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1. Introduction

    The internal material interfaces in composite materials cause reflection and refraction of
stress waves, giving rise to dispersion and attenuation of waves within material micro-
structure [1]. In an early study, Moon [3] proposed a continuum model based on the effec-
tive modulus concept. This formulation leads to a theory that is non-dispersive and
therefore somewhat limited. Simulation of response phenomena associated with the mate-
rial microstructure, such as wave dispersion, requires a higher-order continuum descrip-
tion [4]. The effective stiffness theory developed by Sun, Achenbach and Herrmann [5][6]
is the first of the dispersive continuum models for composites. Subsequently, several
higher-order homogenization based theories have been proposed (see Bedford and Stern
[7][8], Hegemier, Gurtman and Nayfeh [9][10], and Boutin and Auriault [17]). For an
excellent survey of various higher order continuum models in elastodynamics of compos-
ites, we refer to [11].

   The use of multiple-scale expansions as a systematic tool of averaging for problems
other than elastodynamics can be traced to Sanchez-Palencia [14], Benssousan, Lions and
Papanicoulau [12], Bakhvalov and Panasenko [13]. The role of higher order terms has
been investigated in statics by Gambin and Kroner [15], and Boutin [16]. In elastodynam-
ics, Boutin and Auriault [17] demonstrated that the terms of a higher order successively
introduce effects of polarization, dispersion and attenuation.

    So far various approaches utilizing higher order homogenization theory in elastodynam-
ics were limited to a single-frequency wave dependence. In this work we focus on a gen-
eral initial/boundary-value problem in a periodic heterogeneous medium. Attention is
restricted to one-dimensional initial/boundary-value problems in an attempt to construct a
closed-form analytical solution for a model problem. Validity range and limitations of the
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theory in elastodynamics are established. We show that the higher order theory is neces-
sary to account for wave dispersion, but introduces secular terms which grow unbounded
in time. Numerical procedures requiring superconvergent recovery of higher order deriva-
tives are also described.

    The outline of this paper is as follows. Problem statement and high-order homogeniza-
tion are formulated in Section 2. Analytical solutions and numerical procedures are pre-
sented in Section 3. Section 4 gives numerical examples. We conclude with some remarks
and discuss future work in Section 5.

2. Homogenization of Elastic Composites

2.1 Problem statement

   As a model problem, we consider a composite rod of length l composed of a periodic
array of two linearly elastic, homogeneous and isotropic constituents with perfect inter-
faces as illustrated in Fig.1. The rod is fixed at one end and subjected to an impact load

 at the other end. Let the origin of the Cartesian coordinate system be located at the

fixed end.

Fig.1: Composite rod subjected to an impact load: (a) Macro-problem; (b) Unit cell.

The governing elastodynamic equations are:

• Equations of motion, kinematic and constitutive equations

,      (1)

• Interface continuity conditions

,     (2)

• Boundary conditions

,      (3)

P t( )

ρ x( )u·· x t,( ) E( x( )u x, ) x,– 0= σ x t,( ) E x( )u x,=

u x t,( )[ ] 0= σ x t,( )[ ] 0=

u 0 t,( ) 0= u x, l t,( ) P t( )
E l( )A
--------------=
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• Initial conditions

(4)

where  and  denote the axial displacement and stress, respectively;  the

mass density;  the elastic modulus. A represents the cross-sectional area of the rod;

 denotes the jump operator;  and the superposed dot denotes differentiation in

space and time, respectively.

    Conditions (1)-(4) define the initial/boundary-value problem. Since the size of heteroge-
neity is much smaller than the length of the bar, the direct solution of this problem is com-
putationally infeasible. Thus the primary goal is to replace the source heterogeneous
problem by a homogenized one with equivalent material properties, which could be either
local or nonlocal. This is accomplished by the method of multiple-scale asymptotic expan-
sion.

2.2 Asymptotic analysis with multiple scales

   Under the premise that the composite macro reference length L is much larger than the
unit cell dimension , i.e. , where  and c are the
angular frequency, wave number and wave speed of the macro-wave, respectively, it is
convenient to introduce a microscopic length variable y such that

(5)

   Since the response quantities u and  depend on both x and , a two-scale
asymptotic expansion is employed to approximate the displacement and stress fields

 ,       (6)

   The periodicity of the microstructure induces the same periodicity on functions  and

 with respect to variable y. The homogenization process consists of inserting asymptotic

expansions (6) into the governing equation (1), identifying the terms with equal power of
, and finally, solving the problems obtained.

