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ABSTRACT

A multi-grid method for a periodic heterogeneous medium in multidimensions is developed. Based on
the homogenization theory special intergrid transfer operators have been developed to simulate a low
frequency response of the boundary value problem with oscillatory coefficients. An adaptive strategy
is developed to form a nearly optimal two-scale computational model consisting of the finite element
mesh entirely constructed on the microscale in the regions identified by the idealization error indica-
tors, while elsewhere, the modeling level is only sufficient to capture the response of homogenized
medium. Numerical experiments show the usefulness of the proposed adaptive multi-level procedure
for predicting a detailed response of composite specimens.

1. Introduction

The computational complexity of modeling large scale composite structures is enor-
mous primarily due to the multiple scales involved. For example, the typical size of the
structure (an airplane or a car) is of the order of magnitude of tens of meters, while the
diameter of the fastener hole is of the order of millimeters. Prediction of micro-
mechanical failure modes necessitates considerations at even smaller scales. The useft
life of a structure depends on the quality of modeling at each scale and the ability of a
reliable transfer of the appropriate information between various modeling levels. Thus,
the need for reliable analysis techniques at several different scales is crucial.

Mathematical homogenization theory [1-3] or its engineering counterpart [4] have been

traditionally used as a primary tool for analyzing heterogeneous medium. Based on the
assumptions of microstructure periodicity and uniformity of macroscopic fields within

a unit cell domain, homogenization theory decomposes the boundary value problem in
a heterogeneous medium into the unit cell (micro) problem and the global (macro)

problem. The computational sequence consists of three steps: (i) solution of the unit
cell problem and evaluation of the homogenized material properties, (ii) solution of the




macro-problem and (iii) post-processing on the micro-level. Reliability of computa-
tions in a heterogeneous medium is strongly linked to the validity of the two basic
assumptions (periodicity and uniformity), introduced by the classical homogenization
theory. The issue of statistical periodicity has been investigated in [5] and is not
addressed here. Instead, we concentrate on the issue of uniformity of macroscopic
fields (or absence of it) within the unit cell domain. These studies are motivated by the
well known fact that in the high gradient regions the macroscopic fields are rapidly
varying and their uniformity within the unit cell domain is highly questionable.

This paper proposes an alternative to the classical homogenization that abandons the
classical hypothesis of uniformity of the macroscopic fields within the unit cell
domain. By this approach solution obtained from the mathematical homogenization
theory is only used to simulate the global response of the discrete heterogeneous
medium. The proposed computational scheme can be viewed as a generalization of the
multi-grid method for the periodic heterogeneous medium. Within this framework the
mathematical homogenization theory serves as a mechanism for capturing the lower
frequency response of the discrete heterogeneous medium, while the classical relax-
ation techniques are employed to capture the oscillatory response.

Previous studies[6] have indicated that for problems in heterogeneous medium eigen-
values corresponding to the lower frequencies are not smooth and thus the classical bi-
or tri- linear operators are not suitable for data transfer between the grids. For 1-D
problems it has been found [6] that the rate of convergence is governed by the factor
9/(4-q) ,whereO<q<1 depends on the microstructure. This estimate reveals that
the rate of convergence increases with the increase in material heterogeneity.

The paper focuses on the issues of adaptive multiscale modeling and fast iterative solu-
tion algorithms for problems in heterogeneous media. We will attempt to construct a
nearly optimal two-scale computational model consisting of the finite element mesh
entirely constructed on the microscale in the regions where there is a necessity to do so,
while elsewhere, the modeling level will be only sufficient to capture the response of
homogenized medium. The microscale reduction error indicators described in section
5, are used to assess the quality of homogenized model, and to identify the regions
where the homogenized model should be replaced by a model reflecting the details of
the microstructure.

Once the two-scale model is constructed, the multigrid-like solvers in the form of
MLAT [7] and/or FAC [8,9] are employed due to their linear asymptotic rate of conver-
gence, as opposed to the roughly quadratic growth in CPU time versus the problem size
in the case of the direct coupled global-local solutions (or, to be more precise,




NB2 ,whereN andB are the problem size and the bandwidth, respectively). We show
that it is possible to obtain even faster convergence for the case of differential equations
with highly oscillatory periodic coefficients if special intergrid transfer operators
developed in section 3 are utilized.

The outline of this paper is as follows. Problem statement and objectives are formu-
lated in section 2. Special purpose intergrid transfer operators for a periodic heteroge-
neous medium are derived in section 3. Section 4 describes an adaptive two-scale
computational procedure for periodic heterogeneous medium. Microscale reduction
error indicators and estimators aimed at quantifying the quality of homogenization and
steering the adaptive process are given in section 5. Numerical experiments conclude
the manuscript.

2. Problem statement
In modeling heterogeneous media one can adopt two different points of view:
2.1 Mathematical modeling on the microscale

In this scenario each phase (fiber and matrix) is assumed to possess homogeneou:
properties and obey equilibrium and kinematical equations as well as compatibility and
traction continuity conditions between the phases. The corresponding strong form of
the boundary value problem for a linear elastostatics is given by

o. . = Db on Q

- n r (1)
ui = ui on u
crijnj =t on Ft
[Gij r‘j]rint - 0 I:ui]rint - 0

whereoij anohij are the components of the stress and strain tensors, respbgtively;
andt, represent the body forces and prescribed boundary tractions on the béyndary
respectively;u, are the components of the displacement véctor;  are the prescribed

displacements on the bounddry Di;jkI represent the components of the symmetric




positive definite fourth order constitutive tens@; is a problem domain. The last two
equations correspond to traction and displacement continuity conditions on the inter-
face,l'.,; , between the microconstituer[ts.]rint
Symmetric gradient is denoted bt}y(i,j) = (q)i,j + ¢j,i)/2 . Standard tensorial nota-

tion with summation over the repeated indexes is employed.

denotes the jump operdtgy, on

2.2 Mathematical modeling on the macroscale

Following the classical homogenization theory [1-3] the asymptotic solution of the
boundary value problem (1) for the periodic heterogeneous medium can be obtained
using two-term double scale asymptotic expansion

1
Ui (%, y) = ud(x) +eui(x, y) )
where
1
u (% y) = hik|(Y)5E| (X) 5|9| (X) = U(Ok, ) ®3)
andx is a macroscopic co-ordinate vecjor x/€ IS @ microscopic position vector.

The parametee is a representative unit cell size, which is very small in comparison
with the dimensions of the problem domain. The periodicity of the microstructure
implies that F(x, y+ kY) = F(x,y) , where vectof is a basic period of the micro-
scopic co-ordinate systerk; is a nonzero integer.

