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ABSTRACT

A hierarchical version of the composite grid method (denoted as HFAC), which
exploits the solution of the shell model in studying local effects via 3D solid model, is
developed. Convergence studies on a beam/2D model problem indicate that the spectral
radius of the point iteration matrix for the HFAC method @&(1) ar@((L/ H)Z)
with exact and approximate auxiliary coarse grid solutions, respectively, WtaerdH
are the span and the thickness of the beam, respectively. Numerical experiments in multi-
dimensions confirm these findings.

1.0 Introduction

Global-local techniques for laminated composite shells, which merge the Equivalent
Single Layer (ESL) model aimed at predicting overall response with Discrete Layer (DL)
model intended for capturing local effects, are recently receiving an increasing attention.
We refer to [22] for a comprehensive review of global-local techniques for composite lam-
inates and to [7] and [8] for various aspects of reliability, convergence and accuracy of glo-
bal-local techniques.

In this paper, we are focusing only on the class of global-local techniques that advo-
cates a hierarchical solution strategy in the sense that information from the analysis of an
ESL model is exploited in the resolution of local effects using a DL model. Among the
most popular hierarchical global-local strategies are the various forms of multigrid and
composite grid methods [14]-[19], [30] as well as the methods based on hierarchical
decomposition of approximation space [1]-[6], [20]-[22]. Recently, the composite grid
method originated for displacement-based linear systems, has been extended to hybrid
systems [26]. Engineering global-local approaches, which approximate a detailed
response by means of post processing techniques, such as subjecting refined discrete layer
model to the boundary conditions extracted from the global ESL model, can be viewed as
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a single iteration within the composite grid procedure. For various improvements of this
simple “zoom” technique, we refer to [23]-[25].

The present paper presents a hierarchical version [18] of the composite grid method
(denoted as HFAC) [14], which exploit the solution of the shell model in the process of
solving a coupled global-local problem. The outline of the paper is as follows: In section 2
the principles of the composite grid method are outlined in the context of laminated plates
and shells. A convergence analysis on a model beam/2D problem is carried out in Section
3. These studies show that the spectral radius of the point iteration matrix for the HFAC

method is O(1) and O((L/ H)Z) with exact and approximate auxiliary coarse grid

solutions, respectively, wheteandH are the span and the thickness of the beam, respec-
tively. Numerical studies in multidimensions conclude the manuscript.

2.0 Hierarchical Composite Grid Method

In this section, we present the formulation of a global-local solution algorithm for
problems where one or more regions, requiring a detailed local resolution, are modeled as
a 3D solid model, whereas elsewhere the shell model is used.

2.1 Problem definition and notation

We adopt the notation introduced in [18][26]. Consider a finite element Mesh  con-

sisting of shell elements @ , Which is a dimensionally reduced domdin of as shown
in Figure 1. LetG be a 3D solid finite element mesh placed on the subr@giahQ

The composite grid consists of the shell model in the compleméﬁ of Q in , and the 3D
solid mesh o)

We partition the 3D solid medB  (subsequently referred to as the fine or local grid) as
G =G[G @

whereG, represents the interface degrees of freedd:m in  Gand the internal degrees

of freedom. The mesh consisting of shell elements (coarse or auxiliary grid) is partitioned
as follows:

G = GG [1Gg @

where G, represents the degrees of freedom associated with the coarse finite element
nodes at the interfac®, G,  the degrees of freedom associated with the interior coarse

grid points in f)L , andsg the degrees of freedom associated with the remaining coarse




grid nodes as shown in Flgure 1. For convenlence we define the shell grid outside the
local region as = G [1Gs so thad = GD GL . Finally, the composite grid, denoted

asG is defined as follows:

c°=GOgG, 3)

For information transfer between the two levels, we employ the prolongatlon operator
Q which is partitioned into two blocks for convenience. The first block, denot@i by

relates the degrees-of-freedomCEn to those corresponding to the interface degrees of
freedom ofG , i.eG,