   Following this process and expressing the spatial derivative in terms of ,

yields various order equilibrium equations

:   

:      

u x 0,( ) u· x 0,( ) 0= =

u x t,( ) σ x t,( ) ρ x( )
E x( )

[ ] ( ) x,

Ω ε Ω L⁄ ωΩ( ) c⁄ kΩ 1«= = = ω k,

y x ε⁄=

σ y x ε⁄=

u x y t, ,( ) εi
ui x y t, ,( )

i 0=

n

∑= σ x y t, ,( ) εiσi x y t, ,( )
i 1–=

n

∑=

ui

σi

ε

( ) x, ε 1– ( ) y,+

O ε 2–( ) Eu0 y,( ) y, 0=

O ε 1–( ) Eu0 y,( ) x, Eu0 x,( ) y, Eu1 y,( ) y,+ + 0=
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:  (7)

Stresses of different orders are expressed as

     (8)

2.3 Macroscopic description of homogenized material

   First, we consider the  equilibrium equation (7). Premultiplying it by , then

integrating it over the unit cell domain, and finally performing integration by parts yields

(9)

   The first term in (9) vanishes due to periodicity of the boundary conditions in the unit
cell, which yields 

(10)

Inserting eqn (10) into (8) leads

 (11)

   Next, we proceed to the  equilibrium equation (7). Taking into account

, we have

 (12)

   Due to linearity of the problem, the general solution of (12) is

 (13)

   Substituting eqn (13) into (12) and (8) for i = 0 yields

(14)

 (15)

   We now consider the unit cell given in Fig.1(b). The cell domain consists of subdomains

 and , occupied by microconstituents 1 and 2, respectively, such that

 ,      (16)

O εi( ) ρu··i E ui x, ui 1+ y,+( ){ } x,– E ui 1+ x, ui 2+ y,+( ){ } y,– 0= i( 0 1 …n), ,=

σ 1– Eu0 y,=

σi E ui x, ui 1+ y,+( )= i( 0 1 …n), ,=

O ε 2–( ) u0

u0 Eu0 y,( )
0

Ω
E u0 y,( )2

yd

Ω
∫– 0=

u0 y, 0 u0⇒ U0 x t,( )= =

σ 1– 0=

O ε 1–( )
u0 U0 x t,( )=

E U0 x, u1 y,+( ){ } y, 0=

u1 x y t, ,( ) U1 x t,( ) L y( )U0 x,+=

E 1 L y,+( ){ } y, 0=

σ0 U0 x, E 1 L y,+( )=

A
1( )

A
2( )

A
1( )

y[= 0 y αΩ ]< < A
2( )

y[= αΩ y Ω ]< <
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where  is the volume fraction of the unit cell.

   Equations (14) and (15) can be written over a unit cell domain as

       ,            (17)

where  are constants.  can be solved for from the following conditions

(a) Periodicity:                ,                                                                                             

(b) Continuity:          ,        

(c) Normalization:                                           (18)

where

            (19)

is an averaging operator. Solving for (18) yields

,  (20)

        (21)

2.3.1  equilibrium

   Consider the equilibrium equation of 

                          (22)

   Integrating (22) over the unit cell domain and taking into account periodicity of ,

yields

                                                   (23)

where

                                         (24)

0 α 1≤ ≤

Ej 1 Lj y,+( ) aj= σ0
j( )

U0 x, Ej 1 Lj y,+( )= j( 1 2),=

aj Lj y( )

u1 y 0=( ) u1 y Ω=( )= σ0 y 0=( ) σ0 y Ω=( )=

u1 y αΩ=( )[ ] 0= σ0 y αΩ=( )[ ] 0=

u1 x y t, ,( )〈 〉 U1 x t,( ) L y( )〈 〉⇒ 0= =

•〈 〉 1
Ω
---- • yd

A j( )

∫
j 1=

2

∑=

L1 y( )
1 α–( ) E2 E1–( )
1 α–( )E1 αE2+

----------------------------------------- y
αΩ
2

--------–= L2 y( )
α E1 E2–( )

1 α–( )E1 αE2+
---------------------------------------- y

1 α+( )Ω
2

-----------------------–=

En E 1 L y,+( )〈 〉
E1E2

1 α–( )E1 αE2+
----------------------------------------= =

O ε0( )

O ε0( )

ρu··0 E u0 x, u1 y,+( ){ } x,– E u1 x, u2 y,+( ){ } y,– 0=

σ1

ρnU0
··

EnU0 xx,– 0=

ρn ρ〈 〉 αρ1 1 α–( )ρ2+= =
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    and  are the homogenized mass density and elastic modulus of the composite. It

can be seen that the homogenized material properties are the same as in statics. Thus the
zero-order homogenization model is non-dispersive. In order to capture the dispersion
effect, higher-order terms will be considered now.

2.3.2  equilibrium

   Substituting (13) and (23) into  equilibrium equation (22) yields

                               (25)

where

(26)

   Due to linearity of the problem, the general solution for  can be expressed as

(27)

   Substituting (27) into (25) and (8) for  yields

(28)

(29)

   From periodicity and continuity of , , and normalization of , i.e.

