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ABSTRACT 
 
An obstacle test for large deformation plasticity problems is proposed for evaluation of 

mathematical models and numerical algorithms.  The obstacle test consists of a suite of 

verification and validation problems.  We evaluate performance of several well known 

hypoelastic and hyperelastic models in the obstacle test.  Among the hypoelastic formulations 

we consider those based on Jaumann and Green Naghdi objective stress rates.  The two 

hyperelastic formulations evaluated are those of Simo et. al. [ 8,  9, 10] and Eterovic and Bathe 

[ 11]. We report several interesting anomalies.
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1. INTRODUCTION 
 
Over the past four decades modeling and simulation of materials undergoing large deformation 

plasticity has been a much researched area in computational mechanics community.  Numerous 

mathematical models and corresponding algorithms appeared in the open literature. Yet, these 

models and algorithms are often compared with other so-called “established” models and 

algorithms. While there are some general guidelines for verification and validation [24], to our 

knowledge there is no established procedure to evaluate the quality of large deformation 

plasticity models including inelastic material response, decomposition of elastic and inelastic 

deformation, rotational and material stress update algorithms. 

 

In this manuscript, an obstacle test for finite deformation plasticity problems is proposed and 

several well-known models are tested in the obstacle test.  The proposed obstacle test consists 

of three categories of test problems:  (i) qualitative verification, (ii) quantitative verification 

and (iii) validation.  The qualitative verification problems are those where certain 

characteristics of the solution are known, such as for instance stress is expected to 

monotonically increase (or decrease) with deformation. Quantitative verification problems are 

those for which an analytical solution is available. Finally, validation problems are those for 

which experimental data exists.  Two hypoelastic algorithms, employing the well-known 

Jaumann and Green-Naghdi objective stress rates, and two hyperelastic algorithms, Simo et. al. 

[ 8,  9,  10] and Eterovic and Bathe [ 11], were tested in the obstacle test.  The choice of these 

algorithms was arbitrary; by no means is it implied that these are the best algorithms available 

in the literature. Prior to testing these algorithms in the obstacle test we reproduced the 

published results to ensure proper implementation. We do not identify the source of error 

(whether it is due to material response, large rotations, decomposition of elastic and inelastic 

response, etc.) except that we ensure that the error is neither due to finite element discretization 

nor due to excessive load step.  For all test problems considered finite element meshes were 

taken to be sufficiently fine to ensure that the discretization errors were negligible and load 

increment were taken to be sufficiently small to ensure accurate integration of stresses.  
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2. THE OBSTACLE TEST 
 
The proposed obstacle test consists of three categories of test problems:  (i) a qualitative 

verification problem, (ii) quantitative verification problems and (iii) validation problems.   The 

uniform isochoric deformations simple shear problem is a single qualitative verification 

problem selected.  The two quantitative verification problems are the perfectly plastic thick 

walled cylinder and the thick walled sphere with isotropic exponential hardening.  The three 

validation problems are: the tensile test, ball bearing forging, and upsetting of a cylindrical 

billet. 

2.1 Definition of a Qualitative Verification Problem 

The uniform isochoric deformation simple shear problem is often used for verification and 

validation of numerical algorithms.  To our knowledge there is no analytical solution or 

experimental data available, but certain trends of the solution have been experimentally 

observed. The uniform isochoric deformation problem can be easily simulated because it 

consists of a single material point and does not require finite element analysis. Material 

properties used for the simple shear problem are summarized in Table 1. 

Table 1: Material Properties for Simple Shear 

Shear Modulus, μ 76.92 MPa 

Bulk Modulus, K 166.67 MPa 

Initial Yield Strength
0pY

ε =
 0.75 MPa 

Hardening, H 2.0 MPa 

Hardening Parameter, β 

β=1 −−>Isotropic Hardening 

β=0 −−>Kinematic Hardening 

0 or 1 

 

The following deformation gradient describes an isochoric simple shear deformation.   
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Such a deformation gradient can be simulated experimentally with fixed end torsion of a 

hollow cylinder.  This seemingly simple deformation created much debate in the scientific 

community.  The exact solution for this test problem is unknown, but certain trends of the 

solution have been observed.  For instance, Nagtegaal and deJong [ 12] and Montheillet et. al 