QG - G, @)
where

Q = |:é| ci| (5)
such that

é| :él - G ()

Likewise, we define the second block of the prolongation operator, denotéd by

which correlates the information betweénD éL and the internal degrees of freedom of
G,ie.G :

Q:éIDéL—’GL (7
which is partitioned as
Q=10 ¢ 8)
Q= [Qu QLJ
such that
éLI :él - GL and éLL:éL — GL 9)

Consequently, the operaté' can be structured as follows:

Q = [QI 0 0] (10)
Qu QL 0




The restrictions operat0|(~9D G- G a@j G- G are transposef@ of Qand ,
respectively.

For subsequent derivations we will introduce the following notation:

U= |3 o (JGJDWherel]I 0G ,GLDéL ,GGDE;G .

_ [~ ~ U .
u= u UG} whereu O G .

U
u=0Qu UJ whereu, UG, .

_ A AL Ac .

A = A AL O stiffness matrix orG
Aci 0 Acc

A = 'f‘” :A"G stiffness matrix orG
Aci Ace

A = | M1 AL siiffness matrix orG
AL ALL

f= FI T, }GJ force vector, wherdy, f., fc  are nodal forces acting on @ig6y, G )

respectively.

f

. .10 . .
[fl fG:| force vector acting of®

f= |:f| fJ wheref, and, are nodal forces acting on géigls Gnd |, respectively.

We note that the displacement vectars and are related via orthogonal operator

given by
7=|100 (11)
001

wherel is an identity matrix of an appropriate size, such that




u=Tu (12)

We now may formulate an algebraic system of equations for the two-level linear prob-
lem. It consists of finding a pair of nodal displacements vedtors) such that

1/ 2((A0,0) + (Au, 1)) — (F,0) — (F,u) O (mir; (13)
u,u

where (.,.) denotes the bilinear form defined by

n

(u,v) = z uv, u,vO R (14)
j=1

Minimization of (13) with respect tqu, u)  subjected to the interface condition (13)
yields a system of linear equations on the composite grid:

(A+QA,Q) QA F} - f+ (A?Eh (15)
ALQ A | LM fL
The system of linear equations (15) can be solved either directly or iteratively. It is our

objective to develop a hierarchical global-local procedure, which exploits the solution of
the auxiliary shell model on the entire problem domain.

2.2 Two-level solution procedures

In this section, we describe a four-step procedure for solving the system of linear equa-
tions (15). The iterative solution procedure based on minimization of energy functional
(13) is given below:

Step 1

Find the correctior5l’  which minimizes the two-level energy functional (13) on the
subspace of the coarse grid functions:

%((A(ai + T30, U +T3U) + (A(U +Q30'), u' +Qd0')) —
(16)
(f, 0+ T&80') - (f, u' +Q5U') O min
50
where the superscripts refer to the iteration count. Note that the coarse grid codaction
has a similar partitioning ta , i.e.,




SU = [&]I 50, 5GG}Dand6ﬁ = [61] 5l~JGJD

The direct minimization of (16) with respectda  yields:

(TOAT + QPAQ)SH = TO(F - Al') + QHf -AU) -

The first termTOAT  on the left-hand side represents the assembled form of the coarse

grid stiffness matrix, whereas the second t@l%AQ represents the restricted stiffness
matrix of the 3D elasticity model in the local region. For the purpose of approximating the
coarse grid correctiodu  we will replace the two terms by the stiffness matrix of the shell
model on the entire problem domain, i.e.,

A0 TOAT + QHAQ (18)