  (30)

follows the solution of . After  is determined, we calculate

,    ,    (31)

and obtain the  equilibrium equation

(32)

   Integrating (32) over the unit cell and taking into account periodicity of , yields

(33)

   Inserting (31) into (33) gives

ρn En

O ε( )

O ε0( )

E u2 y, U1 x, LU0 xx,+ +( ){ } y, En β 1–( )U0 xx,=

β y( ) ρ y( )
ρn

-----------=

u2

u2 x y t, ,( ) U2 x t,( ) L y( )U1 x, P y( )U0 xx,+ +=

i 1=

E L Py,+( ){ } y, En β 1–( )=

σ1 E 1 L y,+( )U1 x, E L Py,+( )U0 xx,+=

u2 σ1 u2

u2 x y t, ,( )〈 〉 U2 x t,( ) P y( )〈 〉⇒ 0= =

P y( ) P y( )

ρL〈 〉 0= E L Py,+( )〈 〉 0= E u1 x, u2 y,+( )〈 〉 EnU1 x,=

O ε( )

ρu··1 E u1 x, u2 y,+( ){ } x,– E u2 x, u3 y,+( ){ } y,– 0=

σ2

ρ〈 〉U
··

1 ρL〈 〉U
··

0 x, E u1 x, u2 y,+( ){ } x,–+ 0=
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(34)

2.3.3  equilibrium

   Substituting (13), (27) and (34) into the  equilibrium equation (32), yields

               

(35)

   Due to linearity of (35) the general solution for  is given as

                   (36)

   Substituting (36) into (35) and (8) for  gives

(37)

(38)

where  can be determined from the periodicity and continuity conditions on  and

 over the unit cell domain as well as the normalization condition . After

 has been determined, we can calculate  and .

Consider the  equilibrium equation:

                              (39)

   Integrating (39) over the unit cell and taking into account periodicity of  yields

                                 

(40)

   Substituting (31) and  into (40) and making use of the macroscopic equation of motion
(23) for  gives the second order macroscopic equation of motion

                                                 (41)

where

ρnU1
··

EnU1 xx,– 0=

O ε2( )

O ε( )

E u3 y, PU0 xxx, LU1 xx, U2 x,+ + +( ){ } y, En β 1–( )U1 xx, +=

EnβL E L Py,+( )–{ }U0 xxx,

u3

u3 x y t, ,( ) U3 x t,( ) L y( )U2 x, P y( )U1 xx, Q y( )U0 xxx,+ + +=

i 2=

E P Qy,+( ){ } y, EnβL E L Py,+( )–=

σ2 EnU2 x, E L Py,+( )U1 xx, E P Qy,+( )U0 xxx,+ +=

Q y( ) u3

σ2 Q y( )〈 〉 0=

Q y( ) ρP〈 〉 E P Qy,+( )〈 〉

O ε2( )

ρu··2 E u2 x, u3 y,+( ){ } x,– E u3 x, u4 y,+( ){ } y,– 0=

σ3

ρnU
··

2 ρL〈 〉U
··

1 x, ρP〈 〉U
··

0 xx, EnU2 xx,– E L Py,+( )〈 〉U1 xxx,– –+ +

E P Qy,+( )〈 〉U0 xxxx, 0=

U0

ρnU2
··

EnU2 xx,– EdU0 xxxx,=
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(42)

    characterizes the effect of heterogeneity on the macroscopic behavior. It can be seen

that  is proportional to the square of the unit cell size and vanishes for homogeneous

material (  or ). The forcing term in (41) is also proportional to the gradients

of the macroscopic strain . Thus, the smaller the gradient of the macroscopic strain

is, the smaller the forcing term will be.

2.3.4  equilibrium

    can be solved from the  equilibrium equation (39). Due to linearity, the

general solution for  is as follows

   (43)

   Substituting (43), (36) and (27) for ,  and , respectively,

into eqns (39) and (8) for , and making use of the macroscopic equation of motion

(41) for , we arrive at

                                  (44)

(45)

   The expression for  can be determined from the periodicity and continuity condi-

tions of  and  over the unit cell domain as well as the normalization condition

. After  is determined, we calculate

,    (46)

and obtain the  equilibrium equation:

(47)

   Integrating (47) over the unit cell domain and accounting for periodicity of  yields

                     

(48)

Ed

α 1 α–( )[ ]2
E1ρ1 E2ρ2–( )2

EnΩ2

12ρn
2 1 α–( )E1 αE2+[ ]2

---------------------------------------------------------------------------------=

