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ABSTRACT

A novel multiscale approach for molecular-dynamics simulations is developed. The goal of this
method is to reduce the time cost of molecular-dynamics simulations without loss of accuracy
in the quantities of interest. The proposed approach consists of the waveform relaxation scheme
aimed at capturing the high-frequency motions and a coarse-scale solution in space and time
aimed at resolving smooth features (in both space and time domains) of the system. The use
of proper orthogonal decomposition (POD) modes at the coarse-grained level has been found
to accelerate convergence of the waveform relaxation scheme. The accuracy and efficiency of
this method are reported by applying it to a model problem of chain of α-D-glucopyranose
monomers.
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1. INTRODUCTION

Molecular motions involve a large number of atoms
and take place over a great range of time scales.
For example, local motions such as atomistic fluc-
tuations and sidechain motion are on the order of
femtoseconds (10−15 s) while a large-scale motion
such as protein folding occurs at the time level of
10−7 to 104 s [1,2]. Because of the presence of
high-frequency motions, the typical time step in a
molecular-dynamics (MD) simulation is on the or-
der of femtoseconds (10−15 s). These characteristics
make a numerical molecular-dynamics simulation a
computationally intensive task.

Since the large number of force evaluations is the
most time-consuming part in almost all molecular-
dynamics simulations, most of the research on the
acceleration of molecular-dynamics simulations has
been focused on the efficient evaluation of forces. To
efficiently calculate the forces associated with non-
bonded interactions, Van der Waals interaction and
electrostatic forces, several schemes have been de-
veloped. For electrostatic interactions, the devel-
oped algorithms include the Ewald summation [3],
the particle-particle/particle-mesh (PPPM) method
[4], and the fast multipole algorithms (FMAs) [5].
Also a cutoff radius is used to exclude from the force
calculations those atom pairs that are at the distance
greater than the cutoff distance [6]. The common
techniques used for short range interactions include
the Verlet list, the cell (or linked) list, and their com-
bination. The interested reader is referred to [7] for
an overview of these methods. Molecular simula-
tions can also be accelerated by increasing the inte-
gration time step. Since the time step is limited by
the rapidly varying motions, an obvious approach
is to eliminate the high-frequency motions. In [8],
Andersen developed an algorithm called rattle to
fix the distances between certain atom pairs so that
the high-frequency bond-stretching motions are left
out. Another commonly used approach is to em-
ploy a variable time-step methods such as the mul-
tiple time step (MTS) [9]. Using the force-splitting
MTS method reduces the number of evaluations of
slowly varying force components. However, so far,
the increase in the integration time steps have been
quite modest [10].

An alternative approach based on the space-
time variational multilevel principle was recently
developed in [11]. The method consists of the

waveform relaxation scheme aimed at capturing
the high-frequency response of atomistic vibrations
and a coarse-scale solution to resolve smooth fea-
tures of the discrete medium. The waveform re-
laxation method has been used to efficiently inte-
grate large systems of ODEs on parallel computers
[11,12]. Multigrid methods have been applied to
molecular simulations in [13–15].

One of the main challenges in devising an
efficient multilevel approach is to construct the
coarse-scale problem. A well-known approach is
the coarse-grained molecular dynamics (CGMD)
method [16]. In [11], the formulation of the coarse-
grained model was directly derived from the fine
scale using Hamilton’s principle on the subspace of
normal modes. These normal modes were calcu-
lated from the Hessian matrix of the system poten-
tial energy.

In this paper, a novel multilevel method is de-
veloped. Based on the idea of space-time mul-
tilevel method described in [11], proper orthogo-
nal decomposition (POD) modes are employed to
construct the prolongation operator instead of nor-
mal modes. Briefly stated, POD modes are optimal
with respect to energy content associated with each
mode. For the detailed physical interpretation of
POD modes see [17–19]. The reduced-order model
(ROM) based on POD modes has been successfully
applied to a chain of glucopyranose monomers in
[20], where it was shown that the nonlinear ROM
based on POD modes provides a good approxi-
mation for the original system, while the nonlin-
ear reduced-order model based on normal modes
is less accurate in modeling the molecules with a
strong nonlinearity. With the reduced-order system,
the computational cost can be significantly reduced.
In this paper, we consider a chain of glucopyra-
nose monomers in order to study the performance
of the proposed POD-based space-time multiscale
method.

