAC method is    and   
with exact and approximate auxiliary coarse grid solutions, respectively, where L and H
are the span and the thickness of the beam, respectively. Numerical experiments in
dimensions confirm these findings.

1.0  Introduction

Global-local techniques for laminated composite shells, which merge the Equiv
Single Layer (ESL) model aimed at predicting overall response with Discrete Layer 
model intended for capturing local effects,   are recently receiving an increasing atte
We refer to [22] for a comprehensive review of global-local techniques for composite
inates and to [7] and [8] for various aspects of reliability, convergence and accuracy o
bal-local techniques.

In this paper, we are focusing only on the class of global-local techniques that 
cates a hierarchical solution strategy in the sense that information from the analysis
ESL model is exploited in the resolution of local effects using a DL model. Among
most popular hierarchical global-local strategies are the various forms of multigrid
composite grid methods [14]-[19], [30] as well as the methods based on hierar
decomposition of approximation space [1]-[6], [20]-[22]. Recently, the composite 
method originated for displacement-based linear systems, has been extended to
systems [26]. Engineering global-local approaches, which approximate a de
response by means of post processing techniques, such as subjecting refined discre
model to the boundary conditions extracted from the global ESL model, can be view
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a single iteration within the composite grid procedure. For various improvements o
simple “zoom” technique, we refer to [23]-[25].

The present paper presents a hierarchical version [18] of the composite grid m
(denoted as HFAC) [14], which exploit the solution of the shell model in the proce
solving a coupled global-local problem. The outline of the paper is as follows: In sect
the principles of the composite grid method are outlined in the context of laminated 
and shells. A convergence analysis on a model beam/2D problem is carried out in S
3. These studies show that the spectral radius of the point iteration matrix for the 

method is    and    with exact and approximate  auxiliary coarse 
solutions, respectively, where L and H are the span and the thickness of the beam, res
tively. Numerical studies  in multidimensions  conclude the manuscript.

2.0  Hierarchical Composite Grid Method

In this section, we present the formulation of a global-local solution algorithm
problems where one or more regions, requiring a detailed local resolution, are mode
a 3D solid model, whereas elsewhere the shell model is used. 

2.1  Problem definition and notation

We adopt the notation introduced in [18][26]. Consider a finite element mesh 

sisting of shell elements on , which is a dimensionally reduced domain of  as s

in Figure 1. Let  be a 3D solid finite element mesh placed on the subregion 

The composite grid consists of the shell model in the complement of  in , and th

solid mesh on .

We partition the 3D solid mesh  (subsequently referred to as the fine or local gr

(1)

where  represents the interface degrees of freedom in , and  the internal d

of freedom. The mesh consisting of shell elements (coarse or auxiliary grid) is partit
as follows:

(2)

where  represents the degrees of freedom associated with the coarse finite e

nodes at the interface ,  the degrees of freedom associated with the interior 

grid points in , and  the degrees of freedom associated with the remaining c
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grid nodes as shown in Figure 1. For convenience, we define the shell grid outsi

local region as  so that . Finally, the composite grid, deno

as  is defined as follows:

(3)

For information transfer between the two levels, we employ the prolongation ope

, which is partitioned into two blocks for convenience. The first block, denoted by

relates the degrees-of-freedom in  to those corresponding to the interface degr

freedom of , i.e. :

: (4)

where

(5)

such that

:  (6)

Likewise, we define the second block of the prolongation operator, denoted b

which correlates the information between  and the internal degrees of freed

, i.e. :

: (7)

which is partitioned as

(8)

such that

:  and : (9)

Consequently, the operator  can be structured as follows:

(10)

Ĝ GI
˜ GG

˜∪= G̃ Ĝ GL
˜∪=

G
C

G
C

Ĝ GL∪=

Q̃ Q̂

Ĝ

G GI

Q̂ Ĝ GI→

Q̂ Q̃I 0=

Q̃I G̃I GI→

Q

G̃I G̃L∪
G GL

Q G̃I G̃L∪ GL→

Q Q̃LI Q̃LL
=

Q̃LI G̃I GL→ Q̃LL G̃L GL→

Q̃

Q̃ Q̃I 0 0

Q̃LI Q̃LL 0
=
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The restrictions operators :  and :  are transposed of  and

respectively.