Ed

Ed

α 0= α 1=

U0 xxxx,

O ε3( )

u4 x y t, ,( ) O ε2( )

u4

u4 x y t, ,( ) U4 x t,( ) L y( )U3 x, P y( )U2 xx, Q y( )U1 xxx, R y( )U0 xxxx,+ + + +=

u4 x y t, ,( ) u3 x y t, ,( ) u2 x y t, ,( )

i 3=

U2

E Q Ry,+( ){ } y, β EnP Ed–( ) E P Qy,+( )–=

σ3 EnU3 x, E L Py,+( )U2 xx, E P Qy,+( )U1 xxx, E Q Ry,+( )U0 xxxx,+ + +=

R y( )
u4 σ3

R y( )〈 〉 0= R y( )

ρQ〈 〉 0= E Q Ry,+( )〈 〉 0=

O ε3( )

ρu··3 E u3 x, u4 y,+( ){ } x,– E u4 x, u5 y,+( ){ } y,– 0=

σ4

ρnU
··

3 ρL〈 〉U
··

2 x, ρP〈 〉U
··

1 xx, ρQ〈 〉U
··

0 xxx,+ + + EnU3 xx, +=

E L Py,+( )〈 〉U2 xxx, E P Qy,+( )〈 〉U1 xxxx, E Q Ry,+( )〈 〉U0 xxxxx,+ +
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   Substituting (31),  and (46) into (48) and making use of the macroscopic equation of
motion (34) for , we arrive at the macroscopic equation of motion for 

(49)

2.3.5  equilibrium

    can be solved from the equilibrium equation of  (47). Due to linearity

of the problem, the general solution for  is as follows

(50)

   Substituting (50), (43) and (36) for ,  and , respectively,

into eqns (47) and (8) for , and making use of the macroscopic equation of motion

(49) for , yields

(51)

                            

                                       (52)

     can be determined from the periodicity and continuity conditions of  and 

over the unit cell domain as well as the normalization condition . After 

has been determined, we can calculate . 

     The resulting  equilibrium equation is given as 

 (53)

   Integrating (53) over the unit cell and accounting for the periodicity of  yields

                                                                                                   

                                                  =                       

          (54)

U1 U3

ρnU3
··

EnU3 xx,– EdU1 xxxx,=

O ε4( )

u5 x y t, ,( ) O ε3( )

u5

u5 x y t, ,( ) U5 x t,( ) L y( )U4 x, P y( )U3 xx, Q y( )U2 xxx,+ + + +=

R y( )U1 xxxx, S y( )U0 xxxxx,+

u5 x y t, ,( ) u4 x y t, ,( ) u3 x y t, ,( )

i 4=

U3

E R Sy,+( )[ ] y, β EnQ EdL–( ) E Q Ry,+( )–=

σ4 EnU4 x, E L Py,+( )U3 xx, E P Qy,+( )U2 xxx,+ + +=

E Q Ry,+( )U1 xxxx, E R Sy,+( )U0 xxxxx,+

S y( ) u5 σ4

S y( )〈 〉 0= S y( )
ρR〈 〉

O ε4( )

ρu··4 E u4 x, u5 y,+( ){ } x,– E u5 x, u6 y,+( ){ } y,– 0=

σ5

ρnU
··

4 ρL〈 〉U
··

3 x, ρP〈 〉U
··

2 xx, ρQ〈 〉U
··

1 xxx, ρR〈 〉U
··

0 xxxx,+ + + +

EnU4 xx, E L Py,+( )〈 〉U3 xxx, E P Qy,+( )〈 〉U2 xxxx,+ + +

E Q Ry,+( )〈 〉U1 xxxxx, E R Sy,+( )〈 〉U0 xxxxxx,+
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   Inserting eqns (31), , (46) into (54) and making use of the macroscopic equations of
motion (23) and (41) for  and  respectively, we arrive at the macroscopic equation

of motion for 

   (55)

where

                                                                                                                                                           

                

         (56)

 characterizes the effect of the microstructure on the macroscopic behavior. It has a

strong dependency on the unit cell size (fourth power of ). Note that for a homogeneous

material,  and  vanish. The forcing term in the fourth order macroscopic equation of

motion appears to be in the form of  multiplied by the gradients of the second-order

macroscopic strain, , and the product of  and the gradients of the zero-order

macroscopic strain, . The initial and boundary conditions for the model problem

are given as follows:

   ICs:            (57)

                                                                                BCs:          ,                                                                                                                                                                  

                      ,              (58)

   From the above equations of motion and boundary conditions, we can observe that

 (59)

   It has been shown in [17] that the first and the third order terms introduce the effects of
polarization and attenuation, respectively. These terms vanish for macroscopically isotro-
pic materials. Moreover, if the size of the microstructure, , is infinitesimal,  and 

in (42) and (56) vanish, and the higher order corrections,  and , disappear. Thus if

the size of heterogeneity is very small, the dispersion effect is negligible. Moreover, if the

impedances, , of the two microconstituents are identical, i.e., ,

U0 U2

U4

ρnU4
··

EnU4 xx,– EdU2 xxxx, EgU0 xxxxxx,–=

Eg

α 1 α–( )[ ]2
E1ρ1 E2ρ2–( )2

EnΩ4

360ρn
4

1 α–( )E1 αE2+[ ]4
--------------------------------------------------------------------------------- α2