In the representation (3),,(y) is the -periodic function, which can be found from
the solution of the boundary value problem on the unit cell doBain  subjected to peri-
odic boundary conditions:

(Bijki (M, hmn+ Omin)); = O on 8 @

whereESij is a Kronecker delta.
The corresponding expansion of the strain tensor is given

&j = (O + h(i,j)kl)elgl +O(¢) 5)

The macroscopic displacement fiett?(x) is the solution of the following boundary
value problem with homogenized coefficients




u. = U on Fu (6)
where
mnpq l(alm in h(i,j)mn)DijkI (6kp6|q + h(k, |)pq)de (7

andeY is the volume of the unit cell.

Each of the two mathematical models is discretized using a finite element method. The
corresponding discrete models are termed as micro and macro finite element meshes
each may have various levels of mesh refinement.

It is the primary goal of the paper to find a numerical solution of the micro finite ele-
ment model. A direct solution of the system of equations resulting from such a discret-
ization is usually computationally not feasible since it may involve over a million of
unknowns. On the other hand, the finite element solution of the macro-model (6)-(7) is
generally feasible and can be utilized to capture the lower frequency response of the
discrete heterogeneous system, while various smoothing procedures would be very
efficient in capturing the oscillatory response of a heterogeneous medium. This sug-
gests that a multi-grid like approach is a natural choice for solving discrete systems
constructed on the microscale.

3. The intergrid transfer operators for a periodic heterogeneous medium in multi-
dimensions

In this section we focus on the central issue of constructing the intergrid transfer opera-
tors for a periodic heterogeneous medium in multidimensions. The structure of the

intergrid transfer operators between the discrete heterogeneous and corresponding
homogenized media is defined on the basis of the discrete form of the double scale
asymptotic expansion:

u| = (N|a(x) + 8hljk(y)N(]1k)a(X))da (8)

where N;,(x) and N(j,k)a(x) are the displacement and strain interpolants in the




macro-mesh, denoted by

u?=N-d and sﬁzN

la"a d 9)

(i,j)a"a

and d, are the corresponding nodal displacements. Hereinafter, capital subscripts
A, B, C ... are reserved for the fine grid (micro mesh) degrees-of-freedom, while
lower-case subscripts b, ¢ ... denote auxiliary coarse grid (macro mesh) degrees-of-
freedom.

Since the producxhijk in equation (4) is independent of the choiee of , it is more
convenient to analyze the unit cell problem in the co-ordinates of the physical domain;
le., shijk(y) = hijk(x) = O(€) . Thus substituting the discrete form of the unit cell
solution, hijk = NiB(x)djkB , iInto equation (8) yields

U = (Nig + NigN; 1)adike)da (10)

With this introduction the problem of the coarse grid correction is now stated in the fol-
lowing proposition.

Proposition

Let the coarse grid correction problem be formulated on the basis of the interpolation
defined in equation (10) and let

Aabdb =T, (11)

be the coarse grid correction problem, whegg Is the stiffness matrix of the bound-
ary value problem (6) with homogenized material properties (7) in the auxiliary macro-
mesh, and, is the respective restriction of the micro-mesh residual vector.

Theninthelimitag - 0 the stiffness matAx,,  coincides with the restriction of the
stiffness matrix of the boundary value problem on the micro-mesh (1).

Proof:

Let Q,, be a standard (for the second order differential equations) bi-linear or tri-lin-
ear coarse-to-fine grid prolongation operator. The nodal degrees of freedom in the two
meshes are then related by




dA = QAada (12)

The hypothesis of - 0 is equivalent to the infinitesimally small mesh size in the
micro-mesh, and thus, without loss of generality, the shape functions on the auxiliary
grid can be represented as a linear combination of the shape functions on the micro-
mesh, i.e.

Nia(X) = Nja(X)Qnpgn (13)
where the coefficients of linear expansioQy, follow from the relation
Niada = NiAdA = NiAQAada'

Inserting (13) into (10) yields
Ui(X) = Nia(Qaa* N, k)atikalda (14)

To construct the homogenization-based prolongation ope@;{gr we evaluate  at
the micro mesh nodes,

ui(XB) = dg = NiA(XB)(QAa+ N(j,k)a(XB)djkA)da (15)
where underlined subscripts indicate no summation over the repeated indices. Note that
the displacement along the spatial co-ordiriate at the xgde corresponds to the
degree-of-freedorB  in the micro grid, i.e(xg) =dg aNd, (Xg) =0, . Thus
dg = éBada (16)

where the homogenization-based prolongation operator is defined as follows

QBa = Qpat N(j,k)a(XB)djkB (17)
It remains to show thaﬁAa restricts the stiffness matrix of the micro-rgsh, , 10
the coarse grid in such a way that the resulting stiffness maafyjx= éDaAAABéBb
coincides with the stiffness matrix of the macro problem (6) with homogenized mate-
rial properties (7) in the limit as - 0

For this purpose we evaluate the strain field by taking the symmetric gradient of the
displacement field given in (8):

& = (NG 1Ha®) + N 1IN 1ya(x))dg + O(€) (18)




In the limit ase - 0 the last term can be neglected resulting in the following strain
approximation

& = (0405 * i kN, 1ya%a ")
= N jHalQaa* N atkia)da
Note that an identical strain approximation can be obtained by direct discretization of
the two-term asymptotic strain expansion given in (5).

The macro-mesh stiffness matrix is given by:

Ay = [N iyaDiiki No 1ypdQ
ab z[(.,J)a ikiNw b 20

_ 1
_ Z 9_Y£N<m, naNep, Q)bdeg(éiméjn i, jymnPijia (Gipiq + i nped ©
cells

Further exploiting the hypothesis of the infinitesimality of the unit celg as0 , we
note that

| |
N(i,j)a(XB) = N(i,j)a = const DXBDG (21)

where the superscript denotes the unit cell number.
Finally, inserting (21) into (20) yields:

_ - _ A0 =
Aap = ![QAaN(i,j)ADijkl Nk 1nBQ@B0dQ = Q-arAagQBD (22)

which completes the proof of the proposition.

So far the homogenization-based intergrid transfer opere(l@r&QEb have been
derived assuming tha&t —~ 0 . In practice the value of s finite, requiring reformula-
tion of the intergrid transfer operators to maint&in continuity of the prolongated
displacement field in the micro mesh. It should be noted that a direct application of the
prolongation operator (17) does not uniquely determines the displacement field on the
boundaries of the unit cells, since the macroscopic strain m‘zlﬁk)a(XB)da IS a
c™" continuous function, i.e., it is discontinuous on the boundaries of the macro-ele-

ments. Consequently, the prolongated solution is also discontinuous at the interface




between the unit cells, overlapping different macro-elements.

