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1. Introduction

The internal material interfaces in composite materials cause reflection and refraction of
stress waves, giving rise to dispersion and attenuation of waves within material micro-
structure [1]. In an early study, Moon [3] proposed a continuum model based on the effec-
tive modulus concept. This formulation leads to a theory that is non-dispersive and
therefore somewhat limited. Simulation of response phenomena associated with the mate-
rial microstructure, such as wave dispersion, requires a higher-order continuum descrip-
tion [4]. The effective stiffness theory developed by Sun, Achenbach and Herrmann [5][6]
is the first of the dispersive continuum models for composites. Subsequently, several
higher-order homogenization based theories have been proposed (see Bedford and Stern
[7][8], Hegemier, Gurtman and Nayfeh [9][10], and Boutin and Auriault [17]). For an
excellent survey of various higher order continuum models in elastodynamics of compos-
ites, we refer to [11].

The use of multiple-scale expansions as a systematic tool of averaging for problems
other than elastodynamics can be traced to Sanchez-Palencia [14], Benssousan, Lions and
Papanicoulau [12], Bakhvalov and Panasenko [13]. The role of higher order terms has
been investigated in statics by Gambin and Kroner [15], and Boutin [16]. In elastodynam-
ics, Boutin and Auriault [17] demonstrated that the terms of a higher order successively
introduce effects of polarization, dispersion and attenuation.

So far various approaches utilizing higher order homogenization theory in elastodynam-
ics were limited to a single-frequency wave dependence. In this work we focus on a gen-
eral initial/boundary-value problem in a periodic heterogeneous medium. Attention is
restricted to one-dimensional initial/boundary-value problems in an attempt to construct a
closed-form analytical solution for a model problem. Validity range and limitations of the




theory in elastodynamics are established. We show that the higher order theory is neces-
sary to account for wave dispersion, but introduces secular terms which grow unbounded
in time. Numerical procedures requiring superconvergent recovery of higher order deriva-
tives are also described.

The outline of this paper is as follows. Problem statement and high-order homogeniza-
tion are formulated in Section 2. Analytical solutions and numerical procedures are pre-
sented in Section 3. Section 4 gives numerical examples. We conclude with some remarks
and discuss future work in Section 5.

2. Homogenization of Elastic Composites
2.1 Problem statement

As a model problem, we consider a composite rod of lehgtimposed of a periodic
array of two linearly elastic, homogeneous and isotropic constituents with perfect inter-
faces as illustrated in Fig.1. The rod is fixed at one end and subjected to an impact load

P(t) at the other end. Let the origin of the Cartesian coordinate system be located at the
fixed end.
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Fig.1: Composite rod subjected to an impact load: (a) Macro-problem; (b) Unit cell.

The governing elastodynamic equations are:
* Equations of motion, kinematic and constitutive equations

p(X)u(x, H—(E(X)u,), =0, a(xt) = E(Xu, 1)
* Interface continuity conditions

[u(x ] =0, [o(x,t)] =0 2
* Boundary conditions
P(1)

U(O, t) =0, U’X(|,t) = m 3)




* Initial conditions
u(x, 0) = u(x,0) =0 4)

whereu(x, t) ands(x,t) denote the axial displacement and stress, respegt(voly; the
mass densityE(x) the elastic modulAstepresents the cross-sectional area of the rod,

[ ] denotes the jump operatqt;),  and the superposed dot denotes differentiation in
space and time, respectively.

Conditions (1)-(4) define the initial/boundary-value problem. Since the size of heteroge-
neity is much smaller than the length of the bar, the direct solution of this problem is com-
putationally infeasible. Thus the primary goal is to replace the source heterogeneous
problem by a homogenized one with equivalent material properties, which could be either
local or nonlocal. This is accomplished by the method of multiple-scale asymptotic expan-
sion.