E2
2 2α2ρ1

2 1 α–( )2ρ2
2– +[{=

6α 1 α–( )ρ1ρ2] 2+ α 1 α–( )E1E2 3α2ρ1
2

3 1 α–( )2ρ2
2

11α 1 α–( )ρ1ρ2 ] –+ +[

1 α–( )2
E1

2 α2ρ1
2 2 1 α–( )2ρ2

2 6α 1 α–( )ρ1ρ2 ] }––[

Eg

Ω
Eg Ed

Ed

U2 xxxx, Eg

U0 xxxxxx,

Ui x 0,( ) U
·

i x 0,( ) 0= = i( 0 1 2 3 4), , , ,=

U0 0 t,( ) 0= U0 x, l t,( ) P t( )
EnA
----------=

Ui 0 t,( ) 0= Ui x, l t,( ) 0= i( 1 2 3 4), , ,=

U3 U1 0≡=

Ω Ed Eg

U2 U4

Z( Eρ )= E1ρ1 E2ρ2=
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 and  will also vanish. From the physical point of view, this means that there is no

reflections at the material interfaces, making the waves non-dispersive.

3. Solution of Macroscopic Equations

3.1 The analytical solution

   The simplicity of the macroscopic equations of motion and corresponding boundary
conditions in 1-D permits for closed-form representation of the solutions. In the following
we will obtain such a closed-form solution using Laplace transform.

   First, we begin with the zero-order equation of motion (23). Taking the Laplace trans-
form of (23) with respect to time yields

(60)

where

(61)

is the homogenized wave speed and  is the Laplace transform of . Insert-

ing the initial conditions (57) into (60) yields

(62)

   The general solution of (62) is

(63)

where  and  are constants. Taking Laplace transform of the boundary conditions (58)

for  gives

,     (64)

   Inserting (63) into (64) yields

,     (65)

   Thus, the solution of  becomes

Ed Eg

s
2
U0 x s,( ) sU0 x 0,( )– U

·
0 x 0,( )– c

2
U0 x s,( )( ) xx,– 0=

c En ρn⁄=

U0 x s,( ) U0 x t,( )

s
2
U0 x s,( ) c

2
U0 x s,( )( ) xx,– 0=

U0 x s,( ) B1
sx
c
-----cosh B2

sx
c
-----sinh+=

B1 B2

U0

U0 0 s,( ) 0= U0 x, l s,( ) L P t( )[ ]
EnA

-------------------=

B1 0= B2
c

EnA
----------

L P t( )[ ]

s
sl
c
----cosh

-------------------=

U0 x s,( )
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(66)

   We consider the impact load in the form

(67)

where  is a constant which specifies the magnitude of the impact load and 

is a time function which specifies variation of the impact load with time. We consider the
following time dependent function

 (68)

where  is the Heaviside function, T the duration of the pulse;  is a scaling coeffi-

cient, which makes , given by

 (69)

   Taking the Laplace transform of  and substituting it into (66) yields

                                                                                         

 (70)

    is found by taking the inverse Laplace transform of  as

   (71)

where

,    ,    ,     ,     (72)

and  is a the non-dimensionalized time function, which can be found in the closed

form.                                                                                                                                                                         

U0 x s,( ) c
EnA
----------

sx
c
-----sinh

s
sl
c
----cosh

-------------------L P t( )[ ]=

P t( ) P0f t( )=

P0 0 f t( ) 1≤≤

f t( ) a0t
4

t T–( )4 1 H t T–( )–[ ]=

H t( ) a0

0 f t( ) 1≤≤

a0 1 max t
4

t T–( )4 1 H t T–( )–( )[ ]⁄ 162
T

8⁄= =

f t( )

U0 x s,( )
P0a0c

EnA
---------------

sx
c
-----sinh

s
sl
c
----cosh

------------------- 8!

s
9

-----
6 6!T

2×
s

7
--------------------

4!T
4

s
5

-----------+ +
 
 
 

1 e
sT–

–( ) –=

4T
7!

s
8

-----
5!T

2

s
6

-----------+
 
 
 

1 e
sT–+( ) ]

U0 x t,( ) U0 x s,( )

U0 x t,( ) L
1–

U0 x s,( )[ ]
2048P0l

π2
EnA

--------------------
px( )G0 m t d D, , ,( )sin

1–( )m 1– 2m 1–( )2
-----------------------------------------------------

m 1=

∞

∑= =

t t T⁄= x x l⁄= p 2m 1–( )π 2⁄= d ct l⁄= D cT l⁄=

G0
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       Now that we have obtained the analytical solution of , we proceed to solve for

the second order equation of motion (41). Taking the fourth derivative of  with

respect to x and substituting the result into (41) yields

(73)

where  is another non-dimensionalized time function, which can be found in the closed

form.