Substitution (18) represents a major departure from the classical FAC method. In fact,
this approximation may not be necessarily good because there might be a significant dif-
ference between the two mathematical models for thin domain elasticity problems (see for
example [12]). Nevertheless, this approximation is absolutely must if the composite grid
method is to be considered as a viable alternative to engineering global-local approaches

in aerospace industries. A typical all-shell g8d  often consists of over a million degrees-

of-freedom, whereas local gridd@  constructed in the vicinity of cutouts, fasteners, holes
and other interconnects are orders of magnitude smaller. In a large scale computational
environment this approximation will significantly reduce computational cost, since only a

single factorization oA is required for numerous redesigns of local features.
Step 2
Once the coarse grid correction has been carried out, it is necessary to update the solution:
IR SRR S LR R B ui+1:ui+éaai_ (19)
Step 3
Find the correctiordu,  on the fine mesh, which minimizes the energy functional on

the subspace of the functionsGp  , i.e. keeﬁng fixed

%((Aﬁi, ﬁi) + (A(ui + Aui), u + Aui)) —(f, ﬁi) —(f, u + Aui) 0 min (20)
|
Au

whereAu, = 0 to maintain compatibility.

The direct minimization of (20) yields




ALLAU:_ = fL_ALIéai_ALLu:_ (1)
If (21) is solved exactly, i.e.
. . . .
AU:_ = ALL(fL_ALIQuI _ALLU:_) (22)

then the corresponding iterative process will be referred as HFAC-ex. Alternafiygely,
can be replaced by preconditiorfgr,  , which yields

. 3 . .
AU:_ = TiPLL(fL_ALIQuI_ALLuL) (23)

wherert; is a relaxation parameter given by

oA i
L = (fL-ALQU —A U, V) (24)

(ALLV:_’ V:_)

and viL = P[lL(fL—AU(A)tAJi —ALLuiL) . The latter will be referred as HFAC-ap.

Step 4

Since the approximation introduced in (18) is not necessarily good, we view steps 1-3

as a honsymmetric preconditioner, and thus displacerﬁl'enfﬁ u o computed in step 2
are updated using a two-parameter acceleration scheme. For convenience, the total correc-

tion on the fine grid, i.eééﬁi + AU , is denoted herech;'/ . Then, we ultimately update
the solution according to

ai+l - ai+aaai+86l~ji—l
N N i ~i_ 25
att= u'+0(T6u'+[3T6uI 1 (29)
Sl = ui+adui+Bdui—1

where the parameters, 3 are found from the minimization of the energy functional on

the subspace spanned by the VeC[E(FFBGi)G duﬂ = Eﬁ%ai —1)G du —1} H

%((A(Gi +aTsl + BTéﬁi _1), O+ aTsi + BTéﬁi _1) .

(A(U +adu +Bdd ™), u' +adu +pdd 7)) - e

(F, 0+ aTal +BToU Y= (f, u' +add +pdu ™1 0 min
o, B




A direct minimization of (26) with respectto  afid vyields:
[Cn C12] {a} — [H] (27)
C12 Cpo| [B Iz

¢,, = (TOATSU, 501') + (Add, du)

where

Cyy = (TOATSE % 50 %) + (Adu ~%, du' Y
¢, = (TOATSY, 80 ~1) + (Adu, du' 7Y (28)
r, = (THE-A), 38') + (F— AU, dU)

r, = (TAf-AU), 80 %) + (F— AU, du' %)

2.3 Intergrid transfer operators

Let PA be the finite element node in the 3D solid mesh at the intefPace and let

PAi represent its degrees-of-freedom WF&AG = [PAl PAJ corresponding to in-
plane degrees-of-freedom alﬁqa\3 to the transverse normal degrees-of-freedom. Like-

wise, P4 denotes the nodes in the shell model at the intefdace having either 5 or 6

degrees-of-freedom per node.

We will construct the interface prolongation opera@}r é| - G (needed for both
HFAC-ex and HFAC-ap procedures) assuming the so-called “telescopic” constraints at
the shell/3D interface, where the inplane degrees-of-freeBQ\mD Q, and transverse

(0

degrees-of-freedom at the midplar{ePAB(Z =0)} 0Q, are considered as the slave
nodes, i.e., belong to the s@tI , Whereas the transverse degrees-of-freedom outside the

midplane {PAB(Z) #0} 0Q, belongtothe s&  rather tftan . Here, for sim-

plicity, we assume that there exists a layer of nodes in the 3D solid mesh at the midplane,
as shown in Figure 1.