To develop a homogenization-based prolongation o eéttor , that ger(é?ates con-
tinuous displacements, it is necessary to construct a continuous strain field in a
macro-mestel], defined as

el = N g (xy) (23)

where €, /(x,) are nodal strain values in the macro-mesi\gnd are the correspond-
ing strain field shape functions. Nodal strain values are typically found by weakly
enforcing the equality between the discontinuous finite element strains and their con-
tinuous counterpart [10]. By this technique the projection opef@igr Is formed to
project strain values from a set of sampling points to finite element nodes in the macro-
mesh:

& (Xa) = Cagfi(Xg) = CqgNii, 1yp(Xg)dp (24)

where the sampling pointg
finite element nodes [10].

Substituting (23) and (24) into (17) and evaluating the displacement field at the finite
element nodes in the micro-mesh yields the following expression farottitenuous
homogenization-basgarolongation operator:

g - can be either Gauss points, reduced Gauss points or

Qaa = Qap(dap* Cng(k, I)a(xg)deA) (25)

In the numerical examples considered in this paper projection opé.‘rgéor was con-
structed on the patch-by-patch basis as described in [10]. In the case of a 4-node rectan:
gular element it amounts to computing the nodal strain values by averaging the
corresponding strain values evaluated at the element centroids, connected to the node.

Remark:In practice one has to deal with several different types of unit cells such as in the case of
laminated composites where eachdayer is composed of different unit cells. Even though the macro
strain field has been projected toGe continuous, the prolongated displacement field might still be
incompatible at the interface between dissimilar unit cells. This requires further modification of the
continuous homogenization-based prolongation operator at the interface between the unit cells of dif-
ferent types.

This is accomplihed by introducing a transition layer of unit cells at the interface between dissimilar
unit cells. The formulation of the unit cell problem in the transition region differs from the interior
unit cell in the way the boundary conditions are prescribed.




To clarify this point we consider a transition IayB#,: , In a laminated composite at the interface
between two dissimilar layerA a8l  as shown in Fig. 1. The microstructure in the transition
region,BD, is identical to that in the layBr . The boundary conditions applied to the unit cell in the
transition region are of the following categories:

(i) On the faces (edges in 2-D) orthogonal to the interface, the boundary conditions are periodic, i.e.,
displacementsdijA are equal on the opposite sides of the unit cell.

(i) On the faces parallel to the interface, the non-homogeneous Dirichlet boundary conditions are
assumed instead. The prescribed displacement values are assumed to be equal to those in the neigl
boring layer. In general, the value of these displacements is not equal to those on the opposite sides of
the unit cell.

The unit cell boundary value problems are solved in the following sequence (3-D case). First solve for
the interior unit cells (with all periodic boundary conditions). This is followed by the unit cells at the
interface between two dissimilar layers (with partially periodic and Dirichlet boundary conditions).
Then the unit cells along the edge connecting four different layers (with partially periodic and
Dirichlet boundary conditions), and finally the unit cells connected to eight different unit cells (with
Dirichlet boundary conditions only).

4. Multiscale solution algorithm for heterogeneous media

In this section we present the formulation of multiscale solution algorithm for prob-
lems in a periodic heterogeneous medium where one or more regions are modeled on
the microscale, while elsewhere the medium is treated as homogenized. Our formula-
tion is applicable to general three-dimensional domains with unlimited number of local
regions, although for simplicity, illustrations are limited to two-dimensional problems
with a single local region. Attention is restricted to a two-level scheme.

4.1 Problem definition and notation

Consider a heterogeneous mediumtdn  which is formed by a special periodicity of a
unit cell. Suppose, that the Microscale Reduction Error (MRE) indicator to be
described in section 5, indicates, that the classical homogenization procedure is not
valid on the portion of the problem domain, denoteddy Q . Therefore, the optimal
computational model consists of the finite element @id Qow Q/Q , Where the
elements are assumed to possess homogenized material properties, and a finite elemel
grid G, with much smaller elements constructed on the microscale.

The micro-gridG , is partitioned as follows:

G = GI 0 GL (26)
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whereG, are the micro-grid nodes at the interface  between the two regiolg, and
are the interior micro-grid nodes as shown in Fig. 2.

Likewise the macro-grids is partitioned in a similar fashion:

G = G| 0 GG 27)
whereG| are the macro-grid nodes at the interfagce , which do not have to coincide
with the nodes i, , an@g  are the remaining macro-grid points.

We further define an auxiliary gri@ dR , where the entire finite element mesh is

modeled with homogenized material properties. The Grid  is aimed at capturing the
lower frequency response of the two-scale grid mdgléel G . The auxiliary grid is

partitioned as follows:

é = é|DéLDéG (28)
where G| = G|, Gg = Gg ; the gridG, represents auxiliary grid points @n as
shown in Fig. 2.

For information transfer between the micrg- and macro- grids we employ continuous
homogenization-based prolongation opera@r  derived in section 3, which is parti-

tioned into two blocks for convenience. The first denote@by , relates nodal displace-
ments in the macro gri@  to those in the micro g&ds  at the intdrface  only:

QG - GI (29)
where
Q= [Qu QIGJ (30)
such that
Q:G| - G, and Qs:Gg - G, (31)

Note, that as opposed to the standard linear prolongation operator, which relates the
information at the interface only, continuous homogenization-based op&jgfor IS a
function of DSN(xg) onQ resulting in the information flow from the interior to the
boundary and vice versa.

