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SUMMARY

A heterogeneous space–time full approximation storage (HFAS) multilevel formulation for molecular
dynamics simulations is developed. The method consists of a waveform Newton smoothing that produces
initial space–time iterates and a coarse model correction. The formulation is coined as heterogeneous
since it permits different interatomic potentials to be applied at different physical scales. This results in
a flexible framework for physics coupling. Time integration is performed in windows using the implicit
Newmark predictor–corrector method that permits larger time integration steps than the explicit method.
The size of the time steps is governed by accuracy rather than by stability considerations of the algorithm.
We study three different variants of the method: the Picard iteration, constrained dynamics and force
splitting. Numerical examples show that FAS based on force splitting provides significant time savings
compared to standard explicit methods and alternative implicit space–time schemes. Parallel studies of
the Picard iteration on harmonic problems illustrate the time parallelization effect that leads to a superior
parallel performance compared to explicit methods. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dynamics of polymer chains has been studied for decades and is still an active field of research.
Simplifying theories confine lateral fluctuations of polymers to a tube-like region around some
mean conformation [1]. These theories are limited to simple cases since microscopic dynamics and
viscoelastic properties of polymers are dominated by entanglements. To investigate the properties
of polymer chains more accurately a detailed computer simulations is required. One such form is
molecular dynamics (MD).
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408 H. WAISMAN AND J. FISH

MD can be viewed as a process by which one generates atomic trajectories of a system of
particles by direct numerical integration of Newton’s equations of motion with the appropriate
initial and boundary conditions [2]. The system can be formulated either by dynamic equilibrium
consideration or by means of variational principle; it can be expressed as

Md̈ = F int(d)+ Fext

d(0)= d0

ḋ(0)= v0

(1)

where d is a vector of atom positions, M is the mass matrix, Fext is a vector of external forces,
and F int=−∇�(d) is the internal force vector defined as a gradient of the potential energy.

Current MD algorithms severely restrict the modeling efforts to relatively small systems and/or
short time intervals. The algorithmic challenges facing MD simulations stem from the difficulty of
designing methods which are insensitive in terms of the integration time step to rapid fluctuations
in bond stretching. Most widely used algorithms in MD are explicit methods, such as Verlet [3],
Swope et al. [4] and Gear’s predictor–corrector methods [5]. A severe limitation in the ability of
the explicit methods to propagate numerical trajectories stems from a wide range of time scales
spanning many orders of magnitude. For instance, in polymer chains, bond-stretching vibrations
are the fastest atomic motions in a molecule, typically in the order of femtoseconds, whereas the
relaxation of polymers in the form of segmental motions or terminal relaxations of chains spans
time scales in the range of 10−2–104 s [6]. The maximum time step is governed by the smallest
oscillation period that can be found in the simulated system. This time step is necessary to maintain
the stability of explicit numerical integration schemes [7].

Major research efforts are devoted to alleviation of this severe time-step requirement. The most
popular approach is to constrain bond lengths using either SHAKE or RATTLE algorithms [8].
In this approach, bonds are constrained to have a fixed length. Typically, freezing all bond length
coordinates enables one to significantly increase the time step compared to unconstrained MD
simulation. Another commonly used approach in MD simulations is to employ a variable time
step using multiple-time-step (MTS) methods [9–11]. Nevertheless, the increases in the integration
time step have been quite modest so far [12].

An alternative approach based on the space–time variational multilevel principle has been
recently developed by Waisman and Fish [13]. The method consists of the waveform relaxation
(WR) scheme aimed at capturing the high-frequency response of atomistic vibrations and a coarse-
scale solution aimed at resolving smooth features of the discrete medium. The method is implicit
in space and time and thus allows for larger time steps governed by accuracy considerations of
coarse-scale quantities of interest. The evolution of the coarse-scale equations requires force field
calculations on the fine scale, which governs the computational cost of the method.

In this paper we propose a new multilevel method where the coarse problem is evolved with-
out force field calculations on the fine scale. The formulation is based on a variant of the
non-linear multigrid theory, the approach known as the full approximation storage (FAS) [14].
The proposed variant of FAS allows for the consideration of different force fields at various
scales; it results in added flexibility and superior computational performance. We emphasize
that the formulation is general and may be applied to various problems, for example, protein
folding, solvation of substances in water, simulations of lipids and peptides and more. The
paper is organized as follows. In Section 3, we develop the heterogeneous space–time FAS
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(HFAS) formulation for efficient solution of MD equations. We study three formulation vari-
ants, the Picard iteration, constrained dynamics and force splitting, which differ in the method
of solving the coarse-scale equations. Performance studies on polymer melts are conducted
in Section 4.