[ 13] presented experimental results for torsion testing of metals.  For aluminum and α-iron, the 

torsion (shear stress) rose to a peak value and then decreased slightly, approaching a positive 

constant value of shear stress for large shear strain.  Small oscillations of diminishing 

amplitude were observed for copper [ 13], before approaching a constant value of shear stress at 

large shear strain. Axial compression was observed during torsion with a local maximum value 

occurring when the shear stress was a maximum.  Swift [ 14] investigated seven metals 

subjected to unconstrained torsion and found that the specimens elongated.  Therefore, 

compressive, axial stress is expected for constrained torsion, supporting the experimental 

results of [ 13].  A qualitative representation of the experimental results of [ 13] is shown in 

Figure 1.  For the axial stress, Figure 1 depicts a bifurcation point following the initial 

maximum compressive value after which the axial stress becomes either compressive or 

tensile.     
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Figure 1:  Qualitative Stress Response for Simple Shear 
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2.2 Definition of Quantitative Verification Problems 

2.2.1 Expansion of a Thick-Walled Cylinder 

An analytical solution of pressure distribution in a thick-walled cylinder subjected to internal 

pressure has been given in [ 19].  The cylinder, with an inner radius of 10 units and an outer 

radius of 20 units, is subjected to internal pressure as shown in Figure 2.    

 
 
 
  
 
 
     Axis of Symmetry 

Inner Radius 

 

Figure 2 Geometry of a Thick-Walled Cylinder 

 

The material is modeled as elastic perfectly plastic; material properties are given in Table 2.  

Table 2: Material Properties for Thick-Walled Cylinder 

Shear Modulus, μ 76.92 MPa 

Bulk Modulus, K 166.67 MPa 

Initial Yield Strength
0pY

ε =
 0.75 MPa 

 

The inner radius is driven to a value of 85 units.  The analytical solution of the radial Cauchy 

stress, σrr, at the inner boundary vs. current inner radius is shown in Figure 3.  
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Figure 3:  Analytical Solution of Inner Boundary Cauchy Radial Stress, σrr, vs. Inner Radius  

2.2.2 Expansion of a Thick-Walled Sphere 

An analytical solution of  pressure distribution in a thick-wall sphere subjected to internal 

pressure has been given in [ 20].  The initial inner radius, a0, and outer radius, b0, 12.5 mm and 

20 mm, respectively, were considered.  An axisymmetric 7.5 degree slice of the sphere is 

shown in Figure 4.   

 
 

Inner Radius, a 

Outer Radius, b  

Axis of Symmetry 

 

Figure 4:  Initial Geometry of Thick-Walled Hollow Sphere 

 

The material is modeled using nonlinear isotropic hardening law: 

 

( ) ( ) ( )( )0 0
1

p

p p
pY Y Y Y e δε

ε ε
ε −

∞= =
= + − −  (2.7)

   

with material properties summarized in Table 3.  
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Table 3: Material Properties for Thick-Walled Sphere 

Shear Modulus, μ 300 MPa 

Bulk Modulus, K 8000 MPa 

Initial Yield Strength
0pY

ε =
 0.083 MPa 

Saturation Yield Strength, Y∞  0.456 MPa 

 

The elastic constants are chosen to model incompressible material [ 20].  The inner radius is 

driven to a value of 20 mm.   The analytical results of pressure versus porosity of the sphere 

are given in Figure 5.  
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Figure 5:  Internal Pressure vs. Porosity for Thick-Walled Sphere 

 

2.3 Definition of Validation Problems 

2.3.1 Necking of Circular Bar 

The necking of a circular bar resulting from uniaxial tension was reported in [Error! 

Reference source not found.].  The circular bar specimen has a radius of 6.413 mm and length 

of 53.334 mm as shown in Figure 6.    
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Figure 6:  Initial Geometry of Circular Bar 

 

A nonlinear isotropic hardening law  

 

( ) ( ) ( )
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was fit to test data [ 2]. The material properties are given in Table 4. 