Likewise, we define the second block of the continuous homogenization-based prolon-

11



gation operator denoted B9  which relates the information between the auxiliary
coarse grid and the interior micro grid nodes:

(_Q:é - G_ (32)
which is partitioned as
Q= [Qu QLL} (33)
such that
QL|:G| - GL and Q_L:GL - GL (34)

Consequently, the continuous homogenization-based prolongation orferator can be
structured as follows:

~ ~ 0 ~
g= | % Qo (35)
QL QL O
The continuous homogenization-based restriction operalé%G_, G and

Q[FGI - G are conjugated tQ ar@ , and are schematically denoted as

Q" Q- 5,0
A — ~ = I
Q- = 0 QLLD and dj = {3 (36)
~ G
_Q|GD 0 |
For subsequent derivations we will introduce the following notation:
U= _al U, ;QGJD - auxiliary grid displacement vector, wherel] é| u,0 é,_ ,
u= _al ;QGJD - macro-grid displacement vector én
u= _Ul ;ULJ . - micro-grid displacement vector, such thgt] G, and
- u UG ;

12



A AL A i
A = ALI ALL o | - auxiliary grid stiffness matrix o ;
Acl 0 Agg
- _A A - macro-grid stiffness matrix o8 , such thed g = AGG
A= |2 AIG
Acl AcG andAig = AG ;
A = A A - micro-grid stiffness matrix o
_ALI ALL
~ -0 - auxiliary grid force vector, wher?qe, ?,_, ?G are nodal forces
r= [fl fL ife} -~
acting on gridsG,, G|, Gg , respectively.
~ - . D . . B B -
f = fi ;fG:| - macro-grid force vector acting @ , such that= fg ;
f=[¢ 'fJD - micro-grid force vector, wheffe  afid  are nodal forces
I acting on gridss, an@, , respectively.

We note that the displacement vectors and are related via orthogonal assembly

operatorL. given by
L =100 37)
001

wherel is an identity matrix of an appropriate size, such that

u=Lu (38)
We are now in a position to formulate an algebraic system of equations for the two-

13



scale linear elasticity problem in heterogeneous media. It consists of finding a pair of
nodal displacement vectors,u ) such that

1/ 2((A0, 0) + (Au, W)~ (£, 0) = (F ) O i )
(U, u)
subjected to the compatibility condition at the interface

u = Qu (40)

Minimization of (39) with respect tou(u ) subjected to the interface condition (40)
yields a system of linear equations:

(41)

(A+Q Q) QA H _ |+ Q%
ALQ A |

The system of linear equations (41) can be solved either directly or iteratively. The
direct solver is not well suited for an adaptive computational environment, where the
region requiring a more detailed interrogation, is not known a priori.

It is our objective to develop an jterative solution procedure, which exploits the solu-
tion of the auxiliary problem o  in order: (i) to identify the regions where the
homogenized finite element model is inadequate, and (ii) to predict the lower fre-
guency response of the two-scale model.

Section 5 deals with the first item, while in section 4.2 we focus on developing a two-
scale iterative solution scheme.

4.2. lterative two-scale solution procedures

The three-step iterative solution procedure based on minimization of energy functional
(39) on various subspaces is given below:
Step 1.

Find the correction’’  which minimizes the two-scale energy functional (39) on the
subspace of the auxiliary grid functions, i.e.,

f

14



1/2((A(0' + LV, O + LV) + (A + OV, u' + Q')
S A a i~ (“42)
—(fFu+Lv)—(f,u+Qv) D min
{'/I
where the superscripts refer to the iteration count.

Note that the ﬁjxmary grid corrﬁctlon has a similar partitioninguto , i.e.
V=Y v Vg andv = [VI ’VGJ
A direct minimization of (42) with respect to yields:

(LOAL + QLAQ)V = LOf—AGY) + QY- Ad) @3)

The first term on the left hand side represents the assembled form of the macro-grid
stiffness matrix. In section 3 we have shown that for an infinitesimally small unit cell
the second term represents an assembled form of the stiffness matrix on the auxiliary
grid G, i.e.:

lim (LDAL +QMAQ) = (4)

€ -
In practice, however, the value of the representative unit celesize s finite, and thus
(44) is satisfied only approxmately Nevertheless, for the purpose of approximating the
auxiliary grid correctionv’  we will replace the Jacobian matrix in (43Aby . In the
adaptive environment this approximation will significantly reduce computatlonal Cost,
since only a single factorization of the auxiliary stiffness matrix is required, indepen-
dent of the refinement process.

Step 2.
Once the auxiliary grid correction has been carried out it is necessary to update the
solution in the auxiliary grid:

~i+dl i ~i A+l A ~ i+1 i ~ o~

u = U +wv u = u +wLv u = U +wQv (45)
The relaxation parameter is introduced to account for the approximation introduced in
(44) as a result of a finite size of the unit cell. The relaxatlon parameter is found from a

1-D minimization of the energy functional along the direction  evaluated in the previ-
ous step (43):

15



1/ 2((A(0 + 0LV, 0 + 0LV + (AU + wOV), U + wQv))

A r . . (46)
—(f, U+ ooLv') —(f, u' + oon') O min
w
which yields
LOF—AQ) + QHf - AU), V!
o = (LHE-AD) + O Ad). V) o
((LOAL + QEAQ)V', V)
Step 3. _
Find the correction/:_ on the micro-grid, which minimizesAlthe energy functional on
the subspace of the functions on the micro-@id , i.e. keaping fixed:
1/2((AG, Oy + (A +v), U v )= 8 = (U +v') O min 8)
|
. %
wherev'I = 0 on| to maintain compatibility.
The direct minimization of (48) yields
i Al i
ALV = TL=ALQU —A U (49)
If (49) is directly solved and
i+1 0 i
u — =u tv, (50)

then the three-steps iterative process described is in the spirit of FAC algorithm [8,9],
subsequently to be referred as FAC-Comp.

It is important to note that since the unit cell is very small, the number of degrees-of-
freedom in micro-grid could be larger than in the macro-grid. Secondly, the solution
behavior in the micro-grid is highly oscillatory with a lower frequency response similar
to that in the auxiliary mesh. These two observations suggest to replace the direct solu-
tion of (49) by smoothing of the form given by

i+1 [ [ A [

16



whereP| | is a preconditioner on the micro-g@d and s a relaxation parameter
given by

2 A i
- (fL=AL QU —A U,V )
[
(ALLve V)
i Al i
wherev, = P (f -A QU —A u) .

This variant has similar characteristics to the linear version of MLAT [7], and will be
termed as MLAT-Comp.

