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Abstract

A nonlocal multiscale model in time domain is developed for fatigue life predictions.
The method is based on the mathematical homogenization theory with almost péaluf$ic
The almost periodicity reflects the effects of irreversible deformations in tioneagh in the
form of accumulation of damage. Multiple temporal scales are introducedctomgmse the
original boundary value problem into micro-chronological (temporal gait) and macro-
chronological (homogenized) problems. A nonlocal Gurson type cotistitiaw is revisited
for cyclic loading, calibrated and validated against fatigue crack prtagexperiments on
316L austenitic stainless steel specimens.

Keywords:temporal homogenization, almost periodicity, fatigue lfrediction, multiscale mod-
eling, crack initiation, crack propagation.

1 Introduction

Fatigue of solids and structures is a multiscale phenoménsepace and time. The existence of
multiple spatial scales is evident due to the presence eksrand/or voids which may be orders
of magnitude smaller than the structural component. Miglttpmporal scales exist because of
disparity between the period of loading and the overalicstnal fatigue life.

The primary phenomenological fatigue life prediction ttmzlay is the so-called “total life” ap-
proach. By this approach, fatigue life is characterized leystiness-life (S-N) curves which relate
the range of applied cyclic stresses to the number of loal@syo failure. When significant yield-
ing is expected around a crack tip, the strain-lgd\() curves are commonly used instead. The
€-N curves relate the range of applied cyclic strains (totgllastic) to the number of load cycles
to failure. Such experimental characterizations are géiyeimited to small structural compo-
nents or specimens. For larger assemblies, sole expeadati@nimay not be feasible and far fields
are typically computed numerically. The drawback of suchixedhexperimental-computational
approach is that it fails to account for force redistribot@aused by damage accumulation.

One of the most widely used empirical fatigue life modelsue tb Paris and Erdogan [1]. The
so-called Paris’ law relates the crack growth rate to th@eaof stress intensity factors using a
power representation. Paris’ law, which was originallyeleped for the ideal condition of small
scale yielding, was enhanced and generalized to incogwaatous mechanisms such as R-effects,



closure, threshold limits and others (e.g., see [2, 3, 4, Bi)fortunately, the issues of modeling
short cracks and the necessity for embedding initial maaoks remain unresolved at large.

Direct Numerical Simulations (DNS) of fatigue crack grovsyhmeans of cycle-by-cycle sim-
ulations have been attempted in the context of the cohdseay (e.g., Refs. [6, 7]). Obviously,
DNS is not a feasible approach for simulating large scaleegsys subjected to high cycle fatigue.
The so-called Cycle Jump Simulation (CJS) represents oneedirgt attempts to approximate
the response of the direct cycle-by-cycle simulation [8®,using coarser time scales. The CJS
has been found to perform reasonably well for relativelymeconstitutive models such as those
based on isotropic continuum damage theory. However, aenstical framework based on the
CJS approach that would satisfy governing equations in spadéime for a general class of con-
stitutive models remains an elusive task.

In this manuscript we present an alternative approach basetie mathematical homoge-
nization theory in time domain with almost periodic fieldsln®st periodicity is a byproduct of
irreversible processes, such as damage accumulation) wioiates the condition of temporal pe-
riodicity. We assume, however, that the non-periodic gbuation is a perturbation of the periodic
part. In addition, we assume that micro- and macro-chranoéb displacement fields are of the
same order of magnitude. This is in contrast to the clas@paltial) mathematical homogenization
where the microscale displacement field is taken as a peattarbof the macroscale field. Spatial
homogenization in the presence of non-periodic conditi@ve been previously investigated using
stochastic [11, 12, 13, 14] and deterministic [15, 16, 17,158 methods. Mathematical analysis
of the spatial homogenization theory with almost- and nenegglic fields have been conducted in
Refs. [20, 21, 22, 23, 24].

The Gurson-Tvergaard-Needleman (GTN) [25] model serves laasis for modeling of mi-
crovoid nucleation, growth, and coalescence processeéssarsequent propagation of macroc-
racks up to failure. Kinematic hardening and irreversitdendge are employed to generate the
hysteretic behavior, to prevent shakedown and premataek @rrest. It is well known that the
degradation of material properties caused by progresamgation mechanism in the GTN model
ultimately causes spurious mesh sensitivity of the respdietds, rendering its predictions ques-
tionable. For monotonic loading, such mesh sensitive lowadlels are commonly regularized
using localization limiters including nonlocal gradiemtd., [26]) and integral (e.g., [27]) type
formulations, micro-polar continuum (e.g., [28]), ande@l others (e.g., [29, 30, 31]).

For cyclic loading, there are two scenarios that may give ris to mesh sensitivity: (i) loss
of ellipticity at the progressive stages of damage growth,rad (ii) unbounded damage growth
rate caused by crack tip singularity. The latter has been invstigated by Peerlingset al. [32]
in the context of high cycle fatigue for quasi-brittle maternals. They showed that for isotropic
damage mechanics model, which preserves ellipticity of geming equations up to failure
(damage parameter equals to one), mesh sensitivity is causley condition ii. They concluded
that a gradient type nonlocal regularization is effective & a localization limiter for high cycle
fatigue of quasi-brittle materials. The GTN model consideredn the present manuscript in-
troduces additional challenges. In addition to the unbounéd growth rate at the crack tip, the
presence of plastic deformation may result in loss of elliptity of the governing equations. To
the best of the authors’ knowledge, the present study is therft attempt to assess the perfor-
mance of the nonlocal GTN model under the conditions of cyclitbading. In this manuscript,
we focus on the development, calibration and validation oftie nonlocal multiscale model of
fatigue based on the integral version of the nonlocal GTN modgewhich is an extension of the



local fatigue model developed in [33, 34].