2. MODAL DESCRIPTION

Generally, the molecular-dynamics system can be
constructed by means of dynamic equilibrium con-
sideration or Hamilton’s principle as





Md̈ = F int(d) + F ext

d(0) = d0

ḋ(0) = v0

(1)
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where d is a vector of atom positions, M is the mass
matrix, F ext is a vector of external forces, and F int =
−∇U(d) is the internal force vector defined as the
negative gradient of the potential energy, U(d).

2.1 The Waveform Relaxation Scheme

Currently, parallel computers are becoming a ma-
jor computational resource for large-scale system
simulations. Because of this, more attention has
been paid to the use of the waveform-relaxation
(WR) method in molecular-dynamics simulations.
The WR method decouples the original system into
smaller subsystems and then solves the subsystems
independently. Two versions of the WR method are
widely used for highly nonlinear systems.

The first one is a direct extension of the lin-
ear WR formulations, the so-called waveform-
relaxation Newton (WRN) method [21] written in
the MD context as





mid̈
v+1
i =F int(dv

1, . . . , d
v
i−1, d

v+1
i , dv

i−1, . . . , d
v
N )

+F ext

dv+1
i (0)=d0

ḋv+1
i (0)=v0

(2)

for every atom i in the system. The superscripts, v
and v + 1, are the iteration counters within a time
window t ∈ [t0, tn].

An alternative approach similar to Gauss-Seidel
splitting is based on updating internal forces using
the information already calculated from the itera-
tion v + 1. Mathematically, the system is written as





mid̈
v+1
i =F int(dv+1

1 , . . . , dv+1
i−1, d

v+1
i , dv

i−1, . . . , d
v
N )

+F ext

dv+1
i (0)=d0

ḋv+1
i (0)=v0

(3)

The Gauss-Seidel type of approach leads to faster
convergence rates, obviously at the expense of more
limited parallelization. The second variant is known
as the waveform Newton (WN) [21,22]. The idea is
to approximate the internal forces in Eq. (1) as

F int = F int(dv)−D(dv)(dv+1 − dv) (4)

where D(dv(t)) is the Hessian matrix obtained from
the second derivative of the potential function

Dij =
∂2U(d(t))
∂di∂dj

(5)

Substituting Eq. (4) into Eq. (1) gives





Md̈v+1 + D(dv)dv+1 = F int(dv)
+ D(dv)dv + F ext

dv+1(0) = d0

ḋv+1(0) = v0

(6)

This system of equations can be integrated over
the time interval t ∈ [t0, tn] using the Newmark
predictor-corrector algorithm [23].

The WR iteration is terminated when the maxi-
mum residual in a time window is smaller than a
specified tolerance,

max{‖rv+1(t)‖2} = max{‖Mdv+1

−F int(dv+1
1 , . . . , dv+1

i , . . . , dv+1
N )−F ext ‖2}≤ε (7)

or

max{‖ dv+1(t)− dv(t) ‖} ≤ ε (8)

for some small positive constant ε.
For the convergence analysis of the WR method,

see [24]. In the proposed multilevel method, the WR
serves as a smoother to capture the high-frequency
motions of the system.

2.2 POD-Based Variational Space-Time
Multiscale Method

The multilevel method consists of a fine-scale
smoothing scheme aimed at capturing the high-
frequency motions of the system and a coarse-scale
solution to resolve smooth features.

One of the main challenges in developing an effi-
cient multilevel approach is to construct the coarse-
scale problem. In the present paper, the coarse-
grained equations are constructed directly from the
fine scale using Hamilton’s principle on the sub-
space of the coarse-scale functions. Let e be the
coarse-scale correction. The updated fine-scale solu-
tion at a certain time step is given by dv+1 = dv+Qe,
where d is at fine scale. The Lagrangian of the sys-
tem is expressed as
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L(Qe, Qė)= 1
2 (ḋv+Qė)TM(ḋv+Qė)−V (dv+Qe) (9)

where Q is the coarse-to-fine prolongation operator.
Applying Lagrange’s equations, the resulted

coarse-grid problem is





QT MQë−QT F int(dv + Qe)
= −QT Md̈v + QT F ext

e(0) = 0
ė(0) = 0

(10)

Equation (10) can be integrated explicitly or implic-
itly. For the algorithmic details of the nonlinear
space-time multilevel method, see [11].