(52)

5. The microscale reduction error estimators and indicators
5.1. Formulation

In this section we quantify idealization errors associated with homogenization of peri-
odic heterogeneous medium and present their use in the adaptive procedure. The pro-
posed Microscale Reduction Error (MRE) estimator is based on assessing the uniform
validity of the double scale asymptotic expansion [1-3], which is given by a rapidly
decreasing asymptotic sequence:

0 0 2 0 3
uiE = u (x)+sHijk(y)u(j,k)(x) +€ Pijkl(y)uj,m(x) +0(e") (53)

Following [1-3] the Y-periodic functioﬂPijkl is found from the higher order equilib-
rium equation:

a = —
W(Dipkl(P(k, Nmnj* Hkmnélj))"'Dijkl(H(k, hmn* 6km6|n)—Dijmn =0 "
p

on unit cell GY

Problem (54) is solved using finite element method. The resulting asymptotic expan-
sion of the stress field is given by

0 0 1 0 2
i = Ajj MU () + A} (N U 14(X) +O(7) (55)

where
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0 _
Aijmn®) = Dijia (H ymn* O mOin)
1
Aijimnp(Y) = Dijia (P ymnp™ Hkmrip)
In the classical homogenization theory only the first term in (55) is considered, while
the second term is neglected. Thus, the quality of the homogenization is assessed or

the basis of the relative magnitude of the first term neglected to those taken into
account. The resulting Microscale Reduction Error estimator is defined as

(56)

_ [ea"0?u%o.0
|A%5u%0,
where| ||0,Q isd, -norm defined as

(57)

Ih(x I LES ((h2(x, y)dvdaD
Wioaq =T z[{ ij (%Y (58)
YAE; 0

To steer process of adaptivity we define the MRE indicator, which reflects the relative
contribution of individual element in the auxiliary mesh to the total microscale reduc-
tion error:

1 0
eHsAquuk, Iqu, Qe

00
HAkIu(k, I)Ho, Q

This approach is equivalent to the one employed for discretization error indicator in
[11].
3.2. Explicit form ofn _and,® _in 1D

In this subsection, we derive a close form MRE indicators and estimators for a 1D
model problem in order to study various factors affecting the microscale reduction
errors.

Closed form solution of (4), (54) fat afd  vyields:

e

B =

ne =B (59)

Q
0
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0 h rl

A =D = D—"J’D_ldyg = consg (60)
SN
and
~h
o %J‘de = const, (61)

whereD are the effective material properties Bnd is the unit cell size. Inserting (60)
and (61) into (57) yields the one-dimensional counterpart of the microscale reduction
error estimator is given by

2
d u0
h - 2
0D dx” |0, Q
D) -1y (62)
'!)- (v) EP du0
dx
For the unit cell consisting of two phases with complian€gs= 1/D, and

C, = 1/D, (the overall complianc€ = C;+C, C =1/D J§ the volume frac-
tion, the resulting MRE estimator is given by

20
du

C1-Cola(1—a)|dx® |0, a

C 2 du0
dx
From the above expression we can identify four factors affecting the microscale reduc-
tion error:

1. The size of the unit ceh, .
Cc,-C
2. The normalized difference of compllanclei2|
C

3. The fiber volume ratloﬂl—m2

n = h (63)

20
u

4. The macro strain gradien >
dx

0, Q
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It can be seen that the error estimator is asymptotically exact in the sense that the
microscale reduction errors vanish if either the normalized strain gradients are negligi-
ble, the unit cell is infinitesimally small, the compliances of the microconstituents are
almost identical or the volume ratio is close to either zero or one, which corresponds to
a homogeneous material.

6. Numerical results

Our numerical experimentation agenda includes two test problems. The first example
deals with a square plate containing a centered crack. Geometry, boundary and symme-
try conditions, material properties, loading and unit cell description are shown in Fig.
3. The finest level macro-mechanical g&l  with homogenized material properties
consists of 64 elements along each co-ordinate where each element coincides with the
unique unit cell boundaries.

The distribution of homogenization errors as indicated by MRE indicator is shown in
Fig. 4a. The micro-gridG , is placed on the portion of the problem domain, which
encompasses the contourrpef> 1  asshown in Fig. 4a. For simplicity th® grid2 on

Is selected to be of a rectangular shape. Thus the two-scale model consists of a micro-
grid in the region encompassed by 12x20 unit cells in the vicinity of the crack tip,
while elsewher€/Q , the finite element mesh is constructed on the macro-scale.

The multi-grid process was carried out on three different meshes: two-scale (macro-
micro) grid and two auxiliary macro-grids. We used V-cycle with 1 pre- and 1 post-
smoothing Gauss-Seidel iterations on the two auxiliary levels and 2 pre- and 2 post-
smoothing Jacobi iterations on the finest level. As usual, on the coarsest level we used
a direct solver. As a termination criterion we used the following tolerance to bound the
ratio of the two-scale grid residual norm versus the norm of the right hand side vector,
ie.,

n
Irll,/ 1l < eps where I, = Z |Vi| vOR (64)
i=1
To obtain convergence with toleranceegfs = 10_3 it was necessary to carry out 14
cycles using MLAT-Comp algorithm and 7 cycles with FAC-Comp method.
The resulting energy distribution absorbed in a unit cell in the micro-grid is shown in

20



Fig. 4c. For comparison purpose also shown are the results obtained on the basis of the
postprocessing from the classical homogenization theory [12] and the reference solu-
tion where the entire problem domdh is modeled on the microscale. It can be seen
that the postprocessing procedure from the classical homogenization theory signifi-
cantly underestimates the energy absorbed in the close vicinity to the crack tip. On the
other hand in the radius of 2-3 unit cells away from the crack tip the classical homoge-
nization theory is adequate.

In the second example, we consider a laminated ng/016/904]$ subjected to
uniform axial tension. Geometry, boundary and symmetry conditions and the micro-
structure cross section for the different layers are shown in Fig. 5. We considered
Glass-Epoxy composite material with the following material properties:
E, =723 v; =022 and E, = 292 v, = 0.35. The uniform tension load

was applied normal to threy  plane. The finest level of macro-@rid  consists of 24
elements along the co-ordinate (thickness direction) and 192 wnlong , each element
coinciding with the unique unit cell.

The distribution of the homogenization errors and the region selected for micro-
mechanical modeling are shown in Fig. 6a. The micro-grid consists of 14,400 elements
placed in the region encompassed by 24x24 unit cells in the vicinity of the free edge.
The two-grid model contains approximately 38,000 degrees-of-freedom. The multi-
grid process was carried out on three different meshes: two-scale (macro-micro) grid
and two auxiliary macro-grids. We used V-cycle with 1 pre- and 1 post- smoothing
Gauss-Seidel iterations on the auxiliary levels; 3 pre- and 3 post- smoothing Jacobi
iterations on the finest level and a direct solver on the coarsest level. 1% error of resid-
ual (64) was obtained in 8 cycles of MLAT-Comp algorithm and 8 cycles of FAC-
Comp method.

Fig. 6b,c,d compare the shear stress distribution in the micro-grid as obtained using
two-scale model, homogenization theory and the reference solution. Results are consis-
tent with our previous observations, i.e., inadequacy of the postprocessing technique
from the classical homogenization theory in the “hot spots” as opposed to striking
accuracy of the two-scale model.