The remaining of this manuscript is organized as followsctia 2 reviews the fundamental
aspects of the temporal homogenization in the presenceraistlperiodic fields. The nonlocal
GTN model and the associated boundary value problem aremessin Section 3. Section 4
presents the formulation of the nonlocal multiscale mo8ektion 5 focuses on the computational
aspects and the implementation details. The local and nahiaultiscale models are compared
in Section 6. In Section 7, the nonlocal multiscale fatiguaded is first calibrated using fatigue
experiments on 316L austenitic stainless steel specim@aksequently, the calibrated model is
validated against a separate and independent set of fatigak propagation experiments. Con-
clusions and future research directions are discussedtinges.

2 Multiple temporal scales and almost periodicity

In a typical fatigue process, accumulation of damage, aaddbulting macrocrack initiation and
propagation is relatively slow, compared to rapid fluctoagi of displacements within each load
cycle. The disparity between the two characteristic tinedescnaturally introduces multiple time
coordinates. In this study, we consider a two scale decompo®f time by defining anacro-
chronologicalscale denoted by the intrinsic time coordinateand amicro-chronologicalscale
denoted by the fast time coordinate,These two scales are related through a scaling parameter

t
=7 0<lx1 1)
in which, { (= 10/t;), is defined by the ratio of the characteristic lengths inrmi@and macro-
chronological time, denoted by, andt;, respectively. The response fieldg, are assumed to

depend on two temporal scales
¢ (x,t) = @(x,t,T(t)) (2)

where,¢ is a rapidly oscillating function in time; anxildenotes spatial coordinates. Time differ-
entiation in the presence of multiple temporal scales iaiabt using Eq. (1)

Ft) = x,LT) = Qu(x.LT) + %cm(x,t,w 3)

in which, the comma followed by a subscript coordinate desiptrtial derivative; and superposed
dot is a total time derivative.

In this study, response fields are assumed to be almost periotime domain to account
for the irreversible processes of damage accumulation. o8irperiodicity implies that at the
neighboring points in a spatial or temporal domain homolsgoy periodicity, the change in the
response function is small but nonzero (in contrast to tise cd local periodicity in which the
change in response functions is zero). A typical almosogieifunction is depicted in Figure 1.

The space of almost periodic functiomns, is defined as:

T :={0|o(Xt,T+kk) —@(x,t,T) =0({)} VKeZ (4)

A function @ € 7 is said to bex-almost periodic if it belongs to the space of almost pedodi
functions. Attention is restricted on a subspace adenoted byr

T = { Gap | Qap(X,1,T) = Pp (X,t,7) + LTQ(x) } (5)



where,cEis an arbitrary function constant in time ; andy is ak-periodic function

Pp(X,1, T+KK) = @p(X,t,T) (6)

Settingd, (x,t) = @p (X,t,1/L), the well known weak convergence of the periodic fields iegiv
as [35]:

Iim/ x,t dt—>/ X,t,7))dt 7
o (D) T<(Pp( ) (7)
for any subseT in R. The periodic temporal homogenization (PTH) operator,is given by:

1
0= g O ®

Defining ¢, (X,t) = @ap(X,t,t/C), it can be easily observed that Eq. (7) does not hold for
almost periodic fields

(9a)

—t2
Iim/ dt = Iim/ dt
0 T(pgp -0 T(pzp 93 T

[@oat = [ (@58 2ty (9b)

The above serves as a motivation for an alternative defiitiothe averaging operator that
would satisfy the weak convergence relation (Eq. (7)) faradt periodic functions irr. Such an
almost periodic temporal homogenization (APTH) operagor be constructed in the rate form

M (Qap)  (X,1) := (@ap) (X.1) (10)
so that the weak convergence relation (Eq. (7)) is satisfiedlmost periodic functions i
Iim/(pglp(x,t)dt—>/?m((pap(x,t,T))dt (11)
(—0JT T

Equation (11) may be verified by substituting the definitibthe almost periodic functions given
by Eg. (5) into the right hand side, and using (7)

Jon@aon= [ ([ [ @mor)+ (o) as) at= [ ([ [0+ (ou) ] o)

t2
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The APTH and PTH operations are equivalent if applied toqucifields.

(12)

Remark 1:: To further clarify the differences between the PTH and ARd¢rators, consider an
illustrative example:

@(t,T) = apsin (%T) +1Q+ag [1—exp(—t/tg)] (13)

where, the first term represents the rapidly oscillatoryquic function; the second reflects the
non-periodic linear variation; and the last term depices skow macro-chronological variation.
Figure 2 compares the functiof® (@ap) and(cgap> with the original functiongf as¢{ — 0. Pa-
rameter valuesgg = 2.5, a; = 10.0, 10 = 1, and@= 0.07 were used in the illustration. The figure
clearly shows tha(cpap> does not adequately tracks the average response of thetalerasdic
function, whereaSt (¢,p) does precisely that.
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Figure 1: Almost periodic function.

3 Nonlocal GTN model

Progressive failure of ductile materials is commonly idasd using phenomenological elastoplas-
tic constitutive models with a cumulative damage mechani$ine of the most widely known
models of this type is due to Gurson [36]. The original Guisamodel is based on the limit analy-
sis of a spherical unit cell with a spherical void inclusiaitacenter, and a Von-Mises type matrix
material. A number of improvements to the original modeléenbeen proposed including the in-
corporation of void nucleation and coalescence mechar3m&8], effects of non-spherical void
inclusions [39], and others. The so-called Gurson-Tvedjdkeedleman(GTN) model, which
accounts for the nucleation and coalescence effects, leas\adidated for monotonic [40] and
cyclic [41] loading conditions.

