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We propose a simulation method which can be used to readily parallelize simulations on systems with a
large spatial extent. We simulate small parts of the system with independent molecular dynamics simulations,
and only occasionally pass information between them through a constitutive model free continuum approach.
We illustrate the power of this method in the case of a polymeric fluid undergoing rapid one-dimensional shear
flow. Since we show that this flow problem cannot be modeled by using a steady-state constitutive model, this
method offers the unique capability for accessing the nonlinear viscoelasticity of complex fluids.
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An important goal for conventional computer methods is
to simulate large enough systems so as to approach the truly
macroscopic limit. However, such efforts are limited by the
fact that even though computational requirements per step
scale nearly linearly with system size, the system relaxation
time typically scales as the number of particles squared. Cur-
rent methods designed to attain this goal partition the com-
putational effort between several computers: information be-
tween the different CPUs is then often exchanged through
message passing �1–3�. Since message passing is strongly
limited by communication latency, the simulation of large
scale systems have generally been out of reach. Instead re-
searchers have attempted to circumvent these problems by
performing full-fledged atomistic simulations for a part of
the system �which has large property gradients�, and using a
continuum approach for the rest. The question lies in how the
two parts would communicate, and a variety of prominent
scholars have recently focused on solving this issue �4–9�.

Here we propose an information passing multiscale ap-
proach aimed at significantly reducing the cost of conducting
MD simulations on large systems. In contrast to past meth-
ods, we simulate each part of the representative system
through independent MD simulations with periodic boundary
conditions. We, then, very occasionally communicate be-
tween these MD simulations through the use of a continuum
method. Since the proposed method is shown to accurately
represent the systems of interest, and since it does not em-
ploy a constitutive model, it can be applied to highly nonlin-
ear flow situations, involving memory effects, where meth-
ods employing steady-state constitutive models may be
expected to be inadequate.

Our proposed scale bridging idea is sketched schemati-
cally in Fig. 1 for the illustrative example of a polymer melt
undergoing one-dimensional oscillatory shear flow. As
sketched in Fig. 1, we break up the y direction using �N
+1� grid points. There are thus two scales in the problem, the
fine scale �or gauss point� and the full system �coarse grained
problem�. Each gauss point is modeled by an independent
molecular dynamics �MD� simulation with Lees-Edwards
periodic boundary conditions. There is a velocity profile im-

posed along the y direction of each cell, with this being input
from the coarse grained problem. The MD simulations are
run for a certain �long� time, �t, which corresponds to the
time scale of the coarse grained integrator. The MD simula-
tions calculate transient stresses over this time scale, which
are then used by a continuum, “Navier-Stokes” type equation
to advance the time of the large system and yield a new
velocity profile. The process then repeats. Since the message
passing between the gauss point MD simulations and the full
scale macro problem happens very occasionally, the prob-
lems encountered by traditional parallel schemes are signifi-
cantly reduced �1,2,4–8,10–27�. We shall conclusively show
that the scale bridging approach allows us to model an oscil-
latory shear experiment, where the time scale of the oscilla-
tion is much faster than the chain relaxation time. Over these
time scales the use of a constitutive model is found to be
inadequate, thus clearly motivating the use of these multi-
scale, bidirectional information passing schemes.

Mathematically, we describe this scale bridging approach
through a Lagrangian framework since we desire to incorpo-
rate memory effects, and the consequent dependence of

FIG. 1. Schematic representation of the proposed multiscale
method. The stresses calculated from the MD simulations are used
in the coarse grained methods, while the coarse grained methods
yield velocity profiles which are used in the next set of MD
simulations.
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properties on the overall deformation. Following the gener-
alized mathematical homogenization �GHM� theory �28,29�,
the governing equations for the fine scale problem, the scale
bridging equation and the coarse grained problem are:

mq̈�x�� − f�x�� = 0 on �� ¯ fine scale �MD�

��x�� =
1

2��
�
A

�
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r�
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� f�
AB�x�� ¯ scale bridging �modified virial�

�üi − �ij,j = 0 on � ¯ coarse scale �continuum� �1�

where � is the density of the fluid, ui�x� the continuum dis-
placement, ��x� is the continuum Cauchy stress tensor ��ij is
the i-jth component�, q�x� is the displacement vector, m the
atom mass, f�x� the force vector, � and �� the coarse
grained and fine grained domains corresponding to the gauss
point positioned at x�, respectively. The standard summation
convention over repeated indices in assumed.