2. REVIEW OF THE SPACE–TIME MULTILEVEL AND FAS METHODS

In this section we briefly review the space–time variational multilevel approach [13] and the
FAS multigrid method, a combination of which serves the foundation for the current method.
The space–time variational multilevel approach consists of two phases: smoothing and coarse
grid correction. Smoothing, described in Section 2.1 captures the high-frequency response of
the atomistic vibrations whereas the coarse-scale correction (see Section 2.2), formulated as a
minimization on the subspace of coarse-scale functions, resolves the smooth features of the discrete
(atomistic) medium.

2.1. The waveform relaxation scheme for molecular dynamics

The WR is an iterative solution method of evolutionary problems that offers parallelization [15, 16].
Due to its implicit nature, WR provides superior stability and larger time steps compared to explicit
time-stepping methods. In the WR algorithm, the space–time domain is partitioned in space
into smaller subsystems. Each subsystem is then integrated over a certain time interval called
window; the total time integration is the union of all windows. Windows are used to accelerate
convergence and to reduce storage. Information transfer between different windows takes place
once the integration within a certain window is completed. The main advantage of the method is
that it permits simultaneous integration of several subsystems in each window and its ability for
unstructured integration. In this paper we adopt a non-linear version of the WR, known as the
waveform Newton (WN) [17, 18] scheme. By this approach the internal force in Equation (1) is
approximated by

F int= F int(d�)+ D(d�)(d� − d�+1) (2)

where D(d�(t))= diag(H(t)) is a diagonal of the Hessian matrix obtained from the second
derivative of the potential function

Hi j (t)= �2�(d(t))

�di�d j
(3)

Alternatively, D can be defined as a block diagonal matrix to include blocks of atoms. Usually,
the Hessian matrix can be computed analytically.

Substituting approximation (2) for the internal forces into (1) leads to the following system of
ordinary differential equations:

Md̈�+1 + D(d�)d�+1 = F int(d�)+ D(d�)d�

d�+1(0)= d0

ḋ�+1(0)= v0

(4)
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Figure 1. Space–time convergence of waveform relaxation methods.

The above system is integrated over the time window t ∈ [t0, tn] using the Newmark predictor–
corrector algorithm [19]. Note that if D is diagonal the WR iteration scheme given in Equation (4)
is explicit, even though the overall integrator is implicit. The WR iteration is terminated when the
maximum residual in a time window is smaller than a specified tolerance

max{‖r�+1(t)‖2}= max{‖Md�+1 − F int(d�+1)‖2} (5)

An illustration of the convergence of the WR method to a trajectory of a single atom is shown
in Figure 1. It can be seen that the WR method converges to the entire trajectory as opposed to
sequentially advancing in time as in classical explicit and implicit integrators. The major drawback
of the WR method is its slow convergence in case of strong coupling between subsystems, sizable
windows and large implicit time steps [20, 21].

The convergence of the WR method can be accelerated using a coarse grid correction, in which
case the WR takes the role of a smoothing aimed at capturing the high-frequency response of
atomistic vibrations.

2.2. Variational space–time multilevel method

In the variational scheme the coarse-grained equations are constructed directly from the fine scale
using Hamilton’s principle on the subspace of the coarse-scale functions. Let e(t) be the coarse-
scale correction aimed at updating the fine-scale solution, where m� N is the size of the coarse
model. The updated fine-scale solution at a certain time step is given by

d�+1(t)← d�(t)+ Qe(t) (6)
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where Q is the prolongation operator (assumed to be constant over a certain period of time). To
find the optimal correction we express the Lagrangian in terms of the correction Qe

L(Qe, Qė)= 1
2 〈M(ḋ� + Qė), (ḋ� + Qė)〉 − �(d� + Qe) (7)

By Hamilton’s principle e(t) is the minimizer of

S[e(t)]=
∫ t2

t1
L(Qe, Qė) dt (8)

written as

�S

�e(t)
= 0, t1<t<t2 (9)

which is equivalent to solving the following Euler–Lagrange equations

d

dt

(
�L
�ė

)
− �L

�e
= �S

�e(t)
= 0 (10)

Substituting the Lagrangian into (47) results in the following coarse grid problem:

QTMQë − QTF int(d� + Qe)=−QTMd̈�

e(0)= 0

ė(0)= 0

(11)

Equation (11) depicts the coarse grid correction in space and time. System (11) is integrated
implicitly using the Newmark predictor–corrector method. Once the error e(t) is calculated it is
prolongated to the fine scale at each time step within a window (see Equation (58)). Algorithmic
details of the variational space–time multilevel method can be found in [13]. The formulation
has been found to provide a superior rate of convergence in terms of the number of cycles taken
to converge, but is computationally expensive since it involves computations of the force fields
obtained on the fine scale, i.e. forces acting on the coarse model (the term QTF int(d� + Qe)
in Equation (11)) are computed on the fine scale and then projected to the coarse scale. This is
analogous to the Galerkin projection in the classical algebraic multigrid.

2.3. The FAS multilevel algorithm

There are two basic multilevel approaches for solving a non-linear discrete system of equations
arising from partial differential equations: (i) the Newton multigrid and (ii) Full Approximation
Storage (FAS) multigrid. In Newton multigrid the non-linear problem is solved using Newton’s
method, where a standard linear multigrid is applied to solve a linearized system of equations. In
the following we focus on the latter, the FAS approach, which directly utilizes multigrid principles
to solve a non-linear system of equations.

The FAS scheme has been introduced in the seminal paper by Brandt [22] in the 1970s. The
algorithm has been developed to solve non-linear discrete problems of the form

L(d)= f in � (12)
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arising from partial differential equations, where d, f ∈RN , L is the operator and � is
a given mesh. We begin by denoting df an approximation to the exact solution d and by e
the error,

e= d − df (13)

We will use subscript f to denote the fine grid variables and subscript c for the coarse variables.
In the linear case, L(d)= Kd , the residual r = f − Kdf satisfies the residual equation,

Ke= r (14)

In the non-linear case, given the approximation df, the residual is

r = f − L(df) (15)

Subtracting Equation (12) from Equation (15) gives,

L(d)− L(df)= r (16)

This suggests that L(e) 	= r and the coarse grid correction cannot be written in the form of
Equation (14). In FAS, multigrid is directly applied to Equation (12) with Equation (16) used as the
coarse grid correction. The process begins first by applying some relaxation (smoothing) technique
to Equation (12) to obtain the approximate solution df. Many linear relaxation schemes have
analogs to non-linear systems [23].

Based on Equation (16) we define the coarse grid equation as

Lc(dc + ec)− Lc(dc)= rc (17)

where Lc is the coarse grid operator and rc is the projection of the fine grid residual onto the
coarse problem

rc= Rrf= R( f − L f(df)) (18)

where R is the residual restriction operator. Similarly, dc is the restriction of the solution
approximation onto the coarse grid

dc= R̄df (19)

where R̄ is the solution restriction operator. Note that in general R and R̄ are different operators.
Substituting Equation (18) and Equation (19) into Equation (17) yields

Lc(R̄df + ec)= Lc(R̄df)+ R( f − L f(df)) (20)

Defining,

uc = R̄df + ec (21)

fc = Lc(R̄df)+ R( ff − L f(df)) (22)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:407–426
DOI: 10.1002/nme



HETEROGENEOUS SPACE–TIME FULL APPROXIMATION STORAGE MULTILEVEL METHOD 413

we obtain the following coarse grid equation:

Lc(uc)= fc (23)

which is in the form of the original fine-scale equation. Note that the coarse operator Lc has not
been defined so far. For mildly non-linear problems, Lc is often defined to be identical to L f,
whereas for highly non-linear problems a more expensive Galerkin projection

Lc(uc)= RL f(Quc) (24)

can be use instead. In (24) Q is the prolongation operator, typically defined as a transpose of the
residual restriction operator, R. Once uc in Equation (23) has been found, the coarse grid error is
computed

ec= uc − R̄df (25)

and interpolated back to the fine grid

dnewf = df + Qec= df + Q(uc − R̄df) (26)

This completes a single cycle of the two-level FAS method. The two-level FAS algorithm is
summarized in Algorithm 1. A multilevel version of FAS can be obtained by recursive application
of the two-level method on the coarse grid.