To study boundary layer effect between two dissimilar layers in the axial tension prob-
lem we consider a micro-grid of approximately 15,000 degrees-of-freedom on the
entire problem domain. The same solution strategy has been employed. It was neces-
sary to perform 5 multi-grid cycles to achieve convergence with tolerance 0.1%. Fig. 7
and Fig. 8 compare the distribution of peeling stregs and shear (s)t(gass as
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obtained using the postprocessing from the classical homogenization theory and the
finite element solution of the discrete heterogeneous media. It can be seen that except
for the close vicinity to the free edge the valuespf  as obtained with the two methods
are in good agreement. On the other hand the distribution of sheaogtress differs not
only in the vicinity of the free edge, but along the entire interface between the two dis-
similar layers. The finite element solution of the discrete heterogeneous model shows
oscillatory shear stresses developed along the entire interface, while the solution of
homogenized problem shows no such stress concentration. The magnitude of these
shear stresses is rouglly3  of the shear stresses developed at the interface, but eve
so, these interface shear stresses may significantly affect the propagation of delamina-
tion cracks emanating from the free edge.

The primary reason why the postprocessing technique fails to detect these interface
shear stresses is because it permits displacement incompatibility within a unit cell at
the interface between dissimilar layers. On the other hand a finite element solution of
the discrete heterogeneous model enforces such compatibility exactly, giving rise to
oscillatory shear stresses at the interface.

In the last numerical example we study the effectiveness of MLAT-Comp algorithm for
solving very large two-scale models. The problem domain, boundary conditions, load-
ing, and the unit cell model are the same as in the first example. The two-scale model
contained a micromechanical finite element mesh in the region of 176x176 unit cells in
the vicinity of the crack tip, while elsewhere, the finite elements were treated as
homogenized. The macro-mechanical finite element mesh consists of 352 elements
along each co-ordinate. Each macro-mechanical finite element coincides with the
unique unit cell. Hence, this problem contains 435,074 independent degrees-of-free-
dom.

The multi-grid process was carried out on 4 different meshes: two-scale (macro-micro)
mesh and three auxiliary macro-mechanical meshes. We used V-cycle with 1 pre- and 1
post- smoothing Gauss-Seidel iterations on the two auxiliary levels and 2 pre- and 2
post- smoothing Jacobi iterations on the finest level. As usual, on the coarsest level we
used a direct solver. It was necessary to perform 15 multi-grid cycles to provide the
convergence witreps = 0.01 in accordance with criteria (64). Only MLAT-Comp
algorithm was tested, since the micro-grid contained over 100,000 nodes, and the direct
solution on the micro-grid is not practical. This computational process takes about 8.2
hours on the SPARC station LX, which is 17.2 times faster than the use of a skyline
direct solver and the storage savings are significant.
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Appendix

Two dimensional idealization qI9O|3/OEI| laminated plate

Consider a[90p/0q]S laminated plate as shown in Fig. 9. The uniform axial tension is
applied along the co-ordina® . In order to reduce the problem dimension to 2-D we
assume that the shear stressgs Oyz and the shear s{rai are negligible anc
it is necessary to idealize the microstructure 90 layer” as a stack of orthotropic
layers parallel to the interface.

For the purpose of calculating the equivalent mechanical properties of this layer, we
consider the auxiliary problem given in Fig. 10. The elasticity moduli, the Poisson’s
ratios and the volume fractions are denotedy\; kandi 9,1, 2 ), respectively.

The homogenized elasticity moduli are found on the basis of the rule of mixtures:
- - - -1 —1y-1
E, = Ey = Kk Eq + KB, E, = (kjET" +K,E5) (65)
The Poisson’s ratio in the plaixeY  is evaluated on the basis of the equilibrium condi-
tion along the co-ordinaté under the uniform tensioXis, = 1 ):
klEl(vl—va) = k2E2(va—v2) (66)
which yields

Vxy = Vyx = (k{Eqv1 + koEov,)/Ey (67)
Similarly, the equilibrium condition along the co-ordinxte  under the uniform tension
inZ (e, = 1) yields

klEl(el_sz) = kZEZ(sz_GZ) ©8)
e = Ezvl/E1 e, = EZVZ/E2

Exploiting the relation for orthotropic materidt,v,, = E,v,, , and using the sym-
metry condition inX and’ gives
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Vyz = Vyz = E(Kvy +Kov))/ Ey o)

vV =

ZXx sz = k1V1+ k2V2

Equations (65), (67) and (69) represent the equivalent orthotropic material properties
for the two-phase material described in Fig. 10.

In the second part of this appendix we will show that for the axial tension problem in
the heterogeneous medium only a two-dimensional discretization is necessary.

Consider the two-scale asymptotic expansion of the strain field for the axial tension
problem:

eap = (Ooyp5* Nar, pyya)Evs * Niar, py2atss + O(E)
= (BqBp) *+ g, pyk) R + OCE)

(70)

and
€4, = €2, = const e ,=¢€¢9,=0 (71)
33 33 a3 a3

where Greek subscripts range from one to two. The corresponding strain variation is
given

— 0 0
%¢ap = (BayOp5+ Na, )ys)O8y5 + ON(a, pykiEk 72)
while other components of the strain variation vanish.
For the axial tension problem in the uniform tensip, = 833 , and the weak form of

equilibrium states that:
z[ES.EO(BDO(an.smndQ =0 Ou O CO(Q) (73)
Substituting (70) - (72) into (73) yields:

z[((f’o(ve"tses +Nia, By 3y5 + (g, B)KIEKN *
(74)

(Dogn Bemdnn * Mg, nymn) * Dapaasdamdan)emndQ = O
Applying the integration rule for highly oscillatory functions &n  [1] results in a
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macro equilibrium equation:
{[658 8DapyatysdQy = —c[ deqpDap3segad,  COub CQ)

where

~

_ 1
Dapys = Qg(éavésu * h(v, u)aB)DvunE(évrIééE * h(rl, E)vé)de

~

1
Dapss = Qg(éavéBu * 0y, wap) (Pypuneh, £)33* Dypza)d®

and micro (unit cell) equilibrium equations:

fh(a, B)kiPapene, nyvud® = ‘f’h(a, B)kIPapvpd® U hey,

f’h(a, B)kiPapen e, n)33d® = ‘f’h(a, B)kiPap33d0 U Neas

(75)

(76)

(77)

For details on finite element discretization of macro and micro equations see [13].
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Fig. 1 A transition layer at the interface between two dissimilar layers of unit cells
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Fig. 2 Partitioning of the auxiliary and micro grids