2.2 Asymptotic analysis with multiple scales

Under the premise that the composite macro reference lengtmuch larger than the
unit cell dimensionQ , i.ee = Q/L = (wQ)/c = kQ«1 , whem, k andare the

angular frequency, wave number and wave speed of the macro-wave, respectively, it is
convenient to introduce a microscopic length varigidach that

y = X ®)

Since the response quantitit®end o depend on bothandy = x/¢ , a two-scale
asymptotic expansion is employed to approximate the displacement and stress fields

n n
U YY) = S EU YYD, oy ) = T Eoi(xy Y (6)
i=0 i=-1
The periodicity of the microstructure induces the same periodicity on functions  and

o, with respect to variablg The homogenization process consists of inserting asymptotic

expansions (6) into the governing equation (1), identifying the terms with equal power of
€, and finally, solving the problems obtained.

Following this process and expressing the spatial derivative in terfng ,of s_l( ),y ,
yields various order equilibrium equations

o(e™): (Etg,), = O

O(e ): (EUo,y),XJ’(EUo,x),yJ’(EUl,y),y =0




O(e'): pui —{ QU+ Uiy ) —{E(U g H U +2,y)},y =0( =01 ..n) (0
Stresses of different orders are expressed as
0, = Ey,y

0; = E(Uy*+Ujqy) (=01 ..n) (8)

2.3 Macroscopic description of homogenized material

First, we consider thé)(a_z) equilibrium equation (7). Premultiplying iupy , then
integrating it over the unit cell domain, and finally performing integration by parts yields

uo(EuO,y)|§— J’E(uo‘y)zdy =0 ©)
Q

The first term in (9) vanishes due to periodicity of the boundary conditions in the unit
cell, which yields
Ug,y = 00 Uy = Up(x, 1) (10)

Inserting egn (10) into (8) leads

c,=0 (11)

Next, we proceed to th@(s_l) equilibrium equation (7). Taking into account
Ug = Uy(x, t), we have

{ E( UO, X + ul, y)} y =0 (12)
Due to linearity of the problem, the general solution of (12) is
up(% Y, ) = Ug(x, t) + L(Y)Uq (13)
Substituting egn (13) into (12) and (8) for 0 yields
{E(1+ L’y)}’y =0 (14)
0p = Ug xE(1+L)) (15)

We now consider the unit cell given in Fig.1(b). The cell domain consists of subdomains

A anda® , occupied by microconstituents 1 and 2, respectively, such that

AD = [y| 0<y<aQ], A? =[y| aQ<y<Q] (16)




where0<a <1 isthe volume fraction of the unit cell.

Equations (14) and (15) can be written over a unit cell domain as
_ () — -
E(1+L,) =a . oy =Ug,E(l+L,) (=12 17)
Whereaj are constanttsj(y) can be solved for from the following conditions

(a@)Periodicity:  u;(y=0) = u;(y=Q) , 0o(y=0) = oo(y=9Q)

(b) Continuity: [ui(y=aQ)] =0, [og(y=aQ)] =0

(c) Normalization: [l (x, y, )= U,(x, t) 0 OL(y)E=0 (18)
where
2
D‘DzéZI‘dy (19)
j=1A0

is an averaging operator. Solving for (18) yields

- BB o - -8
E,= (E(1+L)0= =15 1)
' (1-a)E; +aE,
2.3.10(80) equilibrium
Consider the equilibrium equation @’(so)
pUo—{ E(Ug x*+uy )}, —{E(uy x+up )}, = 0 (22)

Integrating (22) over the unit cell domain and taking into account periodiciby of
yields

anHO_EnUO, XX — 0 (23)
where

P = pO= apy +(1-0a)p, (24)




p, andE, are the homogenized mass density and elastic modulus of the composite. It

can be seen that the homogenized material properties are the same as in statics. Thus the
zero-order homogenization model is non-dispersive. In order to capture the dispersion
effect, higher-order terms will be considered now.

2.3.20(¢€) equilibrium

Substituting (13) and (23) infb(eo) equilibrium equation (22) yields

{E(u2’y+ Up ¢+ LUO,XX)}’y = En(B—l)UO’XX (25)
where
B(y) = 2W 26)
Pn

Due to linearity of the problem, the general solutionuijpr ~ can be expressed as

UZ(X’ y’ t) = UZ(X! t) + L(y)Uj_,x + P(y)UO,XX (27)

Substituting (27) into (25) and (8) for= 1  yields

{E(L+P)}, = Ey(B-1) (28)
0, = E(L+L)U; ,+E(L+P)Uq (29)