Algorithm 1 (A two-level FAS scheme)

1: df← smooth(L f, ff, df) for some initial guess df relax v1 times
2: rf= ff − L f(df) compute fine level residual
3: rc= Rrf restrict the residual onto the coarse grid
4: dc= R̄df restrict the solution iterate
5: Lc(uc)= Lc(dc)+ rc solve the coarse grid problem
6: df← df + Q(uc − dc) prolongate the correction
7: df← smooth(L f, ff, df) for some initial guess df relax v2 times

Remark
The method is coined the FAS since the coarse problem is solved for the full approximation (not
for the error ec) [22, 24]. It obviates the need to form and store the Jacobian matrix associated with
the Newton method. This is in particular important for large-scale problems, where memory is the
limiting factor [25]. Note also that if the operator L f is linear then FAS reduces to the standard
multigrid method for solving linear system of equations.

3. HETEROGENEOUS SPACE–TIME FAS FOR MOLECULAR DYNAMICS SIMULATIONS

In this section, we develop the HFAS approach for MD simulations. The HFAS differs from
the original FAS approach in two respects. First, the method is used to solve a space–time
problem. Second, different operators are employed at different levels (scales). This is in contrast
to the classical FAS theory where the same operators are utilized [26, 27] at different levels. The
motivation for the latter is the following. At the fine scale, the interactions between atoms, and
therefore the operator L f, are governed by interatomic force fields. We will denote the interatomic
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414 H. WAISMAN AND J. FISH

potentials on the fine level as ‘fine scale potentials.’ At the coarse scale (coarse-grained models),
the interactions are between the representative blobs in polymers or dislocation lines in metals;
these interactions are governed by a completely different set of physical laws, requiring different
formulation for Lc.

We now focus on the formulation and algorithmic details of the method. As in the space–
time variational multilevel method [13], the first step is pre-smoothing in the space–time domain.
This is accomplished using the WN method (see Section 2.1). Similarly to steady-state non-linear
problems, we define the space–time problem over a certain time window as

L f(d̈
�+1
f (t), d�+1

f (t))= ff

d�+1
f (0)= d0

ḋ�+1
f (0)= v0

(27)

where d�+1
f is a vector of positions of atoms after smoothing iteration �+ 1, and

L f(d̈
�+1
f (t), d�+1

f (t))= Md̈�+1
f (t)− F int

f (d�+1
f (t)) (28)

ff = Fext
f (29)

The residual over a space–time window is given by

r�+1
f (t)= L f(d̈

�+1
f (t), d�+1

f (t))− ff (30)

Following Equations (18) and (19) the restriction of the approximate solution and the residual
yields

rc(t)= Rr�+1
f (t)= R(L f(d̈

�+1
f (t), d�+1

f (t))− ff) (31)

dc(t)= R̄d�+1
f (t) (32)

The HFAS scheme is then defined as

Lc(üc(t), uc(t))= fc

uc(0)= R̄d�+1(0)= R̄d0

u̇c(0)= R̄v�+1(0)= R̄v0

(33)

where the initial conditions d0 and v0 are simply the restriction of the fine-scale initial conditions;
uc and fc in (33) are defined as (see Equations (21)–(22))

uc(t)= R̄d�+1
f (t)+ ec(t) (34)

fc(t)= Lc(Rd̈
�+1
f (t), R̄d�+1

f (t))+ R( ff − L f(d̈
�+1
h (t), d�+1

h (t))) (35)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:407–426
DOI: 10.1002/nme



HETEROGENEOUS SPACE–TIME FULL APPROXIMATION STORAGE MULTILEVEL METHOD 415

Substituting Equations (28) and (35) into Equation (33), we obtain the following coarse-grained
model (for simplicity of the notation we drop t and �+ 1 variables):

Lc(üc, uc)= Lc(Rd̈f, R̄df)+ R(Fext
f − Md̈f − F int

f (df))

uH(0)= R̄d0

u̇H(0)= R̄v0

(36)

The coarse-scale operator Lc can take various forms. For instance, it could be represented by the
coarse-grained molecular dynamics (CGMD) model [28, 29]

Lc(üc, uc)=Mcüc − F int
c (uc) (37)

where MH is the mass matrix of the coarse problem and F int
c (uc) derived from the coarse-grained

Hamilton’s equations under fixed thermodynamic conditions. Substituting Equation (37) into (36)
yields the coarse problem

Mcüc − F int
c (uc)= McRd̈f − F int

c (R̄df)+ R(Fext
f − Md̈f − F int

f (df))

uc(0)= R̄d0

u̇c(0)= R̄v0

(38)

Equation (38) relates the fine and coarse-scale physics obtained by the HFAS formulation.
To this end we focus on a variant of HFAS, which constructs an auxiliary model by simplifying

force field calculations rather than by spatial coarsening. In the absence of coarsening, R= R̄= I
(I is identity), Mc=M , and further assuming Fext

f = 0, gives

Müc − F int
c (uc)= F int

f (df)− F int
c (df)

uc(0)= d0

u̇c(0)= v0

(39)

We will refer to (39) as the temporal version HFAS to emphasize that no coarsening is taking
place, but rather an additional relaxation.