From the numerical point of view, the GTN model is known toibxispurious mesh sensitivity
when loading extends to the softening regime. Mesh seitgits/characterized by localization of
strains to the smallest possible volume admitted by theefelément mesh. We defer the discus-
sion on the localization phenomenon and various locabmdimiters to the references discussed
in the introduction of this manuscript. In the present sfwdy revisit the integral type of nonlocal
formulation of the GTN model by defining a nonlocal consisteparameter which governs the
evolution equations of hardening, void growth, and voidleaton.

We start by defining the boundary value problem
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Figure 2: Decomposition of the response fields with respepetiodic and almost periodic tem-
poral homogenization operators.



000 + b°=0 on Q x (0,to) (14)
¢ = L:(&—) on Q x (0,to) (15)

1
g = 5 (Ou*+u'O)  on Qx (0,ty) (16)
ut u’ on Q (17)
u = u on My x (0,to) (18)
not = t¢ on 'y x (0,to) (19)

where u‘ is the displacement vectas? is the stress tensce?, and i are the total and plastic strain
tensors, respectively; is the tensor of elastic modulij is the vector differential operator given
by O = (0/0x1, 0/0xp, 0/0x3) in Cartesian coordinate$:) = (O-)T, superscript T indicates
the transpose b¢ is the body forceQ andl" are the spatial problem domain and its boundary,
respectivelyi, is the temporal problem domain u’ is the initial displacement fieldy* andt®
are the prescribed displacements and tractions on the baesd, andl, respectively, where
F=ryuUrlyandlrynry =0. The analysis is restricted to small deformations.

The yield function of the GTN model is expressed as:

)2 . ¢ N
P = (0%, HY) = () 5 +2f<cosh(—§£z> —1- (f‘)2=0 (20)
() 25

where,H denotes the set of internal state variables

qzz,/gsz:sa §=B'+p'$, B'=0" -0, p‘z—%B‘:ﬁ (21)

a‘ is the center of the yield surface; abds the second order identity tensor. The radius of the
yield surfacept, is defined as [42]:

ot = (1—b)oy+ bay, (22)

in which, oy anda}, are the initial yield stress and matrix flow stress, respelti andb € [0, 1]
is a constantb = 1, b= 0, andb €]0, 1] correspond to the pure isotropic, kinematic, and mixed
hardening conditions, respectively.

The void coalescence function is commonly modeled usingigeewise linear function of the
void volume fraction [38]

f¢ fe< fe
£ _ T_
= fo+ (i - fc) Fofe fe>fc (23)

J1 fr — fc

in which, fc and f are material parameters; aqglis the Tvergaard constant. Whéhapproaches
fs, f* — 1/qu1, and the material looses its stress carrying capacity.
The flow of plastic strains is chosen to follow the normalityer

14
¥ s (24)

.7 %
H 300 >



in which, A is the consistency parameter. _
The nonlocal GTN model is formulated by defining the nonlagatsistency parametex;,
using the well known integral equatide.g., [43])

A (x,t):vﬁ/gw(xs))\‘ (s,t)ds (25)

where,
W (x) :/Qw(x,s)ds xeQ (26)

and,w(x, s) is an attenuation function. In this study, we use
1

(5T

in which, |¢ is the characteristic material lengtb; and ¢, define the shape of the attenuation
curve and they are setto 8 and 2, respectively, as suggestadief. [44]. The nonlocal evolution
equations of the GTN model are defined based on the nonlonaistency parameter.

W(X,S) = (27)

fo= fér+ f.rzluc (28)
The void volume fraction is allowed to grow only after the enef plastic yielding, and under

tensile loading conditions
. — aq)l
fér:q:l.)\z(l_ fz><ﬁ :6>+ (29)
where,(-), = [(-) +|-|]/2 are MacCauley brackets. A strain controlled void nucleati@chanism
is adopted [37] _
frz1uc =4 <p1) pz (30)
where,2° is taken to have a normal distribution

fn 1 p‘—£N>2 . 0P° .
24(pY) = exps —— if —:8>0; 42°=0 otherwise 31
() i p{ 2( ~ Py (31)

in which, pt is the equivalent plastic straitfiy, is the volume fraction of void nucleating particles;
€N is the mean strain for nucleation; agglis the standard deviation of nucleation.
The evolution of the effective plastic strain is given by:

. Al 0P°
¢ = B : 32
R I Vel Yo (32)
The equivalent plastic strain rate is related to the matow #trength
. EE . .
Oy = C=E'p 33
M (E — Et) P P (33)
in which E is the Young's modulus; an; is the tangent to the uniaxial stress-strain diagram at a
given stress level.
The evolution equation for the center of the yield surface is

A’ =NQB; Q>0 (34)
The value ofQ)* is determined using the consistency condition.




4 Multiple temporal scale analysis

We define the following decomposition of the almost peridaitas

(p(X,t,T) :Dﬁ((p) (X,t)—l—(Np(X,t,T) (35)

in which, @ denotes the displacement, strain, stress or internal wai@ble fields; )t (¢) and )
correspond to the macro-chronological (homogenized) anche micro-chronological (oscilla-
tory) parts of the response fields, respectivelyEmploying the definition of the APTH operator,

the following relation is obtained
~ 1,~
(@ =7 (o) (36)

In view of Eq. (35), we seek to decompose the boundary valabl@m defined in Section 3
to a set of coupled micro- and macro-chronological probledygplying the APTH operator to
Eq. (14), the macro-chronological equilibrium equatioreyrbe obtained

O0-9M(0)+M(b)=0  on Qx (0,t) (37)

Decomposing the stresses and the body forces using Eq. f@5ubtracting Eq. (37) from the
resulting equation yields the equilibrium equations fag thicro-chronological problem. At a
macro-chronological time instarif,we have a unit cell problem in time domain

0-6+b—9M(b)=0 on Q x (0,To) (38)