From periodicity and continuity af, ¢, , and normalizatiorugf , i.e.
,(x y, 0= Uy(x, t) O P(y)d= 0 (30)

follows the solution oP(y) . AfteP(y) is determined, we calculate
[pLO=0, [E(L+P,)0=0, [E(uy,+Uy,)0= E U, (31)

and obtain thed(g) equilibrium equation

pu‘l _{ E( u]_, X + u2, y)} ,X_{ E(UZ, X + u3, y)} Y 0 (32)

Integrating (32) over the unit cell and taking into account periodicit,of , yields
[(pLUL+ [pLIUo x—{ E(Uy , + Uy )}, = O (33)

Inserting (31) into (33) gives




pnu.l_Enul, XX 0 (34)

2.3.30(82) equilibrium
Substituting (13), (27) and (34) into thé¢) equilibrium equation (32), yields
{ E(uS,y + I:)UO, xxx+ LUl, XX + UZ, x)} Y = En([3 - 1)U1,xx+

{ EnBL - E(I— + P,y)} UO, XXX

(35)
Due to linearity of (35) the general solution tgr  is given as
Uz(X Y, ) = Ug(x, 1) + L(Y)Uy  + P(Y)Uq 4 + Q(Y)Ug xxx (36)
Substituting (36) into (35) and (8) for= 2  gives
{E(P+Qy)}, = EBL—E(L+P,) 37)
0, = E\Uy , + E(L+P)Uyp 1 + E(P+ Q)Uq (38)

whereQ(y) can be determined from the periodicity and continuity conditiong on and

g, over the unit cell domain as well as the normalization condif@qy)ll1= O . After

Q(y) has been determined, we can calculgiP [P + Qy)D
Consider theD(sZ) equilibrium equation:

pljZ_{ E(u2,x+ u3,y)}’x_{ E(u3,x+ u4,y)}’y =0

(39)
Integrating (39) over the unit cell and taking into account periodicitszof  yields
ppU2+ [pLIUL x + [pPIU0, xx— EqUp o — LE(L+ P)U, 4o —
[E(P+ Q)W yx = O (40)

Substituting (31) and into (40) and making use of the macroscopic equation of motion
(23) for U, gives the second order macroscopic equation of motion

anIZ_ EnUZ, XX — EdUO, XXXX (41)

where




_ [a(l- G)]Z(Elpl_ E2p2)2Ean
12pﬁ[(1—0()E1 + GE2]2

(42)

E4 characterizes the effect of heterogeneity on the macroscopic behavior. It can be seen
that E; is proportional to the square of the unit cell size and vanishes for homogeneous

material @ = 0 ora = 1 ). The forcing term in (41) is also proportional to the gradients
of the macroscopic strald, ,,, - Thus, the smaller the gradient of the macroscopic strain
is, the smaller the forcing term will be.

2.3.40(83) equilibrium

Uys(x, y, t) can be solved from tr@(sz) equilibrium equation (39). Due to linearity, the
general solution fou, is as follows

U4(X, y’ t) = U4(X! t) + L(y)U?,, X + P(y)UZ, XX + Q(y)ul, XXX + R( y)UO, XXXX (43)

Substituting (43), (36) and (27) fag(x, y, t) uz(X, Y, 1) amg(x, y, t) , respectively,

into egns (39) and (8) far= 3 , and making use of the macroscopic equation of motion
(41) forU, , we arrive at

{E(Q+ Ry}, = B(E,P-Ey) -E(P+ Q) (44)
03 = EnU3,x+ E(L+ P,y)UZ,xx+ E(P+ Q,y)Ul,xxx+ E(Q+ R,y)UO,xxxx (45)

The expression foR(y) can be determined from the periodicity and continuity condi-
tions of u, ando; over the unit cell domain as well as the normalization condition

[(R(y)O= 0. After R(y) is determined, we calculate
[pQO=0, E(Q+R,)O=0 (46)
and obtain the@(sg) equilibrium equation:
puz—{ E(Uz ,+ Uy )} x~{E(ugx+us )} =0 (47)
Integrating (47) over the unit cell domain and accounting for periodicity of  yields
PnUz + [PLIU2, x + [PPIUL xx + [PQIUO, xxx = EjUg o+