Remark
Note that choosing F int

H = F int
h results in the original MD equations (see Equation (1)).

A two-level framework is illustrated in Algorithm 2. The definition of the variables is as follows.
X ={d�+1

f (ti )} and A={d̈�+1
f (ti )} are matrices of the approximate solution and acceleration vectors

obtained from WN smoothing as a function of time; n is the number of time steps within the
current window. For instance, Xi a column of the matrix X corresponds to the atom positions in
Cartesian coordinates, at iteration �+ 1 after i time steps; t0 and tn define the window interval. �1
and �2 are the number of pre- and post-smoothings, respectively. In the next subsections we focus
on the choice of F int

c . We consider a fine-scale potential of the form (see Section 1).
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Algorithm 2 (Two level space–time multilevel method)

1: [M, d0, v0, t0, tn]= setup()
2: X←[d1, . . . , dn] initialize on space–time
3: while norm R�tol do
4: [X, A] =WN(M, X, d0, v0, t0, tn, �1) pre-smooth �1 times
5: [X, A] =FAS(M, X, A, t0, tn) FAS correction
6: [X, A] =WN(M, X, d0, v0, t0, tn, �2) post-smooth �2 times
7: norm R← max

i
{‖MAi − F int(Xi )‖2} compute residual

8: end while

�=�stretching + �LJ (40)

which results in the following internal forces:

Fint
f = −

��

�di j
=−

(
��LJ

�di j
+ ��stretching

�di j

)
=Fint

LJ + Fint
stretching (41)

where

Fint
LJ(di j )= 24

�

d2i j

{
2

[
�

di j

]12
−

[
�

di j

]6}
di j (42)

Fint
stretching(ri j )=

kb
di j

(r0 − di j )di j (43)

Computing the non-bonded (LJ) contribution to the interatomic forces is the main expense in the
force field calculations. To reduce the amount of computational work we use a neighbor list [2]
approach with a cutoff radius rcut such that

�LJ(di j )= 0 for di j>dcut

3.1. Method I: Picard iteration

The simplest choice is F int
c = 0. Using the notation dnewf ← uc and doldf ← df, and substituting into

Equation (39) we get

Md̈newf = Ff(d
old
f )

dnewf (0)= d0

ḋnewf (0)= v0

(44)

This is known as Picard iteration, where the forces are obtained from an already known atomistic
position. In (44) accelerations are obtained by simply dividing the internal force with corresponding
diagonal entry of the mass matrix.
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3.2. Method II: Constrained dynamics

The second variant is based on constrained dynamics. As in Section 3.1, we choose F int
c = 0 and

obtain the system of Equations (44). However, we impose bond-stretch constraints to eliminate the
fast oscillating components. The constraints are imposed using the popular RATTLE scheme [8].
The possibility of imposing general Holonomic constraints in MD simulations provides the ability
to selectively freeze particular degrees of freedom, without interfering with others.

Consider a system of N interacting atoms subjected to bond-stretch constraints

�k(di , d j )=[d j (t)− di (t)]2 − d2i j = 0, k= 1, . . . , ns (45)

where ns are the number of constraints, i and j are two atoms involved in the particular constraint
�k ; di and d j are the atom coordinates and di j is a given distance between them. The Lagrangian
of a constrained system may be written using the Lagrange multipliers �k

L(d, ḋ)= 1

2
ḋTMḋ − �(d)−

ns∑
k

�k�k(d) (46)

The constrained equations of motion is then obtained by solving the following Euler–Lagrange
equations:

d

dt

(
�L
�ḋ

)
− �L

�d
= 0 (47)

Substituting Equation (46) into (47) yields,

Md̈ = F int(d)− F int
c (d) (48)

where F int
c (d)=∑ns

k �k��k(d)/�d is the force resulting from the constraints. Equation (48) can
be rewritten according to the FAS framework

Md̈newf +
ns∑
k

�k
��k(dnewf )

�dnewf

= Ff(d
old
f )

dnewf (0)= d0

ḋnewf (0)= v0

(49)