The original constitutive relation may be decomposed byyaipgp Eq. (35) to the stress, strain,
and plastic strain tensors, substituting the resultingigento Eq. (15), and gathering the terms of
equal order

oC™): G: = L:(B:—11,) on Q x (0,1,) (39a)

O(1): M(0),+8; = L:(M(e)~ MW, +E i) (39b)
The micro-chronological constitutive relation is given By. (39a). Applying the PTH operator
to Eq. (39) and using Eq. (36), the constitutive equationtiiermacro-chronological problem is

obtained
M(o), =L : (M), ~MM,) onQx(Oto) (40)

The kinematic equation may be decomposed into a micro- arwascronological parts by
applying Eqg. (35) to the displacement field, substituting thsulting terms into Eq. (16), and
exploiting the linearity of the APTH operator

E = S (Dutan) (41)
M(e) = 3 (OM(u)+M(U)D) (42)

The flow rules of the micro- and macro-chronological proldeare formulated by considering
a two-scale decomposition of the local consistency pa@amat a material pointx, we have

At,T) = %Al(t,r) +A°(t) (43)
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where,A! and\® may be interpreted as the consistency parameters induc#iielyicro- and
macro-chronological loadings, respectively. Applying E2p) to the plastic strain tensor, substi-
tuting the resulting terms and the above decomposition @fctinsistency parameter to the flow
rule (Eq. (24)), and gathering equal order terms yield:

100

oZ™): e = Moo (44a)
- 0P
O1): MW, +i = A5 (44b)

The flow rule for the micro-chronological problem is given By. (44a). Applying the PTH
operator to Egs. (44), and using Eq. (36) gives:

0P 1
m =A\( — = (H 45
=2 G0 )+ 7 (B 5)
where, the yield condition is expressed in terms of the mianal macro-chronological fields using
the function relation N
®(g,H) =®(M(0),6,M(H),H) (46)
The evaluation of the micro-chronological plastic stramsthe nonlocal GTN model is detailed
in Appendix A. The macro-chronological plastic strainsgesses, total strains and internal state
variables are evaluated using a two-step algorithm desstiiitb Section 5.
The evolution equations of the internal state variables(E2R), (29), (30), (32)-(34)) may be
expressed in a general functional form as:

H=h(o,\H) (47)

or in terms of the macro- and micro-chronological fields

H =h (9 (0),8,A° AL, M (H),H) (48)
where,
N (x,t) = vﬁ /Qw(x,s))\i (st)ds =01 (49)
The evolution equations may be decomposed as:
h= %h1+ h° (50)

Decomposing the internal state variable fields based on35¢and using Eq. (3) yields:

Ar = h*(M(c),8,AL,Mm(H),H) (51a)
MH) +Hy = h°(M(a),6,1°,M(H),H) (51b)
The micro-chronological evolution equation for the intratate variables is given by Eq. (51a).

Applying the PTH operator to Egs. (51) and using Eq. (36) gjitree evolution equations of the
macro-chronological problem
1

M (H) = (h°)+7 (A (52)
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The evolution equations for the nonlocal GTN model are presein Appendix B.
Substituting the displacement and stress decompositodigs. (17)-(19), and applying the
APTH operator yields the initial and the boundary condiiéor the macro-chronological problem

Mu)(x,t=0) = u(x) on Q (53)
Mu) = MUu(xt,1)) onyx(0,t) (54)
nM(o) = M(t(x,t,1)) on ¢ x(0,ty) (55)

Similarly, the micro-chronological initial and boundargrditions are obtained by applying
Eq. (35) to the displacement and stress fields, substittiiegesulting equation into Egs. (17)-
(19) and subtracting Egs. (53)-(55) from the resulting éigna

d(x,t,t=0) = O on Q (56)
d(x,t,t1) = u=2(u) onlyx(0,To) (57)
ne(x,t,1) = t—<M() on Iy x(0,To) (58)

The coupled macro-chronological and the micro-chronalaigproblems are summarized in
Box 1.

5 Numerical aspects

5.1 Nonlocal consistency parameter

The introduction of the nonlocal consistency parameteaidda the integro-differential equation
for the local consistency parameter
0 :
a—;p 'L:€ H 1
A(X,t) = — /w X,S)A(s,t)ds 59
X0=3g ap 9, dgW(c Jp"FINEY (59)
06 00 00 0O
The expression foH and the details of the derivation of the above equation aesemted
in Appendix A. Solution of the boundary value problem witfclsunonlocal characterization of
internal state variables requires somewhat cumbersoregratton techniques [45]. To reduce
the computational complexity we use the following appraadion of the nonlocal consistency

parameter

N,
_ g ap
tnaN (X)) = V_\:‘.t”“)\ (Xi) + W jZlng(Xi,Xj)tn)\ () (60)
j#i

where W =W (x;); X; denotes the spatial coordinates of ttieintegration pointng, is the total
number of integration points in the megi;are the weight factors for the numerical integration;
and the left subscript denote temporal discretization.cietizing Eq. (59) and substituting into
Eq. (60) yields

0
a—;p L st H /W Ngp
tmah (6) = 50—, o ael 2. IW (X)) kA (X)) (61)
_'H_|__(p; o0 &H—F—CPZLZ—(p =1
W 00 ool ., W 00 oo|, . 17
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Macro-chronological problem:

Equilibrium equation:

Constitutive equation:

Kinematic equation:

Initial condition:
Boundary conditions:

Flow rule:

Evolution equations:

Micro-chronological problem:

Equilibrium equation:

Constitutive equation:

Kinematic equation:

Initial condition:

Boundary conditions:

Flow rule:

Evolution equations:

0-9(0) + 9 (b)

0-6

NI T O

N
=
Ppag
o
”I

=
E
Nal”

C\
—~

X
~—

on Q x (0,to)
on Q x (0,to)

on Q x (0,to)
on Q

on 'y x (0,tp)
on It x (0,to)

on Q x (0,1o)
on Q x (0,10)

on Q x (0,1op)

on Q
on My x (0,To)
on Iy x (0,To)

Box 1: Governing equations of the macro- and micro-chronologcablems.
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It can be observed that the local consistency paramgtgr, may be evaluated locally using
Eq. (61). Similar methods have been previously employedHernonlocal characterization of
other variants of the GTN model (e.qg., [44]).