EE(L + P,y)wz, xxx+ EE(P+ Q,y)wl, xxxx+ EE(Q+ R,y)DJo, XXXXX (48)




Substituting (31), and (46) into (48) and making use of the macroscopic equation of
motion (34) forU, , we arrive at the macroscopic equation of motiot/for

anIS_EnUS, XX — Edul, XXXX (49)
2.3.50(84) equilibrium

us(X, y, t) can be solved from the equilibrium equatioﬁlﬁts) (47). Due to linearity
of the problem, the general solution fay  is as follows

US(X’ y’ t) = US(X! t) + L(y)U4, X + P(y)U3, XX + Q(y)UZ xxx+
R( y)Ul, xxxx+ S( y)UO, XXXXX (50)

Substituting (50), (43) and (36) fag(x, y, t) u,(X Y, 1) ang(x, y, 1) , respectively,

into eqns (47) and (8) far= 4 , and making use of the macroscopic equation of motion
(49) for U, , yields

[E(R+ S))], = B(E,.Q-E4L) —E(Q+ R (51)
0-4 = EnU4,x+ E(L+ P,y)US, xx+ E(P+ Q,y)UZ, xxx+
E(Q+ R,y)Ul,xxxx+ E(R+ S,y)UO, XXXXX (52)

S(y) can be determined from the periodicity and continuity conditiong of ognd

over the unit cell domain as well as the normalization conditisn)= 0 . Altgr
has been determined, we can calculga&

The resulting)(a4) equilibrium equation is given as
PUs—{E(uy + U5 )}, —{E(Us x +Ug )}, = O (53)
Integrating (53) over the unit cell and accounting for the periodiciggof  yields
an4 + [pLIU3, x + [PPIU2, xx + (PQIU1L, xxx + (PRIUO, xxxx
BRU xx* LE(L+ P )3 yyx+ TE(P+ Q)T yux *

EE(Q"' R,y)Eul, xxxxx+ EE(R"' Sy)DJo XXXXXX (54)




Inserting eqgns (31), , (46) into (54) and making use of the macroscopic equations of
motion (23) and (41) fod, and, respectively, we arrive at the macroscopic equation

of motion forU,

an"4_EnU4,xx = EdUZ,xxxx_ EgUO,xxxxxx (55)
where
[a(1 - 0)]*(Eqpy — Epp) EnQ”
e . 1P1 —EoPo 4n {azEé[Zazpi—(l—a)2p§+
6a(l—a)p,p,] + 20((1—0()E1E2[30(2pi+ 3(1—a)2p§ +1la(l-a)p,p,] -
(1-0)’Ei[a’pi—2(1-a)’p5—6a(1—a)p,p,]} (56)

E, characterizes the effect of the microstructure on the macroscopic behavior. It has a

strong dependency on the unit cell size (fourth powe? of ). Note that for a homogeneous
materiaI,Eg ande; vanish. The forcing term in the fourth order macroscopic equation of

motion appears to be in the form B multiplied by the gradients of the second-order
macroscopic strainl, .., , and the productiyf  and the gradients of the zero-order
macroscopic strairl)y ,.«xx - The initial and boundary conditions for the model problem
are given as follows:

Ics: Ui(x,0) = Ui(x,0) =0 (i =012 3 4 (57)
BCs: Ug(0,1) = 0, Ug (1) = ELX
Ui(0t) =0, U () =0 (i =123 4 (58)

From the above equations of motion and boundary conditions, we can observe that
U; =U;=0 (59)

It has been shown in [17] that the first and the third order terms introduce the effects of
polarization and attenuation, respectively. These terms vanish for macroscopically isotro-

pic materials. Moreover, if the size of the microstruct@e, , is infinitesifal, ~Egnd

in (42) and (56) vanish, and the higher order correctidns, Ugnd , disappear. Thus if
the size of heterogeneity is very small, the dispersion effect is negligible. Moreover, if the

impedances(Z = JEp) , of the two microconstituents are identicalF,@, = E,p, ,

10



E4 and E, will also vanish. From the physical point of view, this means that there is no
reflections at the material interfaces, making the waves non-dispersive.