Note that Ff(doldf ) is a known force, independent of the integration, obtained from the WR process.
We apply the Newmark predictor–corrector scheme to integrate Equations (49). The RAT-

TLE scheme [8] is used to enforce the constraints. The coordinates of atoms i and j are then
computed as

di (t0 + �t)= d ′i (t0 + �t)− �t2

mi
�k[di (t0)− d j (t0)]

d j (t0 + �t)= d ′j (t0 + �t)− �t2

m j
�k[d j (t0)− di (t0)]

(50)

where d ′i and d ′j indicate the position of atoms i and j prior to the application of the constraints;
and mi and m j are the masses of the atoms. The Lagrange multiplier �k is obtained iteratively for

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:407–426
DOI: 10.1002/nme



418 H. WAISMAN AND J. FISH

every bond length from (see [30] for more details)

�k =
[d ′j (t0 + �t)− d ′i (t0 + �t)]2 − d2i j

2�t2
(

1

mi
+ 1

m j

)
[d j (t0)− d j (t0)][d ′j (t0 + �t)− d ′i (t0 + �t)]

(51)

In RATTLE one has also to enforce the constraints [8, 31] on the time derivatives of the bond-stretch
constraint in Equation (45)

�̇k(di , d j )= 2[d j (t)− di (t)][v j (t)− vi (t)]= 0, k= 1, . . . , ns (52)

The constraints in (52) improve the accuracy of the Velocity-Verlet algorithm. The constrained
velocities of atoms i and j are computed in a similar way

vi (t0 + �t)= v′i (t0 + �t)− �t

mi
�k[di (t0 + �t)− d j (t0 + �t)]

v j (t0 + �t)= v′j (t0 + �t)− �t

m j
�k[d j (t0 + �t)− di (t0 + �t)]

(53)

where v′i and v′j indicate the velocities of atoms i and j before the application of the constraints.
The Lagrange multiplier �k is obtained iteratively for every bond pair similarly to �k (see [30] for
more details)

�k =
[d ′j (t0 + �t)− d ′i (t0 + �t)][d j (t0 + �t)− di (t0 + �t)]

�t

(
1

mi
+ 1

m j

)
d2i j

(54)

In HFAS, the constraint distances di j in Equation (45) are computed from the iterates doldf obtained
from the WN process.

3.3. Method III: Force field splitting

This variant of the method approximates the force field calculations in an attempt to reduce the
computational work. In the present case, the internal forces are calculated from the harmonic
approximation of the potential

F int
c = Fstretching (55)

where Fstretching is the force field due to bond stretching. Substituting the terms F int
c in Equation (55)

and F int
f in Equation (41) into the coarse operator Equation (39), and using the notation dnewf ← uc

and doldf ← df yields

Md̈newf − F int
stretching(d

new
f )= FLJ(d

old
f )

dnewf (0)= d0

ḋnewf (0)= v0

(56)

We note that different splitting strategies may be required for other potential types.
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4. NUMERICAL RESULTS

We study performance of various HFAS formulations applied to MD simulation of polymer
melts. The MD simulations are performed under conditions of constant NVE (the microcanonical
ensemble) with consideration of periodic boundary conditions. Reduced order units are used for all
the simulations. To assess the accuracy of algorithms we track the following ensemble properties:
absolute temperature, kinetic energy, configurational (potential) energy, total energy (Hamiltonian)
and mean square displacements (self-diffusion coefficients). The time integration of all implicit
schemes is performed using the Newmark predictor–corrector algorithm with parameters �= 1

4
and 	= 1

2 .

4.1. Polymer melts with Lennard-Jones and harmonic potentials

We consider a unit cell of a polymer melt as shown in Figure 2. Various colors correspond to
different chains where every chain consists of 200 atoms. Lennard-Jones (LJ) potentials are used
to model the interaction between all pairwise atoms in the system (all atoms including atoms
in different chains), and harmonic (stretching) potentials are added along the polymer axis as
given in Equation (40). In our simulations we use normalized LJ units with �i j = �i j = 1 and the
stretching potential units kbondb = 270 and r0= 1. The resulting polymer system is stiff and thus the
explicit Velocity-Verlet algorithm, due to stability consideration, is limited by the fast vibrating
components. For the multilevel and waveform methods considered, the length of the time step
is governed by the accuracy of the coarse fields of interest, selected here both as temperature
and self-diffusion. The temperature is related to the average kinetic energy of the system and is
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Figure 2. Unit cell of polymer chains.
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Figure 3. Error in temperature as a function of the time step (simulation of polymer melts). Twenty
polymer chains consisting of 16 atoms per chain are used for the plot.