Table 4: Material Properties for Circular Bar 

Shear Modulus, μ 80.1938 GPa 

Bulk Modulus, K 164.206 GPa 

Initial Yield Strength
0pY

ε =
 0.45 GPa 

Saturation Yield Strength, Y∞  0.715 GPa 

Linear Hardening Coefficient, H 0.12924 GPa 

δ 1.5 

 

The experimental data published in [Error! Reference source not found.] is given in Figure 

7.   
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Figure 7: Necking of a Circular Bar 

 

2.3.2 Ball Forging 

A common process for manufacturing of balls is by forging a cylindrical billet between two 

dies with hemispherical sockets.  Experimental data for the 1100 billet with 1070 carbon steel 

dies was reported in [ 21].  The radius of the aluminum billet is 12.4 mm with a height of 

18.171 mm.  The radius of the hemispherical socket of the die is 7.938 mm.  Hardening data 

was fit with a nonlinear isotropic hardening law given in (2.8).  Material properties of the 

aluminum 1100 are summarized in Table 5. 

Table 5: Material Properties for Ball Forging 

Elastic Modulus, E 13,000 MPa 

Poisson’s Ratio, ν 0.3 

Initial Yield Strength
0pY

ε =
 65.0 MPa 

Saturation Yield Strength, Y∞  96.0 MPa 

Linear Hardening Coefficient, H 41.8 MPa 
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δ 16.0 

 

Figure 8 depivts the hardening data for the aluminum 1100 and the nonlinear fit to the data. 
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Figure 8:  Aluminum 1100 Hardening Data with Nonlinear Fit 

 
The initial geometry of the forging process is shown in Figure 10.  
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Figure 9:  Axisymmetric Geometry of Ball Forging 
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The forging force versus displacement is given in Figure 10.  Initially, there is nearly linear 

growth of force versus displacement.  However, near the end of the process, when the billet is 

highly constrained, the forging force increases significantly. 
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Figure 10:  Experimental Forging Force vs. Die Displacement for Ball Forging 

 

2.3.3 Upsetting of Billet 

Experimental results of the upsetting of an aluminum 1100 billet constrained between two dies 

with cylindrical sockets were reported in [ 21].  The dimensions are given in Figure 11.  The 

nonlinear isotropic hardening law and material parameters defined in Table 5 are used. 

 



 
 
 

 11

7.924 mm

6.096 
mm 

7.874 mm

Die 

Axes of Symmetry 

 

Figure 11:  Initial Geometry of Billet 

 

The experimental force-displacement results are plotted in Figure 12.       
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Figure 12:  Experimental Force to Upset Aluminum Billet 
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3. PERFORMANCE IN OBSTACLE TEST 
 
In this section we report performance studies of two hypoelastic algorithms (employing 

Jaumann and Green-Naghdi [ 5] objective stress rates), and the two hyperelastic algorithms 

(Simo et. al. [ 8,  9, 10] and Eterovic and Bathe [ 11])  in the proposed obstacle. 

3.1 Performance in the Qualitative Verification Tests 

3.1.1 Simple Shear 

Figures 13-16 show the results in a simple shear test.  All four models considered predict 

similar stress response for isotropic hardening.  The oscillatory behavior of the Jaumann 

objective stress rate with linear kinematic hardening is not consistent with experimental data as 

originally suggested by Nagtegaal [ 12].  The Green-Naghdi algorithm does not exhibit the 

oscillatory behavior for the linear kinematic hardening, but the value of the stress 

monotonically increases up to infinity.  Somewhat surprising is that hyperelastic Eterovic and 

Bathe formulation shows oscillatory response essentially tracking the Jaumann formulation.  

The Simo algorithm shows an anomaly of nonzero σ33.  The results of all four algorithms have 

some inconsistencies with experimental observations outlined in previous Section:  shear stress 

should be bounded and non-oscillatory; the peak axial stress, σ22, does not occur at the peak 

shear stress as observed. 
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Figure 13 σ12 Results for Simple Shear 
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Figure 14 σ11 Results for Simple Shear 
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Figure 15  σ22 Results for Simple Shear   
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Figure 16 σ33 Results for the Simple Shear using Simo Algorithm 

 
For linear kinematic hardening, two simple hypoelastic algorithms were studied.  For simple 

shear deformation, polar decomposition of the incremental deformation gradient is used to 

construct the incremental rotation tensor.  For the second algorithm, polar decomposition of the 

total deformation gradient was used to obtain the total rotation tensor.  The total rotation tensor 

is used to update the rotational component of stress.  The stress value from the previous 

increment is rotated back to the initial configuration using the rotation tensor from the previous 

increment and then the total current rotation tensor is used to update the rotational component 

of the stress update.  Figures 17 and 18 display the stress results of this simple algorithm.  