3. Solution of Macroscopic Equations

3.1 The analytical solution

The simplicity of the macroscopic equations of motion and corresponding boundary
conditions in 1-D permits for closed-form representation of the solutions. In the following
we will obtain such a closed-form solution using Laplace transform.

First, we begin with the zero-order equation of motion (23). Taking the Laplace trans-
form of (23) with respect to time yields

s"Uo(x, 5) —sUy(x, 0) —Uo(x, 0) —c*(Uo(X, §))xx = O (60)

where
c=./E/P, (61)

is the homogenized wave speed &;(ﬂx, S) is the Laplace transfasg{xoft) . Insert-
ing the initial conditions (57) into (60) yields

szao(x, S) —CZ(L_Jo(X, S)xx =0 (62)
The general solution of (62) is

Uo(X, 5) = BlcoshSEX+ stinhs—cx (63)

whereB; and, are constants. Taking Laplace transform of the boundary conditions (58)
for U, gives

Uo(0,s) = 0, Uox(l,s) = % (64)

Inserting (63) into (64) yields

B,=0, B,= E—CA"[P—(DS]I (65)
n
scoshE

Thus, the solution dﬁo(x, s) becomes

11



sinh—

Uo(x, 9) = ECA SLIP(D] (66)
scosh—
We consider the impact load in the form
P(t) = Pyf(t) (67)

whereP,, is a constant which specifies the magnitude of the impact loa@isaf(d) < 1

is a time function which specifies variation of the impact load with time. We consider the
following time dependent function

f(t) = agt’(t=T) [1=H(t=T)] (68)

whereH(t) is the Heaviside function,the duration of the pulsey, is a scaling coeffi-
cient, which make® <f(t)<1 , given by

a, = I/maq f(t-T)*(1-H(t-T))] = 16°/T° (69)

Taking the Laplace transform éft) and substituting it into (66) yields

smh

_ C T2 270 _
Uo(x, ) = Poay {%J’ESX?'T +4.l’ A1-e°T)—
EnfA scosh— N s U
4T% —Hl )] (70)
Uy(x, t) is found by taking the inverse Laplace transforrﬂ@qx, S) as

2048, _ sin(pX)Gy(m, t d D)
°E, A < -1)™ Y(2m-1)?

Ug(x, 1) = L™ [Uo(x, 9)] = (71)

where
t=t/T, x=x/1, p=2m-1)w2, d=ct/I, D =cT/I (72)

and G, is a the non-dimensionalized time function, which can be found in the closed
form.

12



Now that we have obtained the analytical solutiod g, t) , we proceed to solve for

the second order equation of motion (41). Taking the fourth derivativ,©f, t) with
respect tox and substituting the result into (41) yields

[ee]

16384°,1°Q°[a(1—a) (E; p; —E,p,)]° _ sin(pX)G,(m, t, d D)

U, (x 1) =
21 TEACD! pA(l-a)E +aE]) & (=)™ '(2m-1)*

(73)

whereG, is another non-dimensionalized time function, which can be found in the closed
form.

Fort>T , the value of the Heaviside functibift — 1) becomes unity and it can be
shown that the non-secular termsup(x, t) are negligible compared with secular terms.

Under this conditionG, anG, can be simplified as

Go(m 1 d D) = (24/D)Go(m, t & D) (74)
Gy(m, t d D) = tG2(m, t, d D) (75)
where
Go(m, 1, @ D) = —%EZ—E’[“—Z—l}[sm(desm(p(d o))] +
p [pDL(pD)
{1680 180, J[cos(pd) cos(p(d- D)1} 76)
(pD) (pD)
Go(m 1 D) = 10{4—22—1J[cos(pd)+cos(p(d o)1 -
(PD)
pD{ =5 250 . 1}[sm(pd) sin(p(d- D))] @
(FD)" (pD)
The expression foG, indicates that the peak valugd. g, t) grow linearly with

time, and when time approaches infinit, (X, t) becomes unbounded.