Fig. 3 Plate with a centered crack: geometry, boundary conditions, material properties and loading
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Fig. 4 Microscale modelling of the plate with a centered crack and comparisons

31



Fig. 5 Plate subjected to the axial tension: geometry, boundary conditions and micro-structure
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Fig. 6 Microscale modelling of the plate subjected to the axial tension and comparisons
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Fig. 7 Plate subjected to the axial tension: the resulting peeling stresses
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Fig. 8 Plate subjected to the axial tension: the resulting shear stresses
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Fig. 9 Two dimensional idealization of the laminated plate
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Fig. 10 The auxiliary problem for calculation of the equivalent mechanical properties
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	MULTI-GRID METHOD FOR PERIODIC HETEROGENEOUS MEDIA. PART 2: MULTISCALE MODELING
	AND QUALITY CONTROL IN MULTIDIMENSIONAL CASE
	Jacob Fish and Vladimir Belsky
	Department of Civil Engineering and Scientific Computation Research Center,
	Rensselaer Polytechnic Institute, Troy, NY 12180
	ABSTRACT
	A multi-grid method for a periodic heterogeneous medium in multidimensions is developed. Based on...
	1. Introduction
	The computational complexity of modeling large scale composite structures is enormous primarily d...
	Mathematical homogenization theory [1-3] or its engineering counterpart [4] have been traditional...
	This paper proposes an alternative to the classical homogenization that abandons the classical hy...
	Previous studies[6] have indicated that for problems in heterogeneous medium eigenvalues correspo...
	The paper focuses on the issues of adaptive multiscale modeling and fast iterative solution algor...
	Once the two-scale model is constructed, the multigrid-like solvers in the form of MLAT [7] and/o...
	The outline of this paper is as follows. Problem statement and objectives are formulated in secti...
	2. Problem statement
	In modeling heterogeneous media one can adopt two different points of view:
	2.1 Mathematical modeling on the microscale
	In this scenario each phase (fiber and matrix) is assumed to possess homogeneous properties and o...
	(1)
	where and are the components of the stress and strain tensors, respectively; and represent the bo...
	2.2 Mathematical modeling on the macroscale
	Following the classical homogenization theory [1-3] the asymptotic solution of the boundary value...

	(2)
	where

	(3)
	and is a macroscopic co-ordinate vector, is a microscopic position vector. The parameter is a rep...
	In the representation (3) is the -periodic function, which can be found from the solution of the ...

	(4)
	where is a Kronecker delta.
	The corresponding expansion of the strain tensor is given

	(5)
	The macroscopic displacement field is the solution of the following boundary value problem with h...

	(6)
	where

	(7)
	and is the volume of the unit cell.
	Each of the two mathematical models is discretized using a finite element method. The correspondi...
	It is the primary goal of the paper to find a numerical solution of the micro finite element mode...
	3. The intergrid transfer operators for a periodic heterogeneous medium in multidimensions
	In this section we focus on the central issue of constructing the intergrid transfer operators fo...

	(8)
	where and are the displacement and strain interpolants in the macro-mesh, denoted by

	(9)
	and are the corresponding nodal displacements. Hereinafter, capital subscripts are reserved for t...
	Since the product in equation (4) is independent of the choice of , it is more convenient to anal...

	(10)
	With this introduction the problem of the coarse grid correction is now stated in the following p...
	Proposition
	Let the coarse grid correction problem be formulated on the basis of the interpolation defined in...

	(11)
	be the coarse grid correction problem, where is the stiffness matrix of the boundary value proble...
	Then in the limit as the stiffness matrix coincides with the restriction of the stiffness matrix ...
	Proof:
	Let be a standard (for the second order differential equations) bi-linear or tri-linear coarse-to...

	(12)
	The hypothesis of is equivalent to the infinitesimally small mesh size in the micro-mesh, and thu...

	(13)
	where the coefficients of linear expansion follow from the relation .
	Inserting (13) into (10) yields

	(14)
	To construct the homogenization-based prolongation operator we evaluate at the micro mesh nodes

	(15)
	where underlined subscripts indicate no summation over the repeated indices. Note that the displa...

	(16)
	where the homogenization-based prolongation operator is defined as follows

	(17)
	It remains to show that restricts the stiffness matrix of the micro-mesh, , to the coarse grid in...
	For this purpose we evaluate the strain field by taking the symmetric gradient of the displacemen...

	(18)
	In the limit as the last term can be neglected resulting in the following strain approximation

	(19)
	Note that an identical strain approximation can be obtained by direct discretization of the two-t...
	The macro-mesh stiffness matrix is given by:

	(20)
	Further exploiting the hypothesis of the infinitesimality of the unit cell, as , we note that

	(21)
	where the superscript denotes the unit cell number.
	Finally, inserting (21) into (20) yields:

	(22)
	which completes the proof of the proposition.
	So far the homogenization-based intergrid transfer operators have been derived assuming that . In...
	To develop a homogenization-based prolongation operator , that generates continuous displacements...

	(23)
	where are nodal strain values in the macro-mesh and are the corresponding strain field shape func...

	(24)
	where the sampling points, , can be either Gauss points, reduced Gauss points or finite element n...
	Substituting (23) and (24) into (17) and evaluating the displacement field at the finite element ...

	(25)
	In the numerical examples considered in this paper projection operator was constructed on the pat...
	4. Multiscale solution algorithm for heterogeneous media
	In this section we present the formulation of multiscale solution algorithm for problems in a per...
	4.1 Problem definition and notation
	Consider a heterogeneous medium on which is formed by a special periodicity of a unit cell. Suppo...
	The micro-grid , is partitioned as follows:

	(26)
	where are the micro-grid nodes at the interface between the two regions, and are the interior mic...
	Likewise the macro-grid is partitioned in a similar fashion:

	(27)
	where are the macro-grid nodes at the interface , which do not have to coincide with the nodes in...
	We further define an auxiliary grid on , where the entire finite element mesh is modeled with hom...

	(28)
	where ; the grid represents auxiliary grid points on as shown in Fig. 2.
	For information transfer between the micro- and macro- grids we employ continuous homogenization-...

	(29)
	where

	(30)
	such that

	(31)
	Note, that as opposed to the standard linear prolongation operator, which relates the information...
	Likewise, we define the second block of the continuous homogenization-based prolongation operator...

	(32)
	which is partitioned as

	(33)
	such that

	(34)
	Consequently, the continuous homogenization-based prolongation operator can be structured as foll...