    For , the value of the Heaviside function  becomes unity and it can be

shown that the non-secular terms in  are negligible compared with secular terms.

Under this condition,  and  can be simplified as

(74)

(75)

where

               

(76)

              

(77)

   The expression for  indicates that the peak values of  grow linearly with

time, and when time approaches infinity,  becomes unbounded.

    After the solutions of  and  have been obtained, we solve for 

following the same procedures. Owing to the limited space, the analytical solution is not
presented here.

U0 x t,( )

U0 x t,( )

U2 x t,( )
16384P0l

3Ω2

π4
EnA cT( )4

---------------------------------
α 1 α–( ) E1ρ1 E2ρ2–( )[ ]2

ρn
2

1 α–( )E1 αE2+[ ]2
----------------------------------------------------------------

px( )G2 m t d D,, ,( )sin

1–( )m 1– 2m 1–( )4
-----------------------------------------------------

m 1=

∞

∑=

G2

t T> H t 1–( )
U2 x t,( )

G0 G2

G0 m t d D, , ,( ) 24 D
4

⁄( )G0 m t d D, , ,( )=

G2 m t d D, , ,( ) tG2 m t d D, , ,( )=

G0 m t d D, , ,( ) 1

p
4

-----
20

pD
------- 42

pD( )
2

--------------- 1– pd( ) p d D–( )( )sin+sin[ ] +



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   Based on the analytical solutions for  and , we can estimate the value of

 for the case of : 

                                                                                                                                                    

(78)

where  and  are constants and  is a  norm defined as

(79)

with  being the center of the unit cell, and

(80)

,     (81)

   It can be observed that the value of  depends on four factors: (i) the normalized square

of the impedance mismatch, (ii) the normalized unit cell size , (iii) the normalized

square root of time, and (iv) the pulse duration . It can be numerically shown that the

function  rapidly increases with decrease in pulse

duration .

   The value of scaling parameter, , is an important indicator of the validity of the asymp-
totic expansion. The asymptotic sequence is considered to be uniformly valid for small
values of .

3.2 The finite element solution

   In this section, we establish numerical procedures for solving the macroscopic equations
of motion. These procedures are directly applicable for multidimensional case.

   The zero-order equation of motion can be solved by the finite element method. Here we
focus on the solution of the second order equation of motion (41) requiring recovery of
higher order derivatives.
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   The weak form of the second order equation of motion (41) is given by

(82)

   where  is a weighting function. Integrating the above equation by parts yields

                                                                                                                          

                                                                        

(83)

   Given the natural boundary condition, , and the fact that 

where the essential boundary conditions are prescribed, the above equation reduces to

(84)

   The solution and weighting functions are interpolated as

,       ,       (85)

where  are the shape functions. Substituting eqn (85) into (84) yields 

(86)

where  denotes the derivative of the shape functions. The above equation can be written
in the matrix form

(87)

where

                                                                                                         ,                                                                                                                               
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(88)

    and  are the overall mass matrix, stiffness matrix and load vector, respec-
tively. Ne denotes the number of elements in the mesh. The element matrices are

,    ,     (89)

where  is the length of the element.

   The challenge is to accurately recover higher order derivatives, such as . Here, we

employ Wiberg’s modification [21] of the superconvergent patch recovery (SPR) tech-
nique originally developed by Zienkiewicz and Zhu [20]. Wiberg et. al. [21] proposed the
superconvergent patch recovery technique incorporating equilibrium equations in a patch
as well as boundary conditions at boundary points (SPREB), for patches near boundaries
where tractions and displacements are prescribed. The method involves a weighted least-
squares polynomial fit in an attempt to force the recovered solution to satisfy the appropri-
ate boundary conditions.

   The direct finite element solution of derivatives

,      (90)

is of lower accuracy than the solution and exhibits interelement discontinuity. The super-

convergent derivatives , , are obtained by interpolation over a patch of ele-

ments as

,       (91)

where  is a set of unknown parameters and the monomial term in the row matrix  are

those present in the shape function .

   We define the following weighted residuals for the improved solution

,     (92)

where  is the residual for stresses at superconvergent points (sp);  the residual for

stresses at the natural boundary  where tractions are prescribed;  and  are the

weighting coefficients.

   In order to determine the unknown parameters , we define the following functional
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(93)

where ns is the number of sampling points (superconvergent points) in a patch and nb the
number of boundary points in a patch where the natural boundary conditions are pre-
scribed. The parameters  are obtained from the minimization of the functional over local
patches of elements

(94)

which leads to

(95)

where

                                                                                                                                                                    

(96)

   Without loss of generality, we can set  and scale  accordingly. Once the

parameters  are determined, the recovered nodal values of  are calculated by inser-

tion of appropriate coordinates into the expression for . After the nodal values 

are recovered, we obtain

,        (97)

   The nodal values  can be recovered based on the known values of  by follow-

ing the same procedures as for the recovery of  from .  can be recovered in a

similar fashion. For recovering the derivatives higher than the first order and for patches
not containing any boundary points where the natural boundary conditions are prescribed,
we set . 