. , ~ . Aa .
The interface prolongation operatQy consists of nodal bl®|ks corresponding

to mapping the solution from the coarse mesh riége PAEO , Where the projection of

the fine grid node PA onto the shell surface is within the shell element connected to
node P, . Using the shell element formulation based on the degenerated solid model, the

. . Aa . , . o
nodal interface prolongation operal@I in the local fiber coordinate system is given

by

Na(Eanp) O 0 0 ZhalaNa(Ea )

Aa_ - ~

9= 0 NalEuna) 0 SNlaNal@ana) O )
0 0 NaEanp 0 0 |

Note that the first three columns correspond to translational degrees-of-freedom, whereas
columns 4 and 5 correspond to rotational degrees of freedom in the fiber coordinate sys-
tem. The first two rows correspond to the prolongation of the in-plane degrees of freedom,

whereas row three designates prolongation at the midplane in the transverse direction.

Na(EA, r]A) denotes the in-plane shape function corresponding to the shell element

node Pa computed at the fine grid noBg\ EA, N ZA are the natural coordinates in

the shell computed at fine grid noE’g\

If the HFAC-ap scheme is employed, then, in additior{)jo it is necessary to con-

. ~ ZAa
struct the prolongation operat@ G,[ |G, - G, .LetQ  be the initial value of nodal

blocks (_DAa in the fiber coordinate system obtained from the degenerated solid model in a
similar fashion to that in equation (29). Since the lower order shell theories [12] do not
take into account the fiber elongation in the transverse normal direction, it is necessary to
correct the transverse normal displacements by the integral over transverse normal strains.
The resulting nodal prolongation operator in the fiber coordinate system is given as

- 0 -

5

D6|BaI(EA1 r]A)
2 %
=10




whereD is the three-dimensional constitutive matrix corresponding to the transverse nor-

mal stress, anéai is the block of the strain-displacement matrix of the shell element cor-

responding to the shell nod,

3.0 Model problem

In this section the rate of convergence of the iterative procedure described in the previ-
ous section is estimated in the closed form for beam-2D model problem shown in Figure
2.

For the 2D domainorL <x; <L sH<x,<H the governing elasticity equations in
the tensorial notation are given as:

Oij j +b =0 Oj; = )\Uk, kaij +2I-1U(i’j) ihj =12 (31)

whereA, 1 are material constantg;  the symmetric stress téjsor;  the Kronecker
delta; comma denotes the spatial derivative; parentheses around the subscripts represent
the symmetric gradient.

For the beam domain dn<x; <2L 2L <x;<-L  the governing elasticity equa-
tions are the same, but in addition, the following Timoshenko beam constrains are
imposed to restrict the kinematics of the beam:

H
0, =0 Up(X1:%5) = —B(X)%, J’_szdx2 =0 (32)

where 8 is the beam rotation. The essential boundary conditions are applied at the two
ends of the beam, i.ey (x; = ¥2L) = -B(x; =F2L) = 0 . Compatibility is enforced
at the beam-2D interface:

u;(x, = FL) = —B(x; = FL)X,
33
Uy(X; = F(L+€)) = Uy(Xy = F(L—¢€)x,= 0) O<e«l ¢

3.1 Model description

We consider the finite element discretization depicted in Figure 2. On the global level
we use Timoshenko’s beam elements with quadratic shape functions for the transverse dis-
placements and linear shape functions for the rotations. Timoshenko’s beam element has
been chosen since it represents one-dimensional counterpart of the Mindlin/Reissner

shell/plate element. For the local model, a single -type 2-D element is employed with
nonuniform polynomial order of displacement interpolation functions in yand denoted
asp andq , respectively.
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We first focus on the construction of the discrete system of equations for the model
problem. The displacement field of the 2D element can be cast into the following form:

4
U = % Uisay (34)
J=1

wherea = [Vl 0, v, eZ}D is the vector of nodal displacements (two translations and two

rotations), andJ;; | = 1,2 J = 1,4 , is the solution of the two-dimensional problem

corresponding to the prescribed -th unit nodal displacement while keeping the other
nodal displacements constrained. Note that the constraints between the beam and the 2-D
element are of telescopic type, i.e., at the interfagce  is prescribed yor all ,uyhile is

prescribed only ay = 0 . Itis not the objective of this paper to study the influence of var-
ious global/local interface conditions on the solution accuracy. Instead, we are only focus-
sing on the convergence characteristics of the iterative process given the interface
conditions employed in practical applications [27].

The functionsJ,;; are discretized as follows:

Uy = Z;dmlmq}l(a)wm(n) (35)

where¢ = % and = % P,(§) andl (n) are the basis functions given as

€ (36)

and
L|Jn =n n=12.. (37)
where P, () are Legendre polynomials of order

Let Kd,; = O be the discrete system of equations arising from the discretization given

in (35) subjected td -th unit displacement on the boundary, wthgre {d,;;,} K and

is the corresponding stiffness matrix. The coefficiethts,, may be found exactly or
approximately. The former is denoted as HFAC-ex, while the latter is termed HFAC-ap.
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Once the coefficientsl,,, are found, one may find the coefficients of the stiffness

matrix for 2-D element with the interface nodal degrees of freeniom[vl 0, V, eZJ H

A = JU(aJ,b)Dabng(fK,g)dQe (sum over repeated indices) (38)

whereJ = 1...4 K =1...4 ,D
constitutive tenson;;, are the components of the symmetric part of the t&nsor

abfg are the components of the 2D plain-strain elastic

3.2 Convergence properties of the algorithm

1

The point iteration matrixs e'f - eiI " derived in the Appendix is given as

s= 1-0A QA (39)

WhereeiI is the solution error at the interface in iteration C~a¢nd is the prolongation oper-

ator (3 equal to

10000
=|01000
00100
00010

(40)

More details on equations (39) and (40) are given in the Appendix.

In this section, we present closed form expressions for the spectral radius of the itera-
tion matrices for different values @f amgd denotedplr()Sp’ q) , Wpere s the in-
plane polynomial orderxg  direction) and  is the polynomial order through the thickness

of the beamX, direction). These expressions have been obtained using the symbolic math

package Maple [28]. In what follows we give a Taylor series expansions about the point
H/L = 0, wherev <0.5 is Poisson’s ratio.

3.2.1 HFAC-ex algorithm

12 2 2 13752+ 1504y — 752
p(s™ ) = 3—3(1—V)E'Lj%r + e Y +OEHE5FE for v< 0.497
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2
p(SZ’ l) = %EH.XZVE otherwise.

'y = 8(1+v)(1-3v) +oIHOD  torv<0.277

p(S’ 33 (1-2v) oo

2
p(SS’ l) = %EH.XZVE otherwise.

o _ 2 (HIT2 (1343, 19, (1, oIHCAD
P(S™%) = HA-WEH - Faao* 300+ OFF0G

N
(% = 2(1- )[Hzr 1343, 19 +OEH_*§

33 0.0 ~ 4820 396 0

p(SS’z) _8 4 (33v —330\)+406)[|—|[F D[ﬂg‘g

33 1815 1-v oo +Oaroo
It can be seen that the HFAC-ex method for the model problem convex@@s{1 )
independently of material parameters, proviges 3 g . In the case of linear

through-the-thickness discretization, the iterative process diverges independently of in-
plane discretization as the material approaches the incompressible limit,-+.€,5

Similarly, in the case of insufficient in-plane discretizatigp < 3) , HFAC-ex

diverges for thin shells'—l:{ -0 ).