In the present paper, POD modes are used to con-
struct the prolongation operator, Q. Briefly speak-
ing, POD seeks a subspace to minimize the total
square distance between the original points and
their projecting points. POD modes are optimal in
a least-squares sense with respect to the energy con-
tent of the dynamic behavior of the system.

From a numerical simulation using Eq. (1), the
time histories of the coordinates that determine the
positions of all atoms are saved. Then, the data are
collected in an observation matrix Φ as

ΦNN×J =




d1(1) ... d1(j) ... d1(J)
: : : : :

di(1) ... di(j) ... di(J)
: : : : :

dNN (1) ... dNN (j) ... dNN (J)




i = 1, 2, ..., NN ; j = 1, 2..., J

(11)

where di(j) is the jth snapshot of the ith degree of
freedom motion, J is the number of the snapshots,
and NN is the number of total degrees of freedom
of the molecular model.

There is a choice between computing the singu-
lar value decomposition of Φ or ΦT for finding POD
modes, which depends on the relative size of NN
and J . In the field of principal component analysis,
the first method is called the R-method and second
is the Q-method [25]. The modal vectors produced
by the two methods can be shown to differ by only a
constant scaling matrix. In this work, the R-method
is selected since the number of degrees of the system
is not very high. The R-method is described below.

The singular value decomposition of Φ is given
as

Φ = UΣV T (12)

where U is a unitary matrix of dimension NN × n
and V is also a unitary matrix of dimension J × n.
One may select n, and typically, n will be much less
than J . Note that

UT U = In×n, V T V = In×n (13)

and Σ is a diagonal matrix of singular values, i.e.,

Σn×n =




σ1

σ2

.
.

σn




(14)

where

σ1 ≥ σ2 ≥ ........σn (15)

and the correlation matrix ρ is constructed as

ρ ≡ ΦΦT = UΣT V T V ΣUT (16)

Substituting Eq. (13) into the above equation, we
have

ρ = UΣT ΣUT (17)

and U is the eigenvector of the matrix ρ.
It is well known that the success of the POD

methodology depends on the choice of the excita-
tion used to obtain the snapshots. A certain amount
of numerical experimentation may be required to
determine an effective excitation to calculate the
snapshots.

The prolongation operator, Q, is then selected as

Q = U (18)
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3. NUMERICAL RESULTS

In this section, a performance study is conducted
on a model problem of a chain of ten monomers
of α-D-glucopyranose (C6H12O6). Each monomer
has 24 atoms with 6 carbon atoms, 6 oxygen atoms,
and 12 hydrogen atoms. For the ten-monomer sys-
tem, there are 24 × 10 − 3 × 9 = 213 atoms. Two
of these atoms are fixed and one is attached to the
tip of the atomic force microscope (AFM) and only
allowed to move in one direction as shown in Fig. 1.
The system, totally, has 631 degrees of freedom.
The stiffness of the AFM cantilever is chosen to be
ks = 10pN/Å . In the simulations, the AFM base
motion is prescribed along the z direction as

B(t) = A sin(2πft)

where A and f are the excitation amplitude and fre-
quency, respectively. In the simulation, we choose
A = 1 Å and f = 100 GHz.

The interactions between atoms are described by
the following potential energy function:

� � � � � � � � �� � � � � � � � �

AFM beam
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FIGURE 1. Schematic diagram for stretching of the
molecule by an AFM

U =
∑

kb(b− b0)2 +
∑

kθ(θ− θ0)2

+
∑

torsions

∑
n

kφ[1 + cos(nφ− δ)]

+
∑

i 6=j

(
Aij

r12
ij

− Bij

r6
ij

)
+

∑

i 6=j

Kcoul
eiej

εrij
(19)

where each term corresponds to different kinds of
interactions, bond stretching, bend angle, torsion
angle, Van der Waals, and electrostatic interaction,
respectively. All of the potential terms are functions
of the internal coordinates: bond length, b, bond an-
gle, θ, and dihedral angle, φ; rij is the distance be-
tween atom i and atom j. The force-field parameters
(kb, kθ, kφ, Aij , Bij , ε, ei, and ej), equilibrium bond
length (b0), and equilibrium bend angle (θ0) are ob-
tained from [26].

The temperature is related to the average kinetic
energy of the system by

Temp =
2

3Nkb
〈Ek〉 (20)

where N is the number of atoms, kb is Boltzmann’s
constant, and 〈Ek〉 is the time-averaged kinetic en-
ergy.