5.2 Adaptive multi-scale methodology

The micro- and macro-chronological boundary value prokléonmulated in the previous sec-
tion and summarized in Box 1 are coupled through the consttuelationships. In this study,
we adopted a staggered solution algorithm with adaptiveroaeleronological time stepping con-
trol. The proposed algorithm is convenient in the senseitlatilitates the use of commercially
available finite element packages solely by invoking usppbed material subroutines.

The proposed adaptive algorithm for evaluating the micnot macro-chronological problems
is summarized in Box 2. The objective of the algorithm is toleate the micro- and macro-
chronological response fields denotedgix,t,T) and9 () (x,t), respectively, at timé =ty 1,
given the response fields at time=t, (t, < thr1). The solution at macro-chronological time
th+1 IS computed adaptively. From a qualitative viewpoint, thecno-chronological step sizAf
(=thr1—tn) is chosen to be relatively large if the computed responsenisoth, otherwise, the
step size is reduced to maintain accuracy. To this extergctowof control variablexp (o, i, H),
is defined as a function of the response fiel@ven a converged state at = t,, the control
variable vector att = t,1 IS computed twice at each integration point; first using a sigle
macro-chronological time step At (to compute ;.. ,.a)®), then using two successive steps with
macro-chronological step sizét /2 (to compute y,. ,-at/2)w). The error at t =tn 1 is then given
by

E® = [, 100 @ — (1, 1:0t/2@] < E' (62)

in which, Et is the vector of predefined error tolerances for the control ariables; and the
left subscript (- ; -) denotes the current time and the time step size used in the €ss update.

If the computed error exceeds the error tolerance vectarE®, at any integration point, the
macro-chronological time step size is reduced based orstlne of the errors and the procedure is
repeated until the error tolerances are met. The microndiogical time step siz8t = Ty 1 — Tk

is controlled by the accuracy of the stress update procedure

Remark 2:In this study, the vector of the control variables includes void volume fractionf,
and the Euclidian norm of the plastic strain deviasyr,

1
o={fllsl2}s  s=p-38:p (63)

For a given macro-chronological time step si&g,the integration of the macro-chronological
fields is conducted based on a two-step proceddreis procedure ensures the equilibrium
equations and the consistency condition to be satisfied atemy macro-chronological step.Fig-
ure 3 illustrates the basic structure of the proposed tep-ptocedure. The micro-chronological
loading induced macro-chronological fields are introduttethe converged state of the macro-
chronological fields at=t,, to obtain an intermediate configuratianhzm(cp)* (step 5 of Box 2).
The macro-chronological loading is subsequently appbetie intermediate configuration to eval-
uate the current state of the macro-chronological figldSt (¢). The stress updates of the micro-
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and macro-chronological problems are carried out usinguaureénapping algorithm based on the
method first proposed in [46] for isotropic hardening, anthier extended to account for kinematic
hardening in [47].

The aforementioned adaptive algorithm requires data feabgtween the micro- and macro-
chronological problems at each time step. In this studyjrif@mation between the micro- and
macro-chronological problems is communicated throughxéereal batch processing to facilitate
the use of a commercial finite element software. The ABAQU&\emis engine incorporating user
supplied subroutines (UMAT) was employed to conduct the enizal simulations. The response
information of the macro- and micro-chronological probtewas stored on a hard disk.

configuration at /= ¢, configuration at /=17,

Micro-chronological Macro-chronological
loading loading
induced evolution induced evolution

Intermediate
configuration

Figure 3: Schematic of the proposed two step update proeedur

6 Mesh sensitivity studies

The localization characteristics of the nonlocal multisqaodel are assessed using fatigue crack
propagation simulations in a rectangular panel with a lldmiotch. Figure 4 displays the geometry
of the panel and the applied vertical displacements. Plaaésonditions were assumed and a
quarter of the panel was modeled due to symmetry. Three Bleteent meshes were considered
with increased refinement along the path of the crack. Falsfieere taken to be identical for all
meshes. The path of the crack propagation was discretizéatmty with an average element size
of h=0.1, 0.05, and 0.025 units, and a small mesh transition zonedeg between the far fields
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Input: M (@) (x) and, @(x,T)

Output: At,;  9(¢) and, @(T).

1. Initialize: IDyq < false Ep «— 1

2. Compute,w = w(1,0,1,H,; H) and;,ow at each integration point

t,00 (Xk) = tnO)(Xk,To) —tnw(xk,O); vke1,2,...,njp
(* nip: number of integration points)
3. Compute initial estimate dft:

ad (< all , NP
At =min 30 /Ta]-X[éﬁ)j (X, t)] ) To
J: =

(* neg: Nnumber of dimensions of the control variable vect9r.
(+ 3?'': maximum allowable accumulation within a load cyc.
4. while ID¢, = false

5. SetAt « At /Ef:
\ At - ~
(o) (@) = (@) + [, @(X, To) —,@(X,0)]
6. Apply the macro-chronological external force incrensesmd solve fog; ., (9),
using ;. ,.anM(9)" as the initial values ofNa standard update procedure.
7. Solve micro-chronological IBVP fqf .n@using ;. ,.a)2t(¢)
8. SetAt — At/2, evaluate steps (5)-(7) in two increments to computen /)M (@) and
(tn1:0t/2) P .
9. Computeg,, ,:at) W usmg(tnﬂ;m)ﬂﬁ((p) and(tm;m)cp )
10. Computey, , ;-at/2)® using(tm; At /z)zm (9) and(tn+ At/2) .
11. Evaluate;, ,.a)0w and,, ,:at /20w at each integration point.
12.