Large system simulations: The large system whose be-
havior we want to model corresponds to a box of size 14.1�
on a side in the x and z directions, while the y direction is
282� �� is the monomer size, see below�. These results will
provide the benchmark against which the proposed method
will be calibrated. We conducted molecular dynamics simu-
lations on a polymer melt in this box under the action of an
oscillatory shear flow. Each polymer chain is modeled by
120 beads connected by FENE springs �30�. All beads inter-
act with a shifted, purely repulsive Lennard-Jones potential
ULJ�r�=4���� /r�12− �� /r�6�+� for r�21/6� and ULJ�r�=0
for r	21/6�. We report only reduced variables, with �, 

=��m /� and m representing the units of length, time, and
mass, respectively �m is the monomer mass.� We consider a
monomer number density of ��3�0.85. Standard periodic
boundary conditions are assumed along the x and z direc-
tions, while we employ the Lees-Edwards boundary condi-
tion along the y direction: the one-dimensional oscillatory
shear flow corresponded to the x component of the velocity
alone, vx, varying in the y direction. The time dependent
velocities at the top and bottom boundaries have the form
v*= ±v0

* sin��t*� where the positive velocity is assumed at
the top boundary while the negative velocity is imposed at
the bottom boundary. �=2� /T*, T*=320 being the time pe-
riod for oscillation. At the end of every MD time step only
the y and the z components of particle velocities are rescaled
according to the given temperature �31,32�. The integration
was performed at a constant temperature of T0

*= �kBT0 /��
=1 and a time step of t*=0.0008.

Scale bridging simulations: In the proposed method each
gauss point is represented by a cube of size 14.1. We enforce
a linear velocity profile along the y direction, which is con-
sistent with the instantaneous shear rate predicted by the
coarse grained simulations. The integration time steps are
t*=0.0008, where t��t and also �t�T ��t is the integra-
tor time step for the coarse grained problem�. The nonequi-
librium MD simulations employ the fifth-order predictor-
corrector algorithm �31�. All three components of particle
velocities are rescaled after every MD time step. The starting
configurations for each of these gauss points is taken to be

the same as the ending configuration of the simulation cor-
responding to the previous coarse time step in order to prop-
erly take memory effects into account. A second option we
have considered is to use a completely random starting con-
figuration for each gauss point simulation.

However, as we shall show below, this second class of
simulations provides a poor agreement between the scale-
bridging and the full scale MD simulation, since it does not
capture memory effects. The coarse scale equations are typi-
cally integrated using explicit methods with a time step
�t* =0.08, and we emphasize that we employed the simplest
finite difference form of these equations. �Thus, message
passing is conducted after 100 MD steps of the gauss point
MD simulations.�

Results: Figure 2 compares the results of the velocity
profile across the simulation box as obtained from the full
MD simulations as well as the multiscale method. Clearly,
there is excellent agreement between the two across all times
conclusively proving that the proposed method allows for an
accurate simulation of these relatively fast shear flows whose
time constant T*=320 is about 50 times shorter �33� than the
relaxation times of the chains in question. In these figures we
also show results where the gauss points do not retain
memory: that is we reinitialize the configurations of the
gauss points after each integration step of the continuum
equations. It is apparent that this method does not yield ac-
curate results, restressing the importance of memory effects
in this problem. This implies that each MD simulated gauss
point has to be followed for the whole duration of the simu-
lation. Thus with all gauss points simulated by MD there is
no time scale advantage. We will address this issue below.

Another fact which further stresses the importance of the
memory effects is discussed here. Following the early work
of Kroger and Hess �34� we know that polymeric fluids are
shear thinning. Since we know the strain rate dependent vis-
cosity, we can use this constitutive equation in combination
with the relationship: �xy =�

�vx

�y as the definition of the stress.
The coarse grained problem can then be solved without re-
sort to the grid point simulations. Figure 2 clearly shows that
this approach also fails to reproduce the velocity profile ob-
tained from the large system simulation. We attribute this
failure to the fact that chains in steady shear flows �which are
used to generate the constitutive model� are strongly
stretched in the direction of flow, which then leads to shear
thinning behavior. In contrast, for the fast oscillatory shear
flows considered here, the chain conformations are not able
to track the velocity profiles. Figure 3, which plots the mean-
squared x-component of the end-to-end vector of the chains
in steady shear and our oscillatory shear condition starting
from rest, verify this notion.