Figure 2 and 3 show the temperature and z coor-
dinate of the AFM tip obtained by the POD-based
reduced-order model compared to the original ex-
plicit Newmark results, respectively. The allowable
maximum time step for the original explicit New-
mark results is 0.001 ps.

To calculate POD modes, the snapshots are gen-
erated by first exciting the system by a sine sweep
with lower- and upper-limit frequencies of ωlow and
ωup, given as

B(t) = Asweep sin(ωlow +
(ωup −ωlow)t

2T
)t

where T is the sweep period. In this example, the
sine-sweep frequency range is chosen as 0–2T Hz,
Asweep = 1 Å, and the time duration is T = 100 ps.

Figures 2 and 3 indicate that 50 modes are nec-
essary for POD-based reduced-order model to pro-
vide a good approximation to the original explicit
results. With 50 modes in the POD-based reduced-
order model, the time-integration time step can be
10 times larger compared to the original explicit
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FIGURE 2. Temperature results obtained by POD-based ROM with different numbers of modes included
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FIGURE 3. Time history of z coordinate of the AFM tip obtained by POD-based reduced-order model
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Newmark results while retaining the desired accu-
racy. Thus, the computational cost can be reduced
by a factor of 10.

Figures 4 and 5 show the time histories of the
temperature and z coordinate of the AFM tip ob-
tained by the waveform relaxation method de-
scribed in Eq. (6) compared to the original ex-
plicit Newmark results. Each window has only
one time step. The iteration is terminated when
max{‖ dv+1(t) − dv(t) ‖} ≤ 10−3 for all times. With
waveform relaxation, the maximum time step is up
to 0.2 ps for the desired accuracy, and the iteration
number for convergence is about 651. Comparing
the CPU time used, it is found that the simulation
can be reduced by a factor of 35.

Figures 6–8 show the temperature and z coordi-
nate of the AFM tip obtained by POD-based space-
time multilevel method with 30 modes, 10 modes,
and 1 mode, respectively. Note that the results are
almost the same as the original explicit results with
10 or 30 modes included. The results with 1 mode
are reasonably good. However, recall that for the

POD-based reduced-order model, up to 50 modes
are needed for the desired accuracy of the results.
Because of the waveform-relaxation smoothing pro-
cedure at fine scale, even fewer POD modes in the
coarse-grained model still provide a good approx-
imation to the original results. With fewer POD
modes, the integration time step can be further in-
creased. With one mode included, the time step can
be 0.5 ps. Compared to the POD-based reduced-
order model, the POD-based space-time multiscale
method is much more efficient.

Figure 9 illustrates the relative CPU time on a
single-processor machine by the POD-based space-
time multilevel method compared to the time cost
of time marching the original system by the ex-
plicit Newmark method. As the number of modes
included decreases, the allowable integration time
step increases. With the POD-based space-time
multilevel method, the simulation can be orders
of magnitude faster than the original explicit time-
marching method.
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FIGURE 4. Temperature results obtained by waveform-relaxation method. Each window only includes one time
step
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FIGURE 5. Time history of z coordinate of the AFM tip obtained by waveform-relaxation method. Each window
only includes one time step
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FIGURE 6. Results obtained by POD-based space-time multilevel method with 30 modes included
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FIGURE 7. Results obtained by POD-based space-time multilevel method with ten modes included
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FIGURE 8. Results obtained by POD-based space-time multilevel method with one mode included

4. CONCLUSIONS

A novel multiscale method that combines the
waveform-relaxation and POD-based reduced-
order models within a framework of the space-time
multilevel method has been developed. In this
framework, the waveform-relaxation smoothing
captures the oscillatory response of the high-

frequency motions and a POD-based reduced,
order model resolves the smooth features of the
system. The formulation of the coarse-grained
model is based on the variational approach de-
rived from the Hamilton’s principle. The time
integration is performed in windows using the
Newmark predictor-corrector method. The numeri-
cal example of modeling a chain of glucopyranose
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FIGURE 9. Relative time versus time step for different numbers of modes included in POD-based space-time multi-
level method

monomers shows significant time savings com-
pared to standard explicit integrators and the
POD-based reduced-order model. Possible parallel
implementation of the proposed method will fur-
ther speed up the simulation. Future work will be
done on the convergence analysis of the method.
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