After the solutions obJ,(x,t) and,(x,t) have been obtained, we solvd f(x;, t)

following the same procedures. Owing to the limited space, the analytical solution is not
presented here.
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Based on the analytical solutions fdg(x, t) an(x, t) , We can estimate the value of

€ forthe case of > T

2
€U0
Yo

lo.0

_ ﬁa(l—a)|E1p1—E2p2|9ﬁ

3P [(I=0)E, +aE,] T4T 1/ bsin(@et/l) coswct/l) — (78)

wherew; andw, are constants gndl |, o [s,a  norm defined as

Xg* 2/ 2) i

l90loo =| [ 19001 (79
(X —Q/2)

with x, being the center of the unit cell, and

f(cT/1, sin(w,ct/ 1), cos(w,ct/1)) = /%2 (80)
0llo, ©

_ < sin(pX)Ga(m, t & D) _
%2 mgl )" tem-1)* " 2

m=1

sin(pX)Go(m, t, d D)
-1)"" l(2m - 1)2

(81)

It can be observed that the valueof depends on four factors: (i) the normalized square
of the impedance mismatch, (ii) the normalized unit cell §izé , (iii) the normalized
square root of time, and (iv) the pulse duration . It can be numerically shown that the
function f(cT/|, sin(w;ct/1), cos(w,ct/l)) rapidly increases with decrease in pulse

durationT .

The value of scaling parameter, , is an important indicator of the validity of the asymp-
totic expansion. The asymptotic sequence is considered to be uniformly valid for small
values ofe .

3.2 The finite element solution

In this section, we establish numerical procedures for solving the macroscopic equations
of motion. These procedures are directly applicable for multidimensional case.

The zero-order equation of motion can be solved by the finite element method. Here we
focus on the solution of the second order equation of motion (41) requiring recovery of
higher order derivatives.

14



The weak form of the second order equation of motion (41) is given by

| I |
[WPRAU20X ~ [WE,AU, 10X = [WEGAUG g WD C’ (82)
0 0 0

wherew is a weighting function. Integrating the above equation by parts yields

[ I '
prnAL'jzdx +[EAAW,U, X = —[EqAW,Ug o +
0 0 0

[WEGAUq s+ WE,AU, ] |:3 Ow 0 c° (83)

Given the natural boundary conditidd, ,(l,t) = 0, and the factuifat 0) = O
where the essential boundary conditions are prescribed, the above equation reduces to

[ I [
IanAUZdX +J.EnAW,xU2‘ de = _IEdAW,xUO, xxxdx + [WEdAUO, xxx] |x - (84)
0 0 0

The solution and weighting functions are interpolated as
Ug = Ndg, U5 =Nd;, w=Ng (85)

whereN are the shape functions. Substituting egn (85) into (84) yields

I I I
[PAN"Ndzox + [E,AB'Bd3dx = —[E,AB'Nd
0 0 0

e
0, XXX

-
o + [ EqAN " dg, 4y ‘X _, @9
whereB denotes the derivative of the shape functions. The above equation can be written
in the matrix form

Md, +Kd, = F(t) (87)

where

15



Ne
F(t) = - z hedg, xxx t [EdAdO, xxx] |x = (88)

e=1

M,K andF(t) are the overall mass matrix, stiffness matrix and load vector, respec-
tively. Ne denotes the number of elements in the mesh. The element matrices are

m® = [p,AN'Ndx, k°= [E,AB'Bdx, h° = [E,AB'Ndx (89)
I | I

e e e

wherel, is the length of the element.

The challenge is to accurately recover higher order derivatives, sdgh gs . Here, we

employ Wiberg’s modification [21] of the superconvergent patch recovery (SPR) tech-
nique originally developed by Zienkiewicz and Zhu [20]. Wiberg et. al. [21] proposed the
superconvergent patch recovery technique incorporating equilibrium equations in a patch
as well as boundary conditions at boundary points (SPREB), for patches near boundaries
where tractions and displacements are prescribed. The method involves a weighted least-
squares polynomial fit in an attempt to force the recovered solution to satisfy the appropri-
ate boundary conditions.

The direct finite element solution of derivatives

h

U, = BdS, op = EBdS (90)

) X

is of lower accuracy than the solution and exhibits interelement discontinuity. The super-
convergent derivative€UL}, ,) (pl}) , are obtained by interpolation over a patch of ele-
ments as

ULh x = Xa, ol = E.ULL (91)

wherea is a set of unknown parameters and the monomial term in the row Katrix are
those present in the shape functhdn

We define the following weighted residuals for the improved solution
h b
Ro’ = [Ws(o-%_o-o)]s! Rob = [Wb(o-%_o-o)]ﬁb (92)

whereR; is the residual for stresses at superconvergent mﬂhtﬁgb the residual for

stresses at the natural boundéoy,) where tractions are presavibed; w, and are the
weighting coefficients.