In addition to providing an accurate means of providing
communication between different parts of a large simulation
cell, we note that the proposed method also can be used in a
scale bridging sense. To illustrate this point we have simu-
lated two other systems which continue to be 14.1 in the x
and z directions, but with sizes of 564 and 846 in the y
direction. These are simulated under the action of oscillatory
shear but with larger time periods of T*=800 and 1600, re-
spectively. In these cases we continue to employ only 20
equidistant gauss points, and even as few as 10 gauss points
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for the larger system, using a coarse time step of �t*=0.8,
the MD time step still being t*=0.0008, and where each
gauss point is again represented by a cube of side 14.1. Thus,
in these two schemes we are not simulating each part of the
larger system through a gauss point MD simulation, but are
rather relying on linear interpolation of velocities between

consecutive grid points to accurately represent regions which
are not simulated. Comparisons with full-fledged MD simu-
lations for the same systems have been shown in Fig. 4, and
we clearly see that the scale bridging method does provide
an accurate solution in these cases too, even in regions of
space where the velocity profiles are varying significantly.
These notions further reiterate that the proposed method can
be used to truly access large macroscopic systems, an impor-
tant goal of current simulation methods.

Regarding the net gain in computation time when the pro-
posed method is used in a scale-bridging sense, the ratio of
the computation time taken to simulate the rheology of the

FIG. 2. Velocity profiles obtained for system thickness 282� for
times �a� t*=80, �b� t*=160, �c� t*=240, and �d� t*=320, using
direct MD �small hollow squares�, the proposed multiscale method
�filled squares�, freshly equilibrated configurations before every
coarse time step �hollow rhombi�, and the steady-state constitutive
equation �broken line�.

FIG. 3. Mean-squared end-to-end x-vector of chains as a func-
tion of shear rate, for the steady state �filled rhombi�, and for times
t*=320 �hollow squares� and t*=640 �hollow circles� for the mul-
tiscale method. The inset shows more clearly the data for only the
multiscale method.

FIG. 4. Velocity profiles obtained for system thicknesses �a�, �b�
564� and �c�–�f� 846�, employing �a�–�d� twenty and �e�, �f� ten
unit cells for the scale-bridging method. Within each plot the small
hollow squares represent data obtained from direct MD and the
filled squares represent that obtained using the scale-bridging
scheme. For thickness=564� the plots are for times �a� t*=200 and
�b� t*=400. For thickness=846� the plots are for times �c�, �e� t*

=400 �d�, �f� t*=800.
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given system by employing the proposed method to the com-
putation time taken to perform a full-fledged simulation of
the system is approximately given by the ratio of the total
volume of all the MD cells at the different gauss points to the
net volume of the whole system. This comes about from the
fact that since linked list is used for the MD simulations, for
the same number of time steps the computation time needed
for the simulation is directly proportional to N, the number of
monomers in the volume, for large N. Also, since the differ-
ent gauss points interchange information only very occasion-
ally, parallelization is very straightforward with the proposed
method, whereby each MD simulation cell corresponding to
a given gauss point is simulated by a different computer.

Our method, in spirit, is akin to the methods used by Laso
and Ottinger �35� and Bell et al. �36�, where they too use
shear stresses that are calculated from molecular configura-
tions during the simulation and combine it with continuum
equations, thus obviating the need of even a history-
dependent constitutive equation. Their models though, are of
the mean-field type, in the sense that the evolution of the
molecular configuration at a given point within the system
does not explicitly depend on the configuration of the rest of
the system. Hence, their models for the polymeric system
itself are not as realistic as ours to begin with, and moreover,
a full-fledged simulation of the whole system employing
their models does not have a concrete meaning, and therefore
within the realm of simulations they cannot propose any
benchmark to verify the accuracy of their method.

Regarding the generalization of the method in two and
three dimensions, we anticipate the need of finite-element
methods in place of the finite difference that we have used
till now for the continuum part of our proposed scheme.

Also, for a more general shear-rate profile at a given point
within the system, more generalized Lees-Edwards periodic
boundary conditions will have to be implemented for the MD
simulation cell. Also, in this paper, our method is imple-
mented in such a way that both compressibility of the poly-
mer melt and viscous generation of heat are neglected. Fur-
ther work regarding how to incorporate these factors within
the proposed scheme is in progress.

In summary, we have proposed a simulation method based
on a scale-linking scheme for determining the mesoscale ve-
locity evolution in fluid systems with large stress-relaxation
times. In such systems the use of a steady-state constitutive
equation of viscosity is expected not to produce the correct
rheology. We demonstrated that velocity evolutions in such
systems can be determined with great accuracy by compar-
ing them with results obtained from direct full-fledged mo-
lecular dynamics simulations. The proposed method cannot
only be used to conveniently parallelize large MD simula-
tions, but can also be used in a scale bridging sense in that
we need to only simulate small parts of the system through
the MD method with the continuum approach providing an
accurate means of interpolating between these points. This
approach therefore provides considerable promise in the
simulation of condensed phase systems in the limits of size
which are relevant to macroscopic processing.
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