4. Numerical example

   Numerical experimentation agenda includes two test problems, both dealing with the
impact of the composite rod shown in Fig.1. The first example is used to demonstrate the
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influence of secular terms. The geometric parameters of the rod are as follows: length l = 1

m, cross-sectional area A = 10-4 m2, unit cell size  m. The rod is subjected to an

impact load , where  KN and  is

scaled so that . The material properties of the rod are as follows: Elastic

moduli  GPa,  GPa, mass density  Kg/m3,  Kg/

m3, volume fraction . The homogenized material properties are calculated and

are given as:  GPa and  Kg/m3. In this case, . 

   The values of the estimated scaling
parameter, , at the midpoint of the
rod are plotted in Fig.2 (a) and (b) for
pulse durations of  ms and

 ms, respectively. The
results confirm our earlier findings
indicating growth of  with time. It
can be seen that after a few reflections
of the wave from macro-boundaries,
the value of  increases rendering the
asymptotic sequence to be invalid.
Thus the higher-order homogenization
becomes not valid for very long time
spans. We now focus on the time
spans for which the theory is valid. 

   The error in the zero-order homoge-
nization (as compared to the response
of the source heterogeneous bar) for
pulse duration of  is plot-
ted in Fig. 2 (c). It can be observed
that the error increases with time simi-
larly to the growth of .

   The second numerical example is
devised to demonstrate the effective-
ness of the higher-order homogeniza-
tion theory in capturing the dispersion
effect caused by the material heteroge-

neity. The geometric parameters of the rod remain the same as in the first example. The
material properties in this example are:  GPa,  GPa, 

Kg/m3, and . The homogenized material properties are calculated and are given

as  GPa and  Kg/m3. In this case, . The impact load in
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En 11.43= ρn 6500= E1 E2⁄ 20=

Fig.2: Quality of zero-order homogenization: (a) Esti-

mated values of  for ; (b) Estimated

values of  for ; (c) The error of the
zero-order homogenization
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this example is , where  KN and  is

scaled so that .

   First, we consider the pulse duration of T = 0.262 ms. For the reference solution of the
source heterogeneous problem a very fine mesh is used. Figure 3 (a) and (b) show the plots
of the reference solution at the midpoint of the rod for the source problem and the zero-
order homogenization theory, respectively. The response of the source problem is averaged
over the unit cell at the midpoint of the rod. For this low frequency case, the contribution
of the higher-order terms is insignificant compared with the zero-order term, and the zero-
order homogenization alone provides satisfactory results.

Next, we consider a shorter pulse dura-
tion of T = 0.157 ms. Finite element solu-
tion at the midpoint of the rod for the
source problem and the zero-order
homogenization is plotted in Fig.4 (a)
and (b), respectively. The error of the
zero-order homogenization, , is

plotted in Fig.4 (c). Figure 5 shows the
corresponding responses of the higher-
order homogenization as well as the
higher-order correction. It can be
observed that for the higher-frequency
pulse, the zero-order homogenization
alone is inadequate and the higher-order
terms introduce the necessary correction
to the zero-order method.

P t( ) P0b0t
6

t T–( )6
1 H t T–( )–[ ]= P0 50–= b0

0 P t( ) P0≤ ≤

Fig.3: Solution for low-frequency pulse: 
(a) Source problem; (b) zero-order theory

U U0–
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   Finally, we investigate the applica-
bility of the FEM method for solving
the higher-order homogenized equa-
tions of motion. Fig. 6 compares the
analytical and finite element solutions
for the second order correction,

. In Fig.6 (a), the numerical

procedure is based on recovering
nodal values of the higher-order deriv-
atives by averaging finite element
solution obtained from adjacent ele-
ments. This simplistic scheme fails to
accurately predict higher order deriva-
tives as evidenced by large discrep-
ancy compared to the analytical
solution. In Fig.6 (b) the numerical
procedure is based on superconvergent
patch recovery technique incorporat-
ing boundary conditions (SPRB).
Excellent agreement with the analyti-
cal solution has been observed.

Fig.4: Quality of zero-
order theory: (a) The source problem; (b) Zero-order 
theory; (c) The error in zero-order theory

U2 x t,( )
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5. Concluding Remarks

 Fourth order homogenization theory applied to initial/boundary-value problem with oscil-
latory coefficients in one-dimension has been studied. It has been shown that the zero-
order homogenization theory leads to non-dispersive model, while higher order theory
captures dispersion effects. Validity range and limitations of the higher order theory have
been established. Four factors have been identified to control the validity of the higher
order theory: (i) the square of the normalized impedance mismatch, (ii) the normalized
unit cell size , (iii) the normalized square root of time, and (iv) the pulse duration .