3.2.2 HFAC-ap algorithm

We first consider a Gauss Seidel preconditioner of the formd)_l , Where is the
lower triangular part oA | in (21), ardl is the main diagonahgf

2_1375° +1504 — 752 , (THF]

EAAE Y o0 for v<0.497

N _ 2
p(s"h = 2a-vEY

2
N _ 20 VT [ .
p(S2 ) = 30 otherwise.

1y , 9v°—98v +49  THFO
p(S™) = 100(1 V) 1-2v +OED_D
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0 2 HT2 1 [B7362° + 28643% — 1546097, ~[THCAO
p(S™) = 331 "V)E0 557564 1-2v 0*Cmoo

1 873622 +28643% — 154609, OD[Ij[FD
557568 1-2v My oo

o = Za-vHIT"

2
o(S?) = l(l_v)mj[rﬂilm —784v + 392 ~THFD

100 00 600 1-2v ENREE
For large values of Poisson’s ratib—» 0.5 , higher order ternid/h cannot be
truncated since they contain terms of the f01=|=|=r1—n n>Q ) that grow unboundedly
(1-2v)

for incompressible materials, thereby affecting the spectral radius considerably even for
small values oH/L .

—2
For all cases considered the spectral radius %E E , indicating that HFAC-

ap scheme with fixed number of smoothing iterations is inappropriate for thin shells.
Next, we investigate whether stronger smoothing, in the form of two symmetric Gauss-

Seidel sweeps, which correspond to the preconditiQherd)_ld(l + d)_T , can elimi-
nate the lower order term.

2
2_1375"+ 1504 ~752 , o(THIO 1or vs 0.497

RNy [HT?
oS = AL “m oo oo

2
4 -20V O i
p(SZ) 320 otherwise.

2
1, _ 1 HT? 1 110000 + 8654 —4327 . ~[THF
P(S™Y = G-V * Team 1-2v Einals

Forthecasegb = 3,g = 1 we also consider the SSOR preconditioner of the form
wW(2-—w)(l+ d)_ld(l + d)_T , Which yields
B - 1=V 6 5 4 3 2 HT?
p(S, ") = E(&D - 30w + 90w — 160w + 180w _12000+36)E[D +0(1)

with w = 1 giving the optimal choice.
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o(S>?) = 2(1-v)H?, _ 1 284240}2+681608)—385739+ oHFD
33 OO 1393920 1-2v ENREE

p(s% = AL o)

p(s*? = La-vHI 4 00)

For all the polynomial orders, q considered, the SSOR preconditioner reduced con-

THO?0

siderably the coefficient of the te”@DEED O as compared to GS preconditioner even

though, this term was not completely removed.

In our last experiment conducted on the model problem, we have perturbed the stiff-
ness matrix of the local grid (2D element) with a small frac(ign- 0) of its diagonal,
ie:

new

A = A+ndiag(A) (41)
and then have solved the local problem exactly. The resulting spectral radius has been
symbolically computed using MAPLE:

o5 = [Da-vyn?+ o) HT" + o) @)

It can be seen that a small perturbation of the exact local factor has a devastating influence
asH/L - 0, since a typicdl/H ratio is over 1000 in aerospace and mechanical engi-
neering applications and over 100 in civil engineering applications. This phenomenon is a
direct consequence of the approximation introduced in (18).

4.0 Numerical Examples

Two problems are considered for numerical investigation of computational efficiency
of HFAC-ex and HFAC-ap procedures in the context of shell/3D global-local problems.
The first test problem is a thick laminated shell subjected to axial tension. The second is a
thin cylindrical shell. In both cases, local effects developed at the free edge are of interest.

As a termination criterion, we use the ratio of the residual norm versus the norm of the
right-hand side vector, i.e.,

Irllo/[fll, < epsand |vil, =

2d)'5
i | (43)
U

-od

n
ZV
=1
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where the tolerance is chosen todyes = 10°° . All computations have been carried out
on a SUN SPARC 10/41 workstation.