written as

Temp= 2

3Nkb
〈Ek〉 (57)

where N is the number of atoms, kb Boltzmann’s constant (here normalized as kb= 2
3 ) and 〈Ek〉

the time average kinetic energy which is a function of atom velocities (see [2] for more details).
Figure 3 depicts the relative error in the implicit methods computed as

Er[%]= |Tempexp − Tempimp|
|Tempexp|

× 100 (58)

where Tempexp is the temperature obtained by the Velocity-Verlet method and Tempimp is the
temperature obtained by HFAS for various time steps. The study is conducted on 20 polymer
chains that consist of 16 atoms per chain. We use the explicit method with �texp= 1× 10−3 as the
reference solution. The allowable error in the temperature is selected to be 1.5%. This corresponds
to the implicit time step that is 20 times larger than the explicit time step. The adequacy of the
selected time step is also verified by inspecting the accuracy of the self-diffusion coefficient. The
diffusion coefficient is obtained from the mean square displacements as

Df= 1

2nsd
lim
t→∞
〈[d(t0 + t)− d(t0)]2〉

t
(59)
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Figure 4. Diffusion coefficient for both explicit and implicit methods. �timp= 20×�texp.

where nsd is the number of space dimensions and t0 the time origin for the ensemble time averages.
For more details on diffusion coefficients we refer to [2]. Figure 4 illustrates the diffusion behavior
(the slope) for both the explicit and implicit methods taken after long times. The comparison
of the diffusion coefficient for �timp= 20×�texp is given in Figure 4. The system is integrated
over 40 000 explicit time steps. It can be seen that the multilevel method predicts the diffusion
coefficient with only 1% of error compared to the explicit method.

Tables I–III illustrate the performance of the WN and various multilevel methods as compared
to the popular Velocity-Verlet scheme. We study 10 polymer chains of short, medium and long
lengths consisting of 10, 50 and 200 atoms, respectively. The WN and the variational multilevel
scheme were reviewed in Section 2 (see Reference [13] for more details). Various HFAS schemes
were presented in Section 3. The system is first equilibrated over 1000 explicit steps by velocity
scaling to a preset temperature. The methods are then compared in the production phase. We use the
following parameters in normalized units: box dimension of 22 units; the system is integrated over
100 implicit steps (2000 explicit steps). The neighbor list [2] is updated every step for the implicit
methods and every 20 explicit steps. A cutoff radius of 8 units is employed for all simulations. We
adopt the notation given in Table IV for all methods considered. The diagonal terms of the Hessian
matrix in Equations (3)-(4) are computed analytically. One presmoothing of Jacobi WN is applied
for all multilevel methods. The iteration is terminated when the residual in Equation (18) is less
than 10−4 for all times within a window. For the numerical experiments considered the HFAS-III
method outperformed the explicit, WN and the other multilevel methods. The best performance is
obtained when the window size is equal to the size of the time step.

Finally, we demonstrate stability properties of the implicit multilevel methods by considering a
long time interval. We integrate the system over 40 000 explicit time steps (2000 implicit steps).
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Table I. CPU time and iteration summary for 10 polymer chains consisting of 10 atoms
per chain (short chains).

Non-linear Functional
Method Winds dt Iteration iteration evaluation CPU (s)

VV 1 1× 10−3 — — 2001 611.19
IN 1 20× 10−3 — 1441 1442 639.469
WN 50 20× 10−3 460 — 750 325.94
WN 100 20× 10−3 650 — 660 301.88
ML-var 50 20× 10−3 200 760 1050 470.94
ML-var 100 20× 10−3 218 654 873 383.906
HFAS-I 50 20× 10−3 220 — 750 351.25
HFAS-I 100 20× 10−3 263 — 527 235.203
HFAS-II 50 20× 10−3 300 — 1075 498.83
HFAS-II 100 20× 10−3 425 — 875 409.76
HFAS-III 50 20× 10−3 220 720 730 340.78
HFAS-III 100 20× 10−3 212 424 425 205.109

Table II. CPU time and iteration summary for 10 polymer chains consisting of 50 atoms
per chain (medium length chains).