Nip .
£ = 18 091 (50— /293 060 ) VI €12, g

To 1/w
- b = (/ <->Wdr) C fl<W<wo, |-|w=max()(xT); if W=o
0
13. if Ef* < El°h Vje1,2,...,ne then Dy — true; return
14. else
Er = min | max|E®/E!] E
F = =1 i / i |oEL
return
(x EL: maximum allowable time step size reduction fact9r.
15. trH_]_ — tn +At

Box 2: Adaptive algorithm.
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and the crack propagation path. Figure 5 shows the disatietizat the tip of the blunted notch for
each mesh.

The propagation of a fatigue crack is modeled by effectiedityinating (a small fraction of the
residual stiffness is retained for stability) the elemdatsvhich the void volume fraction reaches
90% of the critical void volume fraction. Since the void vale fraction growth in GTN model is
controlled by the plastic process, the issue of spuriousag@ngrowth and increase in damage zone
well beyond the size of the characteristic material lengte([48]) was not observed. Reduced
integration with hourglass control is employed to avoidtipdly vanishing elements.

Mechanical properties of the panel and the GTN model parensiate summarized in Table 1.
The characteristic lengtl, is chosen to be 0.13 which is slightly larger than the eldrsze of
the coarsest mesh. The effects of far fields on the nonlocigihtvunction is negligible and was
ignored by settingv(x,s) to zero for||x —s|| > 1.5l.

The void coalescence mechanism is considered using a ttaied woid coalescence function

@Ol Y e

The constants of the third order void coalescence functierewhosen to provide the best curve
fit of a piecewise linear function of Eq. (23), and to satidig boundary conditions. Similar to
the piecewise linear function, material looses its stressytng capacity as void volume fraction
approaches the critical vaIué‘(—> 1/q; asf — f¢).

The uniaxial stress-strain curve of the matrix material wesleled using a piecewise power
law

o
— o <oy

€=4 oy " (65)
£ (W) 0 > Oy
where, n is the strain hardening exponent. The multiscale simulatiwere performed using
the algorithmic parameter§; = 4, 3w = {0.01,0.01}, and with error tolerances @& =
{0.00150.0015}.

Figure 6 displays the path of the fatigue crack simulatedgsie local GTN model as obtained
after 500 load cycles. The damage zone clearly localizemtiler regions and the rate of crack
propagation increases as the mesh is refined. The fatigek peth obtained under identical
loading and topological conditions but with the nonlocalN&hodel is shown in Fig. 7. It can be
seen that the results obtained after 500 and 750 cycles seasitive to the mesh size except for
the coarsest mesh. The damage zone (i.e., the region whtvbig volume fraction) localizes to a
finite region with a size comparable to the characteristiteni length. The discrepancy between
the results of the coarsest mesh and the finer meshes isitgttito the fact that the size of the
elements in front of the crack tip is comparable to the charatic material length.

7 Calibration and validation of the GTN model

Verification studies of the local multiscale fatigue modgh@st cycle-by-cycle simulations were
conducted in [33] for brittle materials and in [34] for duetmaterials. In the present manuscript
attention is restricted to calibration and experimentéithedion of the nonlocal multiscale model



Table 1: Material properties of the panel with a blunted hotc

Poisson’s ratio Hardening parameter Initial void volunetion
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E/oy =300 v=0.3 b=0.0 fo =0.0053
Tvergaard constant, Coalescence, Nucleation, Hardenponext
=15 f.=0.15 fy = 0.04 n=10
ff =0.25 sy =01
ey = 0.3

u= 0.0025(1+ cos(2rt + 1))

ettt

30

0 / 10 i

refinement zone

VANV ANV ANV AY YA YA S SV

Figure 4: Geometry and the far field mesh of the panel with atbldinotch.
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Figure 5: Crack tip discretizations used in the fatigue satiahs of the panel with a blunted notch.

Void volume Cycle # 500

fraction, f

>1.00e-01
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Figure 6: Local simulations.
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Cycle # 500

Void volume
fraction, f

>1.00e-01
+9.14¢-02
+8.286-02
+7.41e-02
+6.55¢-02
+5.69¢-02
+4.83¢-02
+3.97¢-02

B39 Cycle # 750

+2246-02 _
+1.38e-02 !

+5.19¢-03 I

Figure 7: Nonlocal simulations.

for ductile metals. We consider two independent sets ofjdi@tiexperiments conducted on 316L
austenitic stainless steel specimens with similar chdroarapositions. The first set is used for the
calibration of parameters of the GTN model. The calibram@meters were subsequently used to
predict the propagation characteristics of a single maa; and the results were compared to the
observations of the second set of experiments. The modblatbn was conducted using direct
cycle-by-cycle simulations. After appropriate parametdues of the model were determined, the
validation simulations were conducted using the nonloaatistale approach.

7.1 Model calibration

The fatigue response of the 316L stainless steel was praEyiowestigated experimentally by Shi
and Pluvinage [49] under isothermal and thermomechaniealihg conditions. Cylindrical test
samples were taken from a plate which has been solutioret@aid subsequently water quenched.
Figure 8 displays the geometry and dimensions of the cytiatifatigue specimens. The speci-
mens were subjected to displacement controlled mechaychds of various magnitudes using a
servo-hydraulic test machine. The initial and stabilizgdic total stress and plastic strain ranges
were recorded.