For subsequent derivations we will introduce the following notation:

 where , , .

 where .

 where .

 stiffness matrix on .

 stiffness matrix on .

 stiffness matrix on .

 force vector, where  are nodal forces acting on grids

respectively.

 force vector acting on .

 where  and  are nodal forces acting on grids  and , respectively

We note that the displacement vectors  and  are related via orthogonal oper
given by

(11)

where  is an identity matrix of an appropriate size, such that

Q̃∗ G G̃→ Q̂∗ GI Ĝ→ Q̃ Q̂

ũ ũI ũL ũG

∗
= ũI G̃I∈ ũL G̃L∈ ũG G̃G∈

û ũI ũG

∗
= û Ĝ∈

u Q̂û uL

∗
= uL GL∈

Ã

ÃII ÃIL ÃIG

ÃLI ÃLL 0

ÃGI 0 ÃGG

= G̃

Â ÃII ÃIG

ÃGI ÃGG

= Ĝ

A
AII AIL

ALI ALL

= G

f̃ f̃I f̃L f̃G
= f̃ I f̃L f̃G, , G̃I G̃L G̃G, ,

f̂ f̃ I f̃G

∗
= Ĝ

f fI fL= fI fL GI GL

ũ û L

T I 0 0

0 0 I
=

I
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We now may formulate an algebraic system of equations for the two-level linear 
lem. It consists of finding a pair of nodal displacements vectors  such that 

(13)

where (.,.) denotes the bilinear form defined by

(14)

Minimization of (13) with respect to  subjected to the interface condition (
yields a system of linear equations on the composite grid:

(15)

The system of linear equations (15) can be solved either directly or iteratively. It i
objective to develop a hierarchical global-local procedure, which exploits the solutio
the auxiliary shell model on the entire problem domain.

2.2  Two-level solution procedures

In this section, we describe a four-step procedure for solving the system of linear
tions (15). The iterative solution procedure based on minimization of energy funct
(13) is given below:

Step 1

Find the correction  which minimizes the two-level energy functional (13) on
subspace of the coarse grid functions:

 (16)

where the superscripts refer to the iteration count. Note that the coarse grid correcti

has a similar partitioning to , i.e.,

û Tũ=

û u,( )

1 2⁄ Âû û( , ) Au u( , )+( ) f̂ û( , )– f u( , )– min
û u,( )

⇒

u v,( ) ujvj
j 1=

n

∑= u v R
n∈,

û u,( )

Â Q̂∗AII Q̂+( ) Q̂∗AIL

ALIQ̂ ALL

û

uL

f̂ Q̂∗fI+

fL

=

δũ
i

1
2
--- Â û

i
Tδũ

i
+( ) û

i
Tδũ

i
+,( ) A u

i
Q̃δũ

i
+( ) u

i
Q̃δũ

i
+,( )+( ) –

f̂ û
i

Tδũ
i

+,( ) f u
i

Q̃δũ
i

+,( )– min

δũ
i

⇒

δũ

ũ
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The direct minimization of (16) with respect to  yields:

(17)

The first term  on the left-hand side represents the assembled form of the c

grid stiffness matrix, whereas the second term  represents the restricted st
matrix of the 3D elasticity model in the local region. For the purpose of approximatin
coarse grid correction  we will replace the two terms by the stiffness matrix of the
model on the entire problem domain, i.e.,

(18)

Substitution (18) represents a major departure from the  classical FAC  method. I
this approximation may not be necessarily good because there might be a significa
ference between the two mathematical models for thin domain elasticity problems (s
example [12]). Nevertheless, this approximation is absolutely must if the composite
method is to be considered as a viable alternative to engineering global-local appro

in aerospace industries. A typical all-shell grid  often consists of over a million deg

of-freedom, whereas local grids  constructed in the vicinity of cutouts, fasteners, 
and other interconnects are orders of magnitude smaller. In a large scale comput
environment this approximation will significantly reduce computational cost, since on

single factorization of  is required for numerous redesigns of local features. 

Step 2

Once the coarse grid correction has been carried out, it is necessary to update the s

. (19)

Step 3

Find the correction  on the fine mesh, which minimizes the energy functiona

the subspace of the functions on , i.e. keeping  fixed

   (20)

where  to maintain compatibility.