Oscillatory behavior is predicted using the incremental rotation algorithm and unbounded 

monotonic behavior is predicted by the total rotation algorithm, similarly with the results 

obtained using Jaumann and Green-Naghdi objective rates, respectively.  This is not surprising, 

since the Jaumann and Green-Naghdi objective rates coincide with the corresponding 

incremental rotation updates as the size of the increment approaches zero.  
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Figure 17 σ11 Results of the Incremental and Total Rotation Updates 
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Figure 18 σ12 Results of the Incremental and Total Rotation Updates 

 

3.2 Performance in the Qualitative Verification Tests 

3.2.1 Expansion of a Thick-Walled Cylinder 

Results of the thick-walled cylinder test problem, as defined in the previous section, are shown 
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Figure 19:  Inner Boundary Cauchy Radial Stress, σrr, vs. Inner Radius 

 

in Figure 19. It can be seen that all algorithms produce nearly identical results with the 

maximum percentage difference being on the order of 2%.  This is not surprising since both 

rotations and elastic strains are small. 

3.2.2 Expansion of a Thick-Walled Sphere 

The results of the thick-walled cylinder test problem, as defined in the previous Section, are 

shown in Figure 20 as pressure versus porosity of the sphere. 
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Figure 20:  Internal Pressure vs. Porosity for Thick-Walled Sphere 

 

It can be seen that the results of all algorithms are in good agreement with the reference 

analytical solution. 

3.3 Performance in Validation Tests 

3.3.1 Necking of Circular Bar 

The deformed geometry of the circular bar test problem, as defined in Section  2.3.1, is shown 

in Figure 21.  The reduction in radius versus nominal strain is given in Figure 22.   
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Figure 21:  Initial and Deformed Geometry of Circular Bar 
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Figure 22: Reduction in Radius for Necking Circular Bar 

 

It can be seen that all algorithms are match up very well with the experimental data published 

in [Error! Reference source not found.]. 

3.3.2 Ball Forging 

The axisymmetric mesh of the billet and the deformed geometry after the forging process 

defined in Section  2.3.2 are shown in Figure 23.  
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Figure 23:  Initial and Deformed Geometry of Ball Forging 

 

The results of the finite element models are plotted with experimental data in Figure 23.  The 

nearly linear growth of force versus displacement is predicted well by each model.  However, 

near the end of the process, when the billet is highly constrained the error substantially 

increases.  A portion of this error is probably due to the use of rate independent plasticity.  The 

plastic strain rate increases significantly in the last stages of the forging process.  
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Figure 24:  Forging Force vs. Die Displacement for Ball Forging 

3.3.3 Upsetting of Billet 

The deformed geometry of the billet undergoing upsetting as defined in Section  2.3.3 is given 

in Figure 25.   
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Figure 25:  Initial and Deformed Geometry of Billet 

 

The results of the models considered are plotted against experimental data in Figure 26.  The 

general trend of the force versus displacement curve is predicted well, but the magnitude of the 

force predicted by all for models is about 10% less than the experimental value.  The process 

was performed at a constant upsetting speed, thus the strain rate increases throughout the 

process.     
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Figure 26:  Force to Upset Aluminum Billet 

 

4. CONCLUSIONS AND FUTURE RESEARCH  

An obstacle test for large deformation plasticity problems is proposed for evaluation of 

common mathematical models and numerical algorithms. The obstacle test consists of three 

categories of test problems:  (i) qualitative verification, (ii) quantitative verification and (iii) 

validation.  The algorithms tested performed reasonably well except for the simple shear 

problem were certain anomalies were identified. 

 

The obstacle test could be expanded to address the following issues: (i) identification of 

sources of error and (ii) computational efficiency.   The obstacle test presented here does not 

provide any information on the sources of error; whether it is due to material response, large 

rotations, decomposition of elastic and inelastic response; etc. Test problems perhaps can be 

engineered so that only one parameter is varied at a time. To our knowledge, experimental data 

supporting such an approach does not exist today. The major two factors affecting 

computational efficiency are: (i) cost of consistent (or not) linearization and stress update, and 

(ii) the size of the load increment required for maintaining sufficient accuracy of the stress 
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update algorithm. This type of analysis would permit benchmarking of cost versus accuracy for 

various models and algorithms considered. 
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