4.1 (45/-45) laminate in extension

We consider a thick four-layer (45/-4%minate subjected to axial tension. Geometry,

boundary conditions and material properties are shown in Fig. 3. The plies in the laminate
are of equal thickness idealized as a homogeneous, orthotropic material. Subscript ‘1’
denotes the direction parallel to the fibers, subscript ‘2’ for in-plane direction perpendicu-
lar to the fibers, and subscript ‘3’ for the out-of-plane direction.

ANS shell elements [29] are used in the global region and 10-node tetrahedrals in the
local region. The local mesh is graded towards the free edge of the laminate. On the coarse
mesh, the number of nodes is 171 and the number of shell finite elements is 36. On the fine
mesh, the number of nodes is 11530 and the number of tetrahedral elements is 7233. For
HFAC-ap we employ an Incomplete Cholesky Factorization preconditioner by value with
zero fill-ins. Table 1 compares convergence of the HFAC-ap and HFAC-ex algorithms. It
can be seen that although the number of cycles required for HFAC-ap is significantly
higher than for HFAC-ex, the CPU time for HFAC-ap is lower. This example suggest that

for thick domain problems, Wher(eL/H)2 term is not dominant, HFAC-ap with a rela-
tively weak coarse grid preconditioner is an optimal choice.

4.2 Isotropic cylindrical shell problem

In this subsection, we study a thin isotropic cylindrical shell problem. Geometry, dis-
placement boundary conditions, material properties are depicted in Fig. 4.

As in the previous example, ANS shell elements are placed in the global region,
whereas a 10-node tetrahedral unstructured mesh is used in the local region. The coarse
model consists of 171 nodes and 36 shell elements. For the fine model three meshes were
considered: (i) 226 10-node tetrahedral finite elements (467 nodes), (ii) 980 10-node tet-
rahedral finite elements (1820 nodes), 3318 10-node tetrahedral finite elements (5840
nodes). All fine level meshes have the same number of 3D elements through the thickness
direction (approximately 2 elements), whereas the number of elements is approximately
varied by a factor of 2 in the in-plane direction for the 3D meshes considered. The coarsest
mesh of 3D elements has the size of a 3D element in the inplane direction roughly the
same as that of the shell element. Tables 2-4 provide the information on convergence char-
acteristics for the three fine meshes considered. It can be seen that, by increasing the num-
ber of the elements in the inplane directions, both HFAC-ex and HFAC-ap converge
faster. This phenomenon is in good agreement with our analytical convergence estimates
in Section 3. Moreover, numerical experiments reveal that the convergence of HFAC-ap
with a weak course grid preconditioner is very poor. This finding confirms our analytical

studies in Section 3 indicating that for thin beams or shell$l.t}7ﬂei)2 term completely
dominates the convergence characteristics of the HFAC-ap scheme, unless the coarse grid
problem is solved up to a very tight tolerance.
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5.0 Conclusions

A hierarchical version of the composite grid method (denoted as HFAC-ex and HFAC-
ap), which exploits the solution of the shell model in studying local effects via 3D solid
model, is developed. Convergence studies on a beam/2D model problem indicate that the
spectral radius of the point iteration matrix for HFAC-ex metho@®{4) , Whereas for
HFAC-ap itis O((L/ H)2) , Wherdé. andH are the span and the thickness of the beam,
respectively. Numerical experiments in multidimensions confirm these findings.

The major departure between the present paper and the work pioneered by McCormick
[14],[30] is in the approximation introduced in equation (18). This approximation may
not be necessarily good because there might be a significant difference between the shell
and the 3D models for thin domain elasticity problems. A typical all-shell@rid  often
consists of over a million degrees-of-freedom, whereas local Grids  constructed in the
local regions requiring better resolution are orders of magnitude smaller. Thus the approx-
imation_(18) will significantly reduce the computational cost, since only a single factoriza-
tion of A is required for numerous redesigns of local features.