The direct minimization of (20) yields

δũ δũI δũL δũG

∗
= δû δũI δũG

∗
=

δũ

T∗ÂT Q̃∗AQ̃+( )δũ
i
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δũ
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i

1
2
--- Âû
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If (21) is solved exactly, i.e.

(22)

then the corresponding iterative process will be referred as HFAC-ex. Alternatively,

can be replaced by preconditioner , which yields

(23)

where  is a relaxation parameter given by

(24)

and . The latter will be referred as HFAC-ap.

Step 4

Since the approximation introduced in (18) is not necessarily good, we view step

as a nonsymmetric preconditioner, and thus displacements , ,  computed in 
are updated using a two-parameter acceleration scheme. For convenience, the total

tion on the fine grid, i.e. , is denoted here by . Then, we ultimately up
the solution according to

 (25)

where the parameters  are found from the minimization of the energy function

the subspace spanned by the vectors  and :

(26)
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i βTδũ
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i 1–( )G du

i 1–
∗

1
2
--- Â û
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i 1–+ +,( ) +(

A u
i αdu

i βdu
i 1–+ +( ) u

i αdu
i βdu

i 1–+ +,( ) ) –

f̂ û
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A direct minimization of (26) with respect to  and  yields:

(27)

where

(28)

2.3  Intergrid transfer operators

Let  be the finite element node in the 3D solid mesh at the interface  an

 represent its degrees-of-freedom with  corresponding to

plane degrees-of-freedom and  to the transverse normal degrees-of-freedom

wise,  denotes the nodes in the shell model at the interface  having either 

degrees-of-freedom per node.

We will construct the interface prolongation operator :  (needed for b

HFAC-ex  and HFAC-ap procedures) assuming the so-called “telescopic” constrai

the shell/3D interface, where the inplane degrees-of-freedom  and trans

degrees-of-freedom at the midplane  are considered as the 

nodes, i.e., belong to the set , whereas the transverse degrees-of-freedom out

midplane  belong to the set  rather than . Here, for s

plicity, we assume that there exists a layer of nodes in the 3D solid mesh at the mid
as shown in Figure 1.

α β

c11 c12

c12 c22

α
β

r1

r2

=

c11 T∗ÂTδũ
i δũ

i,( ) Adu
i

du
i,( )+=

c22 T∗ÂTδũ
i 1– δũ

i 1–,( ) Adu
i 1– du

i 1–,( )+=

c12 T∗ÂTδũ
i δũ

i 1–,( ) Adu
i

du
i 1–,( )+=

r1 T∗ f̂ Âû
i

–( ) δũ
i,( ) f Au

i
– du

i,( )+=

r2 T∗ f̂ Âû
i

–( ) δũ
i 1–,( ) f Au

i
– du

i 1–,( )+=

PA ΩI

PAi
PAα

PA1
PA2

=

PA3

P̃a Ω̃I

Q̃I G̃I GI→

PAα
ΩI∈

PA3
ζ 0=( ){ } ΩI∈

GI

PA3
ζ( ) 0≠{ } ΩI∈ GL GI
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The interface prolongation operator  consists of nodal blocks  correspon

to mapping the solution from the coarse mesh node  to , where the project

the fine grid node    onto the shell surface is within the shell element connect

node . Using the shell element formulation based on the degenerated solid mod

nodal interface prolongation operator  in the local fiber coordinate system is g

by

(29)

Note that the first three columns correspond to translational degrees-of-freedom, w
columns 4 and 5 correspond to rotational degrees of freedom in the fiber coordina
tem. The first two rows correspond to the prolongation of the in-plane degrees of free
whereas row three designates prolongation at the midplane in the transverse dir

 denotes the in-plane shape function corresponding to the shell ele

node  computed at the fine grid node ;  are the natural coordinat

the shell computed at fine grid node .