The GTN model is calibrated against the results of two isotiafatigue experiments reported
in Ref. [49]. The void volume fraction of the virgin materidf, was computed a-priori based on
the chemical composition of the material using Franklimg&ical formula (o = 0.054(%S— 0.001%Mn)).
Using the S and Mn contents of the 316L stainless steel spedmiven as 0.01 and 1.8, respec-
tively, the initial void volume fraction is computed to g = 0.022%. The 0.2% proof stress of
the material was obtained from the values suggested by Rifafs173 MPaThe nonlocal char-
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acteristic length was chosen to be of the order of the grain se (; = 80 um) as suggested in
Ref. [32]. The void nucleation and coalescence mechanisms were exthydsettingz = 0, and
f=f.

Calibration of the remaining constitutive parameters wtaoh the mixed hardening parame-
ter, b, the Tvergaard constard;, and the hardening curve of the GTN model is conducted using
the simulations of two isothermal fatigue experiments umlescribed cyclic displacements with
maximum amplitudes of 0.012 mm (specimen CLB1) and 0.016 mrac{sgen CLB2) which
corresponds to 1.2% and 1.6% engineering strains, resphctihe loading was applied symmet-
rically in the compressive-tensile direction with a triatey waveform. Simulations are conducted
under the assumption of axisymmetric conditions and haliettross-section is discretized due to
symmetry as shown in Fig. 8. A small imperfection was intrmetharound the circumference of
the specimen. The imperfection is a semi-circular regiahéplane of the cross-section (0.3 mm
radius) with void concentrations linearly increasing todvine surface of the specimefy & 0.1%
in elements adjacent to the surface).

The hardening curve, the mixed hardening parameter and the Tvegaard constant were
evaluated by minimizing the discrepancy between the simutad and experimental values
of the initial and stabilized stresses and plastic strainsand the overall fatigue lives of the
specimens in a least squares sensehe Tvergaard constant, the mixed hardening parameter, and
the strain hardening exponents were identified to be 0.22ahd 3.7, respectively.

Figure 9 illustrates the evolution of the stress rand®s= |Omin| + |Omax) computed using
the numerical simulations for specimens CLB1 and CLB2. The spmeding fatigue lives were
predicted to be 500 and 38§clesfor specimens CLB1 and CLB2, respectively. The observed ex-
perimental fatigue lives of the two specimens were givens@sahd 295ycles respectively. The
observed values for the stabilized stress ranges are gsv686and 720 for CLB1 and CLB2, re-
spectively, which are in reasonable agreement with thestanges predicted by the GTN model.
The plastic strain ranges for the specimens CLB1 and CLB2 asgbeelddy the numerical simu-
lations, and the observed experimental values are plattédgi. 10. Similarly, the plastic strains
were predicted to be in the range of the experimental obsensg(within 8%). The discrepancies
between the experimental observations and the resulteafumerical simulations are attributed
to the limitation of the hardening laws used in the simuladidi.e., mixed kinematic-isotropic
hardening). For low cycle fatigue, more elaborate hardgtaws and, possibly, bounding surface
and multi-yield surface approaches need to be investigated

7.2 Model validation

The calibrated GTN model is then employed to predict the gnaf fatigue cracks on specimens
made of 316L stainless steel. Wheatal.[51] previously conducted experiments to investigate
the propagation characteristics of cracks under fatigadifg and in the presence of overloads.
They tested compact-tension (CT) specimens made of 316ilestaisteel with chemical composi-
tions similar to that of the cylindrical specimens used mdhlibration of the GTN model. The CT
specimens were 6 mm thick and 40 mm wide, and the initial restetere 12 mm long parallel to
the bar length. Prior to the experiments, a 6 mm fatigue prekowas produced by high amplitude
cyclic loading. Figure 11 illustrates the geometry of the @&smens used in the experiments. A
sinusoidal waveform with maximum amplitude of 3 kN and an Reraf 0.1 was applied in the
tensile direction. In the overload experiment, a singldeywerload with maximum amplitude



21

NI

" 90 initial flaw

T 11T

all dimensions in [mm]

Figure 8: Geometry and discretization of the cylinderiaigue test specimen made of 316L
stainless steel.
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Figure 9: Variation of the stress range throughout simoetji CLB1 and CLB2, compared to
experimental observations.
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Figure 10: Variation of the plastic strain range througlsmrulations, CLB1 and CLB2, compared
to experimental observations.

of 5 kN was applied to the pre-cracked specimen and the mawiamplitude of the loading was
reduced to 3 kN in the subsequent cycle. Growth of the cradssobserved during the loading
period and crack growth curves are provided.

We conducted numerical simulations using the GTN model énftamework of the proposed
multiscale life prediction methodology to predict the ¢r@ecowth curves of the fatigue and over-
load specimens. Plane stress conditions were assumed l&iofithe geometry was modeled due
to symmetry. The finite element mesh is illustrated in Fig. The multiscale simulations were
performed using the algorithm parametdis = 4, dw?' = {0.05,0.05}, and with error tolerances
of E*' = {0.00750.0075}. The multiscale algorithm parameters are chosen to be relatisly
small to attain high levels of accuracy. The effects of the chee of algorithm parameters on
the accuracy and performance of the model is presented in Ref34]. The initial void volume
fraction is obtained using Franklin’s empirical formulalte fo = 0.012%. The calibrated model
parameters for fatigue life which are the Tvergaard constanthe mixed hardening parameter,
b, and the strain hardening exponent,are set to the values identified in the calibration phase
(g1 = 1.1, b= 0.22, andn = 3.7, respectively). The value of 0.2% proof stress is providgd
Ref. [51] as 334 MPa.