As a by-product of the approximation introduced in (18), two factors have been found
to be absolutely critical to maintain reasonable rates of convergence of the iterative pro-
cess for thin domain problems:

i. The local problem has to be solved exactly or up to a very tight tolereoceur

numerical model, the thin cylindrical shell problem, it took 377-1615 cycles for the MIC
smoother by value, with up to 20 fill ins and 5 smoothings to converge as opposed to 11-25
cycles with a direct solver. In our analytical model we have found that a small perturbation
to the exact local factor has a devastating influence on the convergdnZé as 0

ii. The two parameter acceleration in the two step sch#rnsenecessary to consider a sin-

gle cycle of the HFAC method as a nonsymmetric preconditioner and to accelerate the
iterative process with a two parameter acceleration scheme rather than with a more popu-
lar conjugate gradient method. None of the numerical examples considered converges
without acceleration. In fact they rapidly diverge, as opposed to better than 0.5 rate of con-
vergence with the two parameter acceleration scheme. This is because the 3D model is
typically much stiffer than a shell model resulting in a poor preconditioning.
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7.0 Appendix: Derivation of the point iteration matrix

1

In this section, we derive the point iteration mafBixeif - eiI * for the model prob-

lem given in Section 3.1, where the subscript denotes the iteration count. For the model
problem described in 3.1, we condensed out the internal degrees of freedom of the local

grid yieldinge, = ¢, . AIsoéG can be excluded from the consideration due to the bound-
ary conditions prescribed at the end points of the beam. Under these circumstances, the
prolongation operatoé in (10) can be simplified if we define it as the operator relating
the nodal displacements | []G. to thoseGp 6eé| (]G - G, ,wigre s
given in equation (40).

The errors in the two subsequent iterations are related as follows
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e = e -Qall (44)

Combining (39) with (16) with exact Jacobians replaceé\by yields

ei|+1 = ei| —(N?A_l(TEﬁl —A”ﬁ:) +(~?D(f| —AU:)) (45)

whereT is defined ag = [I (ﬂ arld is identity matrix of an appropriate size. Since
T= (NQ andu, = u, , equation (44) may be written as
6" = ¢ ~QA QHA +A)e (46)
Defining

A=A +A (47)
whereA , once again, is determined according to (38), one can write

e = = Se (48)
where the iteration matri$ is equal to

s= 1-0A QA (49)
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FIGURE 1. Partitioning of the shell-3D global-local model




FIGURE 2. Discretization of the model problem
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FIGURE 3. Axial tension problem definition
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FIGURE 4. Cylindrical shell problem definition
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TABLE 1. Convergence studies for laminated plate problem

Number of CPU(sec) | CPU(sec)
Method relaxation | Number of | factoriza- | iterative | CPU(sec)
Type sweeps Cycles tion solution total
(HFAC-ap)
HFAC-ap 57 30 274 800
HFAC-ap 2 38 30 250 776
HFAC-ap 3 31 30 247 774
HFAC-ap 4 28 30 265 800
HFAC-ap 5 24 30 264 788
HFAC-ex - 10 595 85 1050

TABLE 2. Convergence studies for cylidrical shell problem (226 elements in the fine grid)

Number of CPU(sec) | CPU(sec)
Method | relaxation | Number of | factoriza- | iterative | CPU(sec)
Type sweeps Cycles tion solution total
(HFAC-ap)
HFAC-ap 5 1615 0.8 726 760
HFAC-ex - 25 13 5 33

TABLE 3. Convergence studies for cylidrical shell problem (980 elements in the fine grid)

Number of CPU(sec) | CPU(sec)
Method | relaxation | Number of | factoriza- | iterative | CPU(sec)
Type sweeps Cycles tion solution total
(HFAC-ap)
HFAC-ap 5 580 3 1143 1240
HFAC-ex - 14 16 12 100

TABLE 4. Convergence studies for cylidrical shell problem (3318 elements in the fine grid)

Number of CPU(sec) | CPU(sec)
Method | relaxation | Number of | factoriza- | iterative | CPU(sec)
Type sweeps Cycles tion solution total
(HFAC-ap)
HFAC-ap 5 377 14 2690 2980
HFAC-ex - 11 179 24 364
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