If the HFAC-ap scheme is employed, then, in addition to  it is necessary to

struct the prolongation operator : . Let  be the initial value of noda

blocks  in the fiber coordinate system obtained from the degenerated solid mod
similar fashion to that in equation (29). Since the lower order shell theories [12] d
take into account the fiber elongation in the transverse normal direction, it is necess
correct the transverse normal displacements by the integral over transverse normal 
The resulting nodal prolongation operator in the fiber coordinate system is given as

(30)

Q̃I QI
Aa

P̃a PA

PA

P̃a

QI
Aa

QI
Aa

Ña ξA ηA,( ) 0 0 0 1
2
---hAζAÑa ξA ηA,( )

0 Ña ξA ηA,( ) 0 1
2
---hAζAÑa ξA ηA,( )– 0

0 0 Ña ξA ηA,( ) 0 0

=

Ña ξA ηA,( )

P̃a PA ξA ηA ζA, ,

PA

Q̃I

Q G̃I G̃L∪ GL→ Q
ˆ Aa

Q
Aa

Q
Aa

Q
ˆ Aa

0

0

D6iB̃ai ξA ηA,( )
D66

------------------------------------- ζd

0

ζA

∫
ii 1=

5

∑
–=
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where  is the three-dimensional constitutive matrix corresponding to the transvers

mal stress, and  is the block of the strain-displacement matrix of the shell elemen

responding to the shell node .

3.0  Model problem

In this section the rate of convergence of the iterative procedure described in the
ous section is estimated in the closed form for beam-2D model problem shown in F
2.

For the 2D domain on ,  the governing elasticity equations

the tensorial notation are given as:

(31)

where  are material constants;  the symmetric stress tensor;  the Kroneck
delta; comma denotes the spatial derivative; parentheses around the subscripts repr
the symmetric gradient.

For the beam domain on ,  the governing elasticity equa
tions are the same, but in addition, the following Timoshenko beam constrains are 
imposed to restrict the kinematics of the beam:

(32)

where  is the beam rotation. The essential boundary conditions are applied at th

ends of the beam, i.e., . Compatibility is enforc

at the beam-2D interface:

(33)

3.1  Model description

We consider the finite element discretization depicted in Figure 2. On the global
we use Timoshenko’s beam elements with quadratic shape functions for the transver
placements and linear shape functions for the rotations. Timoshenko’s beam eleme
been chosen since it represents   one-dimensional counterpart of the Mindlin/Re
shell/plate element. For the local model, a single -type 2-D element is employed

nonuniform polynomial order of displacement interpolation functions in  and  den

as  and , respectively.                   

D

B̃ai

P̃a

L– x≤ 1 L≤ H– x≤ 2 H≤

σi j j, bi+ 0= σi j λuk k, δi j 2µu i j,( )+= i j, 1 2,=

λ µ, σi j δij

L x< 1 2L≤ 2L– x≤ 1 L–<

σi2 0= u1 x1 x2,( ) θ– x1( )x2= x2 x2d
H–

H

∫ 0=

θ
u1 x1 2L+−=( ) θ– x1 2L+−=( ) 0= =

u1 x1 L+−=( ) θ– x1 L+−=( )x2=

u2 x1 L ε+( )+−=( ) u2 x1 L ε–( ) x2 0=,+−=( )= 0 ε 1«<

p

x y

p q
10



odel
m:

 two

lem

other
the 2-D

 is

f var-
ocus-
erface

iven

d 

ly or

p. 
We first focus on the construction of the discrete system of equations for the m
problem. The displacement field of the 2D element can be cast into the following for

(34)

where  is the vector of nodal displacements (two translations and

rotations), and , , , is the solution of the two-dimensional prob

corresponding to the prescribed -th unit nodal displacement while keeping the 
nodal displacements constrained. Note that the constraints between the beam and 
element are of telescopic type, i.e., at the interface  is prescribed for all , while 

prescribed only at . It is not the objective of this paper to study the influence o
ious global/local interface conditions on the solution accuracy. Instead, we are only f
sing on the convergence characteristics of the iterative process given the int
conditions employed in practical applications [27]. 

The functions  are discretized as follows:

(35)

where  and ,  and  are the basis functions given as

 (36)

and 

(37)

where  are Legendre polynomials of order . 