Non-linear Functional
Method Winds dt Iteration iteration evaluation CPU (s)

VV 1 1× 10−3 — — 2001 6625.9
IN 1 20× 10−3 — 1670 1671 7802.8
WN 50 20× 10−3 480 — 840 4061.3
WN 100 20× 10−3 780 — 790 3966.4
ML-var 50 20× 10−3 200 900 1750 8309.4
ML-var 100 20× 10−3 260 260 530 2644.8
HFAS-I 50 20× 10−3 260 — 890 4219.4
HFAS-I 100 20× 10−3 280 — 570 2858.6
HFAS-II 50 20× 10−3 500 — 1750 8696.1
HFAS-II 100 20× 10−3 390 — 790 4063
HFAS-III 50 20× 10−3 170 580 590 2874.7
HFAS-III 100 20× 10−3 230 460 470 2391.6

Figure 5 depicts fluctuations in the configurational (potential) energy U and the total energy Etot
(Hamiltonian). It can be seen that the proposed multilevel approach is stable as the Hamiltonian
fluctuates around an average value. This average value differs by only %0.18 from the value obtained
by the explicit method. We note that the explicit fluctuations are much smaller as compared to the
implicit fluctuations.

Finally, we consider implementation of the explicit method and Picard iteration on a parallel
machine for Harmonic potentials. In the explicit method, matrix–vector operations are performed
at every explicit time step, and communicated between the processors. In the Picard case, the
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Table III. CPU time and iteration summary for 10 polymer chains consisting of 200 atoms
per chain (long chains).

Non-linear Functional
Method Winds dt Iteration iteration evaluation CPU (s)

VV 1 1× 10−3 — — 2001 16 499.3
IN 1 20× 10−3 — 2275 2300 33 378
WN 50 20× 10−3 555 — 1115 16 805
WN 100 20× 10−3 835 — 840 13 055
ML-var 50 20× 10−3 200 700 1050 10 213
ML-var 100 20× 10−3 310 310 625 9978
ML-FAS-I 50 20× 10−3 300 — 975 14 664
ML-FAS-I 100 20× 10−3 345 — 695 6747.1
ML-FAS-II 50 20× 10−3 50 — 1850 17 736
ML-FAS-II 100 20× 10−3 650 — 1350 13 658
ML-FAS-III 50 20× 10−3 180 580 585 9811.7
ML-FAS-III 100 20× 10−3 275 550 551 5804.9

Table IV. Notation used in the Tables I–III.

VV Velocity-Verlet
IN implicit Newmark (average acceleration)
WN waveform Newton
ML-var space–time multilevel variational scheme
HFAS-I heterogeneous temporal multilevel FAS—Picard
HFAS-II heterogeneous temporal multilevel FAS—constraints
HFAS-III heterogeneous temporal multilevel FAS—force field approximation

system is integrated implicitly and local matrix–matrix operations are performed at the end of
every window (several time steps) and communicated between the processors. We use the libraries
BLACS, PBLAS and ScaLAPACK for our parallel implementation. Figure 6 shows the time
parallelization effect on the speed-up factor over the explicit method. The results clearly show
that as the number of processors increases, the speed-up factor between the Picard and Velocity-
Verlet methods increases. The main reason for the increase in the speed-up factor is due to the
processors’ communication effect. In the case of standard explicit or implicit methods, processors
are communicating after every time step. However, in the Picard case the communication between
processors only takes place at the end of each window. This results in superior parallel performance.

5. CONCLUSIONS

A heterogeneous full approximation storage (HFAS) multilevel formulation for molecular dynam-
ics simulations has been developed. The formulation combines the basic principles of the full
approximation storage (FAS) multigrid and the space–time variational multigrid approach devel-
oped by Waisman and Fish [13]. It allows for different mathematical models to be considered at
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different scales. The temporal variant of the method, effectively uses two relaxation schemes: the
waveform Newton (WN) scheme, and the implicit integrator employing approximate force field
calculations. We study three variants of the method: Picard iteration, constrained dynamics and
force splitting. The methods are implicit in space and time, possess superior stability properties
and consequently enable larger time steps governed by accuracy considerations of coarse-scale
quantities of interest (e.g. temperature, energy, diffusion etc.). Performance studies on polymer
melts have shown significant speed-up over the classical explicit methods and the variational
space–time scheme. A parallel version of the Picard iteration has been developed for harmonic
potentials. Significant speed-ups over the standard explicit method have been observed primarily
due to reduced communication time between the processors. Finally, it is important to note that
the formulation has been validated for interatomic potentials used to model polymer melts. While
the formulation is general it has not been tested for other molecular systems.
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