Figure 13 illustrates the crack growth curves of the fatigne overload specimens as predicted
by the simulations along with the experimental observatioA reasonable overall match was
observed between the experimental observations and therraatpredictions of both fatigue and
overload specimens. The total life of the fatigue and owtlspecimens were 70000 and 130000
cycles, respectively. The proposed multiscale techniggeired the resolution of only 2530 and
2650 load cycles to evaluate the crack growth on the fatigageoaerload specimens, respectively.
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Figure 11: Geometry and discretization of the CT specimenenod@16L stainless steel.
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Figure 12: Experimental and predicted crack growth curééiseofatigue and overload specimens.
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8 Discussion and conclusions

The manuscript presents a computational fatigue life ptexh methodology based on the mathe-
matical homogenization theory with almost periodic fielfilae almost-periodicity is a byproduct
of irreversible processes, such as damage accumulatiach wiolates the condition of local peri-
odicity. The nonlocal multiscale model has been shown tmberisitive to the mesh size as long as
the characteristic size is smaller than the element sizebi@tbn studies revealed certain short-
comings of the model, particularly in the modeling of theesg-strain loops under high amplitude
loading (very low cycle fatigue). Some of these deficienciesld be circumvented by employ-
ing multi-yield surfaces and/or bounding surface plastitheories. Nevertheless, the calibrated
nonlocal multiscale model performed reasonably well indatlon studies more than justifying its
usefulness due to significant computational cost savinggréximately 90-94% cost reduction)
compared to the direct cycle-by-cycle simulation.
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A Evaluation of the consistency parameter for the nonlocal GTN
model

The evaluation of the consistency parameter of the microxadiogical problem is similar to the
computation of the consistency parameter of a single scatkehfe.g., the boundary value problem
defined in Egs. (14) - (19)). To simplify the notation, we #fere present the evaluation of the
consistency parameter using the response fields in total. fdihe consistency condition for the
micro-chronological problem is defined as:

®:=0 (66)

The local consistency parametar,is evaluated based on the approach proposed in Ref [52]. To
this extent, we define a fictitious yield surfade,

(qG)Z ¢ 3p° £\ 2
¢ = %0 f =-——+42fcosh{ ——— | —1—(f 7
P° = d°(0° f,om) %A +2fcos 2 om ( ) (67)

The fictitious stress components;, and the fictitious local rate of plastic strains chosen to be

o°¢ B
a = a (68a)
e = K (68b)

Equation (68a) ensures that the yielding occurs simultasigon @ and®*® (i.e.,® = 0= ®°=0).
Equation (68b) states that the local rate of plastic strigiiaken to be identical to that evaluated
using the fictitious yield surface. Eq. (68b) must be satishieall material points i

—0d - 09°

A—=A\®
0o o0o¢

(69)

The consistency condition (Eq. (66)) along with Eqgs. (68) &0) may be used to obtain an
expression for the local consistency parameter in the fdramantegral equation
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—.L:¢

A(x,t) = 90 i H 1 /W(x,s))\(s,t)ds (70)
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The plastic modulugl, is given by:
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B Evolution equations for the nonlocal GTN model

The evolution equations of the internal state variablee®f3TN model (i.e., void volume fraction,
equivalent plastic strain, matrix flow strength, and theteeof the yield surface) for micro- and
macro-chronological problems is derived herein.

To simplify the presentation, we define:

_ 00
“,r = A % (723-)
MW, = A°< > Z< Ho) (72b)

Decomposing the void volume fraction using Eq. (35), antbohicing the resulting fields as
well as Egs. (72) into the original evolution equation of &l volume fraction

o™ fo = q@-—m(f)—f)d:p,+4ap; (73)
o) MM, +fi = a(@-m(H)—F)8: (ME +H)+a (M(p)+B)(74)
The micro-chronological evolution equation for the voidurae fraction is given by (73). Apply-

ing the PTH operator to Eqgs. (73) and (74) and using Eq. (38)lyi

M(f), =0 (1—Dﬁ(f)—<f~>)5:m(ﬁ)vt—q1<f~6: (%I‘TT+I‘TI)>

#amie), - (2 (gprpe))

which is the evolution equation of the macro-chronologieat volume fraction.
The evolution equations of the micro-chronological and matronological equivalent plastic
strains may be derived using a similar algebra

(75)

i (im(B) +B) 1 i1,
Pr= ﬂ (0F) +6¢] (76)
_ (W(BH@) .

Sm(p),t—< 7] [ (or) + B¢ >-9ﬁ@,t -

+< (m(%)JFB)GF ) + GF] (ZuT+pt)>

The evolution equations of the micro- and macro-chronalaignatrix flow strength and the
radius of the yield surface may be expressed as:

dur = E'P: (78)
Mom), = <Et>£m(p)7t+<Et (%ﬁ,r+ﬁ,t>> (79)
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and,

Orr = bOwm; (80)
f)ﬁ(O'FM = bﬁﬁ(O'M)l (81)
in which, Egs. (78) and (79) are the micro- and macro-chmgioll evolution equations of the
matrix flow strength, respectively. Equations (80) and @iryespond to the evolution equations
of the yield surface radius for the micro- and macro-chrogwal problems, respectively.

Decomposing the yield surface ceneraccording to Eq. (35), and introducing the micro- and
macro-chronological consistency parameters to Eq. (34)

oYy Gr = MNQ(M(B)+B) (82)
O(1): M(a) +6; = A°Q(M(B)+B) (83)

in which,

o\ ! oy 0 0D Et 1/ 0
Q:(l—b)(B.%> {H+aa—f{q1(l—f)(6.%)+l_fo—F(B.%)H (84)

The micro-chronological evolution equation of the yieldfage center is given as Eq. (82). Ap-
plying the PTH operator to Egs. (82) and (83) yields the matmn@nological evolution equation
of the yield surface center

M (@), = 2°((Q) M(B)+(QB)) + % () (85)