Let  be the discrete system of equations arising from the discretization g

in (35) subjected to -th unit displacement on the boundary, where  an

is the corresponding stiffness matrix. The coefficients  may be found exact

approximately. The former is denoted as HFAC-ex, while the latter is termed HFAC-a

ui UiJaJ

J 1=

4

∑=

a v1 θ1 v2 θ2

∗
=

UiJ i 1 2,= J 1 4,=

J

u1 y u2

y 0=

UiJ

UiJ diJlmΦl ξ( )Ψm η( )
m
∑

l
∑=

ξ 1
L
---= η 1

H
----= Φl ξ( ) Ψm η( )

Φ1
ξ 1–

2
-----------–= Φ2

ξ 1+
2

------------=

Φk 1+
2k 1–

2
--------------- Pk 1– t( ) td

1–

ξ

∫= k 2 3 …, ,=

Ψn ηn 1–= n 1 2 …, ,=

Pk ξ( ) k

KdiJ 0=

J diJ diJlm{ }= K

diJlm
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Once the coefficients  are found, one may find the coefficients of the stiff

matrix for 2-D element with the interface nodal degrees of freedom 

 (sum over repeated indices) (38

where , ,  are the components of the 2D plain-strain ela

constitutive tensor,  are the components of the symmetric part of the tensor 

3.2   Convergence properties of the algorithm

The point iteration matrix :  derived in the Appendix is given as

(39)

where  is the solution error at the interface in iteration  and  is the prolongation 

ator  equal to 

(40)

More details on equations (39) and (40) are given in the Appendix.

In this section, we present closed form expressions for the spectral radius of the

tion matrices for different values of  and ,   denoted by , where  is th

plane polynomial order (  direction) and  is the polynomial order through the thick

of the beam (  direction). These expressions have been obtained using the symbol

package Maple [28]. In what follows we give a Taylor series expansions about the
, where  is Poisson’s ratio.

3.2.1  HFAC-ex algorithm

for 

diJlm

a v1 θ1 v2 θ2

∗
=

AJK U aJ b( , )DabfgU fK g( , ) Ωed
Ωe

∫=

J 1…4= K 1…4= Dabfg

u i j( , ) u∇

S eI
i

eI
i 1+→

S I Q̃Ã
1–
Q̃∗A–=

eI
i

i Q̃

Q̃

Q̃

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

=

p q ρ S
p q,( ) p

x1 q

x2

H L⁄ 0= ν 0.5<

ρ S2 1,( ) 2
33
------ 1 ν–( ) H

L
---- 

  2– 2
5445
------------1375ν2 1504ν 752–+

1 2ν–
------------------------------------------------------ O H

L
---- 

  2

 
 + += v 0.497≤
12
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It can be seen that the HFAC-ex  method for the model problem converges (

independently of material parameters, provided  and . In the case of l
through-the-thickness discretization, the iterative process diverges independently 
plane discretization as the material approaches the incompressible limit, i.e., 

Similarly, in the case of insufficient in-plane discretization , HFAC-

diverges for thin shells ( ).

3.2.2  HFAC-ap  algorithm

We first consider a Gauss Seidel preconditioner of the form , where  is
lower triangular part of  in (21), and  is the main diagonal of .

 for 

 otherwise.

ρ S2 1,( ) 2
3
--- ν2

1 2ν–
--------------- 

 =
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For large values of Poisson’s ratio , higher order terms in  canno

truncated since they contain terms of the form  ( ) that grow unbound

for incompressible materials, thereby affecting the spectral radius considerably ev
small values of . 

For all cases considered the spectral radius was , indicating that H

ap scheme with fixed number of  smoothing iterations is inappropriate for thin sh
Next, we investigate whether stronger smoothing, in the form of two symmetric G

Seidel sweeps, which correspond to the   preconditioner , can e
nate the lower order term.

for 

 otherwise.

For the case of  we also consider the SSOR preconditioner of the form
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For all the polynomial orders  considered, the SSOR preconditioner reduced

siderably the coefficient of the term  as compared to GS preconditioner

though, this term was not completely removed.

 In our last experiment conducted on the model problem, we have perturbed the 
ness matrix of the local grid (2D element) with a small fraction  of its diagon
i.e:

(41)

and then have solved the local problem exactly. The resulting spectral radius has be
symbolically computed using MAPLE:

(42)

It can be seen that a small perturbation of the exact local factor has a devastating inf
as , since a typical  ratio is over 1000 in aerospace and mechanical e
neering applications and over 100 in civil engineering applications. This phenomeno
direct consequence of the approximation introduced in (18).