   Future work will focus on the following four issues: (i) the influence of microstructure
randomness on the dispersion effect, (ii) investigation of asymptotic expansions in space
and time in attempt to extend the validity range of the current theory, (iii) adaptive con-
struction of the multiscale computational model, and (iv) extension of the theory to multi-
dimensions. 

 The adaptive multiscale model construction can be controlled by the estimated value of .

At very low values of , , the classical zero-order homogenization

Fig.5: Higher-order 

homogenization for : (a) The 
second order term; (b) Fourth order term; (c) (a) + 

T( 0.157ms)=

Fig.6: The analytical and finite element solutions: 
(a) Direct FEM recovery of derivatives; (b) FEM 
based on the recovery by SPRB.

Ω l⁄ T

ε

ε ε x( ) 10 2– 10 1–⇔( )≤
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theory is adequate, while in the intermediate range defined by

, higher order (nonlocal) terms must be employed.

Finally, in the regions where , the model construction on the basis of
the multiple scale expansion method is no longer valid, and thus the macro-scale model
should contain the microscale features.

References 

1  A. Bedford, D.S. Drumheller and H.J. Sutherland, On modeling the dynamics of com-
posite materials, in: Mechanics Today, vol. 3, S. Nemat-Nasser, ed., Pergamon Press,
New York, 1976.

2  J. Fish and V. Belsky, Multi-grid method for periodic heterogeneous media, Part 2:
Multiscale modeling and quality control in multidimensional case, Comput. Methods
Appl. Mech. Engrg. 126:17-38, 1995.

3  F.C. Moon, Wave surfaces due to impact on anisotropic plates, J. Composite Materi-
als, 8:62-79, 1972.

4  H. Murakami and G.A. Hegemier, A mixture model for unidirectionally fiber-rein-
forced composites, J. Appl. Mech. 53:765-773, 1986.

5  C.T. Sun, J.D. Achenbach and G. Herrmann, Continuum theory for a laminated
media, J. Appl. Mech. 35:467-475, 1968.

6  J.D. Achenbach and G. Herrmann, Dispersion of free harmonic waves in fiber-rein-
forced composites, AIAA J. 6:1832-1836, 1968.

7  A. Bedford and M. Stern, Toward a diffusing continuum theory of composite materi-
als, J. Appl. Mech. 38:8-14, 1971.

8  A. Bedford and M. Stern, A multi-continuum theory for composite elastic materials,
Acta Mechanica, 14: 85-102, 1972.

9  G.A. Hegemier, G.A. Gurtman and A.H. Nayfeh, A continuum mixture theory of
wave propagation in laminated and fiber reinforced composites, Int. J. Solids Struct.
9:395-414, 1973.

10  G.A. Hegemier, On a theory of interacting continua for wave propagation in compos-
ites, in: Dynamics of Composite Materials, The American Society of Mechanical
Engineers, E.H. Lee ed., New York, 1972.

11  T.C.T. Ting, Dynamic Response of Composites, Appl. Mech. Rev. 33:1629-1635,
1980.

12  A. Benssousan, J.L. Lions and G. Papanicoulau, Asymptotic Analysis for Periodic
Structures, North Holland, Amsterdam, 1978.

13  N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Peri-
odic Media, Kluwer, Dordrecht, 1989.

14  E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer, Ber-

10 2– 10 1–⇔( ) ε x( ) 10 1– 1⇔( )≤≤
ε x( ) 10 1– 1⇔( )≥



23

lin, 1980.

15  B. Gambin and E. Kroner, “High order terms in the homogenized stress-strain relation
of periodic elastic media,” Phys. Stat. Sol., 51: 513-519, 1989.

16  C. Boutin, Microstructural effects in elastic composites, Int. J. Solids Struct.
33(7):1023-1051, 1996.

17  C. Boutin and J.L. Auriault, Rayleigh scattering in elastic composite materials, Int. J.
Engng. Sci. 31(12):1669-1689, 1993.

18  C. Boutin and J.L. Auriault, Dynamic behavior of porous media saturated by a vis-
coelastic fluid. Application to bituminous concretes, Int. J. Engng. Sci., 28(11):1157-
1181, 1990.

19  W.T. Thomson, Laplace Transformation, Prentice-Hall, New York, 1950.

20  O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori
error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Eng. 33:1331-
1346, 1992.

21  N.E. Wiberg, F. Abdulwahab and S. Ziukas, Enhanced superconvergent patch recov-
ery incorporating equilibrium and boundary conditions, Int. J. Numer. Methods Eng.
37:3417-3440, 1994.