In order to determine the unknown paramegers , we define the following functional
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ns nb
2 2
M(a) = z R, + z Rs, (93)
is=1 ib=1

wherensis the number of sampling points (superconvergent points) in a patctb amel
number of boundary points in a patch where the natural boundary conditions are pre-

scribed. The parameteas are obtained from the minimization of the functional over local
patches of elements

g—g =0 (94)
which leads to
Ca=r (95)
where
ns nb
C= T MeEXX)s+ T (WoExX XD
is=1 ib=1
ns nb
= 3 WEXUg st Y WX g, (96)
is=1 ib=1

Without loss of generality, we can sef = 1 and segle accordingly. Once the
parametera are determined, the recovered nodal valugg of are calculated by inser-

tion of appropriate coordinates into the expressiorufdy , . After the nodal \cgJyes
are recovered, we obtain

Ug,x = ng,x' U(eJ,xx = Bdg,x 97)
The nodal valued, ,,  can be recovered based on the known valijes of by follow-
ing the same procedures as for the recovery of oty yxx can be recovered in a

similar fashion. For recovering the derivatives higher than the first order and for patches
not containing any boundary points where the natural boundary conditions are prescribed,
we setw, = 0 .

4. Numerical example

Numerical experimentation agenda includes two test problems, both dealing with the
impact of the composite rod shown in Fig.1. The first example is used to demonstrate the
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influence of secular terms. The geometric parameters of the rod are as followsl fhgth
m, cross-sectional areg= 10 n, unit cell sizeQ = 0.02 m. The rod is subjected to an

impact load P(t) = Poa0t4(t—T)4[1—H(t—T)] , WherePy = -50 KN and a; is
scaled so thaO< P(t) <P, . The material properties of the rod are as follows: Elastic
moduli E; = 120 GPg, E, = 6 GPa mass densitp, = 7000 Kg/m?‘, p, = 6000 Kg/

m>, volume fractiona = 0.5 . The homogenized material properties are calculated and
are given asg,, = 11.43GPaandp, = 6500 Kg/n®. In this caseE,/E, = 20 .

The values of the estimated scaling
N g L B parametere , at the midpoint of the
g2 rod are plotted in Fig.2 (a) and (b) for
pulse durations o = 0.314 msand

o T = 0.126 ms, respectively. The
o | W |"l results confirm our earlier findings
" : T 2 2 indicating growth ofe with time. It

i can be seen that after a few reflections
of the wave from macro-boundaries,

the value ofe increases rendering the
asymptotic sequence to be invalid.
! Thus the higher-order homogenization
: P,\ Ll becomes not valid for very long time

8 spans. We now focus on the time

1] {1E] i 1.5 2 T3

S . spans for which the theory is valid.

u i L

i oy
o
L

PP e fa-TiH-Ha-Ti] T i1 ma
(L] E (E_=30 il =0ad

i it radaen
@
-

T T T
PP E-TI T -HE-TE w=-u T =il 138 e

B e e s The error in the zero-order homoge-

' nization (as compared to the response
Mﬁhw.ﬂﬁw__r of the source heterogeneous bar) for

pulse duration off = 0.126 is plot-

ted in Fig. 2 (c). It can be observed
! - . - . J thatthe error increases with time simi-

el s larly to the growth of .

Efd @l féaied] |51
i
o

Fig.2: Quality of zero-order homogenization: (a) Esti- The second numerical example is
mated values o  fofT = 0.314ms) ; (b) Estimatedievised to demonstrate the effective-
values ofe for(T = 0.126mS) ; (c) The error of theN€ss of the higher-order homogeniza-
zero-order homogenization tion theory in capturing the dispersion
effect caused by the material heteroge-
neity. The geometric parameters of the rod remain the same as in the first example. The