4.0  Numerical Examples

Two problems are considered for numerical investigation of computational efficie
of HFAC-ex  and HFAC-ap  procedures in the context of shell/3D global-local proble
The first test problem is a thick laminated shell subjected to axial tension. The secon
thin cylindrical shell. In both cases, local effects developed at the free edge are of in

As a termination criterion, we use the ratio of the residual norm versus the norm 
right-hand side vector, i.e.,

 and (43)
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where the tolerance is chosen to be . All computations have been carried
on a SUN SPARC 10/41 workstation.

4.1  (45/-45)s laminate in extension

We consider a thick four-layer (45/-45)s laminate subjected to axial tension. Geomet
boundary conditions and material properties are shown in Fig. 3. The plies in the lam
are of equal thickness idealized as a homogeneous, orthotropic material. Subscr
denotes the direction parallel to the fibers, subscript ‘2’ for in-plane direction perpen
lar to the fibers, and subscript ‘3’ for the out-of-plane direction. 

ANS shell elements [29] are used in the global region and 10-node tetrahedrals
local region. The local mesh is graded towards the free edge of the laminate. On the
mesh, the number of nodes is 171 and the number of shell finite elements is 36. On t
mesh, the number of nodes is 11530 and the number of tetrahedral elements is 72
HFAC-ap  we employ an Incomplete Cholesky Factorization preconditioner by value
zero fill-ins. Table 1 compares convergence of the HFAC-ap  and HFAC-ex  algorithm
can be seen that although the number of cycles required for HFAC-ap  is signific
higher than for HFAC-ex, the CPU time for HFAC-ap  is lower. This example sugges

for thick domain problems, where  term is not dominant, HFAC-ap with a r
tively weak coarse grid preconditioner is  an optimal choice. 

4.2 Isotropic cylindrical shell problem

In this subsection, we study a thin isotropic cylindrical shell problem. Geometry,
placement boundary conditions, material properties are depicted in Fig. 4.

As in the previous example, ANS shell elements are placed in the global re
whereas a 10-node tetrahedral unstructured mesh is used in the local region. The
model consists of 171 nodes and 36 shell elements. For the fine model three mesh
considered: (i)   226 10-node tetrahedral finite elements (467 nodes), (ii) 980 10-no
rahedral finite elements (1820 nodes), 3318 10-node tetrahedral finite elements 
nodes). All fine level meshes have the same number of 3D elements through the thi
direction (approximately 2 elements), whereas the number of elements is approxim
varied by a factor of 2 in the in-plane direction for the 3D meshes considered. The co
mesh of 3D elements has the size of a 3D element in the inplane direction rough
same as that of the shell element. Tables 2-4 provide the information on convergenc
acteristics for the three fine meshes considered. It can be seen that, by increasing th
ber of the elements in the inplane directions, both HFAC-ex  and HFAC-ap con
faster. This phenomenon is in good agreement with our analytical convergence est
in Section 3. Moreover, numerical experiments reveal that the convergence of HFA
with a weak course grid preconditioner is very poor. This finding confirms our analy

studies in Section 3 indicating that for thin beams or shells the  term comp
dominates the convergence characteristics of the HFAC-ap scheme, unless the coa
problem is solved up to a very tight tolerance. 

eps 10 6–=

L H⁄( )2

L H⁄( )2
16
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5.0  Conclusions

A hierarchical version of the composite grid method (denoted as HFAC-ex and H
ap), which exploits the solution of the shell model in studying local effects via 3D sol
model, is developed. Convergence studies on a beam/2D model problem indicate th
spectral radius of the point iteration matrix for HFAC-ex method is , whereas fo
HFAC-ap  it is , where L and H are the span and the thickness of the bea
respectively. Numerical experiments in multidimensions confirm these findings.

The major departure between the present paper and the work pioneered by McCo
[14],[30]  is in the approximation introduced in equation (18). This approximation ma
not be necessarily good because there might be a significant difference between the
and the 3D models for thin domain elasticity problems. A typical all-shell grid  ofte
consists of over a million degrees-of-freedom, whereas local grids  constructed in
local regions requiring better resolution are orders of magnitude smaller. Thus the a
imation (18) will significantly reduce the computational cost, since only a single facto
tion of  is required for numerous redesigns of local features. 