	(35)
	The continuous homogenization-based restriction operators and are conjugated to and , and are sch...

	(36)
	For subsequent derivations we will introduce the following notation:
	- auxiliary grid displacement vector, where , , .
	- macro-grid displacement vector on .
	- micro-grid displacement vector, such that and
	;
	- auxiliary grid stiffness matrix on ;
	- macro-grid stiffness matrix on , such that
	and ;
	- micro-grid stiffness matrix on ;
	- auxiliary grid force vector, where are nodal forces
	acting on grids , respectively.
	- macro-grid force vector acting on , such that ;
	- micro-grid force vector, where and are nodal forces
	acting on grids and , respectively.
	We note that the displacement vectors and are related via orthogonal assembly operator given by

	(37)
	where is an identity matrix of an appropriate size, such that

	(38)
	We are now in a position to formulate an algebraic system of equations for the two- scale linear ...

	(39)
	subjected to the compatibility condition at the interface

	(40)
	Minimization of (39) with respect to () subjected to the interface condition (40) yields a system...

	(41)
	The system of linear equations (41) can be solved either directly or iteratively. The direct solv...
	It is our objective to develop an iterative solution procedure, which exploits the solution of th...
	Section 5 deals with the first item, while in section 4.2 we focus on developing a two- scale ite...
	4.2. Iterative two-scale solution procedures
	The three-step iterative solution procedure based on minimization of energy functional (39) on va...
	Step 1.
	Find the correction which minimizes the two-scale energy functional (39) on the subspace of the a...

	(42)
	where the superscripts refer to the iteration count.
	Note that the auxiliary grid correction has a similar partitioning to , i.e. and .
	A direct minimization of (42) with respect to yields:

	(43)
	The first term on the left hand side represents the assembled form of the macro-grid stiffness ma...

	(44)
	In practice, however, the value of the representative unit cell size is finite, and thus (44) is ...
	Step 2.
	Once the auxiliary grid correction has been carried out it is necessary to update the solution in...

	(45)
	The relaxation parameter is introduced to account for the approximation introduced in (44) as a r...

	(46)
	which yields

	(47)
	Step 3.
	Find the correction on the micro-grid, which minimizes the energy functional on the subspace of t...

	(48)
	where on to maintain compatibility.
	The direct minimization of (48) yields

	(49)
	If (49) is directly solved and

	(50)
	then the three-steps iterative process described is in the spirit of FAC algorithm [8,9], subsequ...
	It is important to note that since the unit cell is very small, the number of degrees-of- freedom...

	(51)
	where is a preconditioner on the micro-grid and is a relaxation parameter given by

	(52)
	where .
	This variant has similar characteristics to the linear version of MLAT [7], and will be termed as...
	5. The microscale reduction error estimators and indicators
	5.1. Formulation
	In this section we quantify idealization errors associated with homogenization of periodic hetero...

	(53)
	Following [1-3] the Y-periodic function is found from the higher order equilibrium equation:

	(54)
	Problem (54) is solved using finite element method. The resulting asymptotic expansion of the str...

	(55)
	where

	(56)
	In the classical homogenization theory only the first term in (55) is considered, while the secon...

	(57)
	where is a - norm defined as

	(58)
	To steer process of adaptivity we define the MRE indicator, which reflects the relative contribut...

	(59)
	This approach is equivalent to the one employed for discretization error indicator in [11].
	3.2. Explicit form of and in 1D
	In this subsection, we derive a close form MRE indicators and estimators for a 1D model problem i...
	Closed form solution of (4), (54) for and yields:

	(60)
	and

	(61)
	where are the effective material properties and is the unit cell size. Inserting (60) and (61) in...

	(62)
	For the unit cell consisting of two phases with compliances and (the overall compliance , ), the ...

	(63)
	From the above expression we can identify four factors affecting the microscale reduction error:
	1. The size of the unit cell, .
	2. The normalized difference of compliances, .
	3. The fiber volume ratio, .
	4. The macro strain gradients, .
	It can be seen that the error estimator is asymptotically exact in the sense that the microscale ...
	6. Numerical results
	Our numerical experimentation agenda includes two test problems. The first example deals with a s...
	The distribution of homogenization errors as indicated by MRE indicator is shown in Fig. 4a. The ...
	The multi-grid process was carried out on three different meshes: two-scale (macro- micro) grid a...

	(64)
	To obtain convergence with tolerance of it was necessary to carry out 14 cycles using MLAT-Comp a...
	The resulting energy distribution absorbed in a unit cell in the micro-grid is shown in Fig. 4c. ...
	In the second example, we consider a laminated plate subjected to uniform axial tension. Geometry...
	The distribution of the homogenization errors and the region selected for micro- mechanical model...
	Fig. 6b,c,d compare the shear stress distribution in the micro-grid as obtained using two-scale m...
	To study boundary layer effect between two dissimilar layers in the axial tension problem we cons...
	The primary reason why the postprocessing technique fails to detect these interface shear stresse...
	In the last numerical example we study the effectiveness of MLAT-Comp algorithm for solving very ...
	The multi-grid process was carried out on 4 different meshes: two-scale (macro-micro) mesh and th...
	Appendix
	Two dimensional idealization of laminated plate
	Consider a laminated plate as shown in Fig. 9. The uniform axial tension is applied along the co-...
	For the purpose of calculating the equivalent mechanical properties of this layer, we consider th...
	The homogenized elasticity moduli are found on the basis of the rule of mixtures:

	(65)
	The Poisson’s ratio in the plane is evaluated on the basis of the equilibrium condition along the...

	(66)
	which yields

	(67)
	Similarly, the equilibrium condition along the co-ordinate under the uniform tension in () yields

	(68)
	Exploiting the relation for orthotropic material, , and using the symmetry condition in and gives

	(69)
	Equations (65), (67) and (69) represent the equivalent orthotropic material properties for the tw...
	In the second part of this appendix we will show that for the axial tension problem in the hetero...
	Consider the two-scale asymptotic expansion of the strain field for the axial tension problem:

	(70)
	and

	(71)
	where Greek subscripts range from one to two. The corresponding strain variation is given

	(72)
	while other components of the strain variation vanish.
	For the axial tension problem in the uniform tension, , and the weak form of equilibrium states t...

	(73)
	Substituting (70) - (72) into (73) yields:

	(74)
	Applying the integration rule for highly oscillatory functions on [1] results in a macro equilibr...

	(75)
	where

	(76)
	and micro (unit cell) equilibrium equations:

	(77)
	For details on finite element discretization of macro and micro equations see [13].
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