material properties in this example akg: = 200 GPa, E, = 5 GPa, p; = p, = 8000

Kg/m3, anda = 0.5 . The homogenized material properties are calculated and are given
asE, = 9.76 GPaandp,, = 8000 Kg/nT. In this casef,/E, = 40 . The impact load in
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this example isP(t) = Pobots(t—T)G[l—H(t—T)] , wher®, = =50 KN and b, is

scaled so thad < P(t) < P,

First, we consider the pulse durationTof 0.262ms For the reference solution of the

source heterogeneous problem a very fine mesh is used. Figure 3 (a) and (b) show the plots
of the reference solution at the midpoint of the rod for the source problem and the zero-
order homogenization theory, respectively. The response of the source problem is averaged
over the unit cell at the midpoint of the rod. For this low frequency case, the contribution
of the higher-order terms is insignificant compared with the zero-order term, and the zero-

order homogenization alone provides satisfactory results.

B
[} FE sl
T = (35 ros Helnrzgerason

ey PP b T Ty
X i
iz II E iE =& fi = D4F
T III o

& F

A i a i i

i [ ] ai =1

i Tims e —

L FE maiubion

T & 0 25D ves \HI Horsopueruced

— Ll P P b T ST
Ez- I|I E L =40 il = 003
, . -1
e -3
= i
e [ |

5| %,

]

i ng a4 [1]] =1}

Tims ines: .

Fig.3: Solution for low-frequency pulse:
(a) Source problem; (b) zero-order theory

Next, we consider a shorter pulse dura-
tion of T = 0.157 ms. Finite element solu-
tion at the midpoint of the rod for the
source problem and the zero-order
homogenization is plotted in Fig.4 (a)
and (b), respectively. The error of the

zero-order homogenizationl -U, , is

plotted in Fig.4 (c). Figure 5 shows the

corresponding responses of the higher-
order homogenization as well as the
higher-order correction. It can be

observed that for the higher-frequency
pulse, the zero-order homogenization
alone is inadequate and the higher-order
terms introduce the necessary correction
to the zero-order method.
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Fig.4: Quality of zero-

order theory: (a) The source problem; (b) Zero-order

theory; (c) The error in zero-order theory

Finally, we investigate the applica-
bility of the FEM method for solving
the higher-order homogenized equa-
tions of motion. Fig. 6 compares the
analytical and finite element solutions
for the second order -correction,

U,(x t). In Fig.6 (a), the numerical

procedure is based on recovering
nodal values of the higher-order deriv-
atives by averaging finite element
solution obtained from adjacent ele-
ments. This simplistic scheme fails to
accurately predict higher order deriva-
tives as evidenced by large discrep-
ancy compared to the analytical
solution. In Fig.6 (b) the numerical
procedure is based on superconvergent
patch recovery technique incorporat-
ing boundary conditions (SPRB).
Excellent agreement with the analyti-
cal solution has been observed.
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Fig.5: Higher-order
homogenization fof T = 0.157ms) :(a) The
second order term; (b) Fourth order term; (c) (a) +

5. Concluding Remarks

Fourth order homogenization theory applied to initial/boundary-value problem with oscil-
latory coefficients in one-dimension has been studied. It has been shown that the zero-
order homogenization theory leads to non-dispersive model, while higher order theory
captures dispersion effects. Validity range and limitations of the higher order theory have
been established. Four factors have been identified to control the validity of the higher
order theory: (i) the square of the normalized impedance mismatch, (ii) the normalized
unit cell sizeQ/1 , (iii) the normalized square root of time, and (iv) the pulse duf&ation
Future work will focus on the following four issues: (i) the influence of microstructure

randomness on the dispersion effect, (ii) investigation of asymptotic expansions in space
and time in attempt to extend the validity range of the current theory, (iii) adaptive con-

struction of the multiscale computational model, and (iv) extension of the theory to multi-
dimensions.

The adaptive multiscale model construction can be controlled by the estimated \&alue of
At very low values ok ,&(x) < (10_2 - 10_1) , the classical zero-order homogenization
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theory is adequate, while in the intermediate range defined by
(10_Z e 10_1)ss(x) s(lo_l < 1), higher order (nonlocal) terms must be employed.

Finally, in the regions wherge(x) = (10_1 = 1) , the model construction on the basis of

the multiple scale expansion method is no longer valid, and thus the macro-scale model
should contain the microscale features.
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