As a by-product of the approximation introduced in (18), two factors have been fo
to be absolutely critical to maintain reasonable rates of convergence of the iterative 
cess for thin domain problems:

i. The local problem has to be solved exactly or up to a very tight tolerance. For our 
numerical model, the thin cylindrical shell problem, it took 377-1615 cycles for the M
smoother by value, with up to 20 fill ins and 5 smoothings to converge as opposed to 
cycles with a direct solver. In our analytical model we have found that a small perturb
to the exact local factor has a devastating influence on the convergence as 

ii. The two parameter acceleration in the two step scheme. It is necessary to consider a sin
gle cycle of the HFAC  method as a nonsymmetric preconditioner and to accelerate 
iterative process with a two parameter acceleration scheme rather than with a more
lar conjugate gradient method. None of the numerical examples considered converg
without acceleration. In fact they rapidly diverge, as opposed to better than 0.5 rate o
vergence with the two parameter acceleration scheme. This is because the 3D mod
typically much stiffer than a shell model resulting in a poor preconditioning.
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7.0  Appendix: Derivation of the point iteration matrix

In this section, we derive the point iteration matrix :  for the model pr

lem given in Section 3.1, where the subscript  denotes the iteration count. For the 
problem described in 3.1, we condensed out the internal degrees of freedom of th

grid yielding . Also  can be excluded from the consideration due to the bo

ary conditions prescribed at the end points of the beam. Under these circumstanc

prolongation operator  in (10) can be simplified if we define it as the operator rel

the nodal displacements in  to those in , i.e. : , where 

given in equation (40).

The errors in the two subsequent iterations are related as follows

S eI
i

eI
i 1+→

i

eI êI= G̃G

Q̃

GI
˜ G̃L∪ GI Q̃ GI

˜ G̃L∪ GI→ Q̃
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(44)

Combining (39) with (16) with exact Jacobians replaced by  yields

(45)

where  is defined as  and  is identity matrix of an appropriate size. S

 and , equation (44) may be written as

(46)

Defining 

(47)

where , once again, is determined according to (38), one can write

(48)

where the iteration matrix  is equal to

(49)
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FIGURE 1.  Partitioning of the shell-3D  global-local model
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FIGURE 2. Discretization of the model problem
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FIGURE 3. Axial tension problem definition
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FIGURE 4.  Cylindrical shell problem definition
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TABLE 1.  Convergence studies for laminated plate problem

TABLE 2.  Convergence studies for cylidrical shell problem (226 elements in the fine grid)

TABLE 3.  Convergence studies for cylidrical shell problem (980  elements in the fine grid)

TABLE 4.  Convergence studies for cylidrical shell problem (3318  elements in the fine grid)

Method
Type

Number of 
relaxation 

sweeps 
(HFAC-ap)

Number of 
Cycles

CPU(sec)  
factoriza-

tion

CPU(sec) 
iterative  
solution 

CPU(sec)   
total 

HFAC-ap 1 57 30 274 800

HFAC-ap 2 38 30 250 776

HFAC-ap 3 31 30 247 774

HFAC-ap 4 28 30 265 800

HFAC-ap 5 24 30 264 788

HFAC-ex - 10 595 85 1050

Method 
Type

Number of 
relaxation 

sweeps 
(HFAC-ap)

Number of 
Cycles

CPU(sec)  
factoriza-

tion

CPU(sec) 
iterative  
solution 

CPU(sec)   
total 

HFAC-ap 5 1615 0.8 726 760

HFAC-ex - 25 1.3 5 33

Method 
Type

Number of 
relaxation 

sweeps 
(HFAC-ap)

Number of 
Cycles

CPU(sec)  
factoriza-

tion

CPU(sec) 
iterative  
solution 

CPU(sec)   
total 

HFAC-ap 5 580 3 1143 1240

HFAC-ex - 14 16 12 100

Method 
Type

Number of 
relaxation 

sweeps 
(HFAC-ap)

Number of 
Cycles

CPU(sec)  
factoriza-

tion

CPU(sec) 
iterative  
solution 

CPU(sec)   
total 

HFAC-ap 5 377 14 2690 2980

HFAC-ex - 11 179 24 364
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