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Abstract

We present a generalization of the Multiscale Enrichment based on Partition of Unity (MEPU)
formulation originally reported in [1] to account for boundary layers, nonperiodic fields and
nonlinear systems. MEPU is aimed at extending the range of applicability of the mathematical
homogenization theory to nonlinear nonperiodic systems with inseparable fine and coarse scales.
Performance studies for both continuum and coarse grained discrete systems are conducted to
validate the formulation.

1. Introduction

Multiscale Enrichment based on the Partition of Unity or MEPU developed in [1] isa
synthesis of the mathematical homogenization and the Partition of Unity (PU) methods.
Its primary objective is to extend the range of applicability of the mathematical
homogenization theory to problems where scale separation may not be possible. The
method [1] has been applied to enriching the coarse scale continuum descriptions (PDES)
with fine scale features as well coarse grained discrete formulations with relevant
atomistic data. MEPU takes advantage of the smplicity of scale bridging offered by the
mathematical homogenization theory and the elegance of enforcing C° continuity of
solution without compromising on the sparsity provided by the PU framework. It is free
of some of the drawbacks inherent in each of its two constituents, namely: the
discontinuity of the fine scale enrichment function arising from the mathematical
homogenization theory and the complexity emanating from integrating coupling termsin
the PU based methods.

MEPU falls into the category of Sparse Global Enrichment Methods (SGEM), which
employ global enrichment functions, but give rise to sparse matrices as opposed to the
classical global-local methods [2]. Among the noteworthy SGEMs are the s-version of
the finite element method [3,4,5,6] with application to strong [7,8] and weak [9,10,11,12]
discontinuities, various multigrid-like scale bridging methods [ 13, 14, 15, 16], the



Extended Finite Element Method (XFEM) [17,18,19], the Generalized Finite Element
Method (GFEM) [20,21] and the Discontinuous Galerkin (DG) [22,23] method.

The XFEM and GFEM are based on the local [24] and global [25,26] Partition of
Unity frameworks, respectively. In XFEM, the enrichment functions describe spatial
features, such as asymptotic crack fields [27], local flow fields [28] as well as arbitrary
discontinuities, while in GFEM, they describe special handbook function [29,30].

The primary objective of the present manuscript is to generalize the formulation of
MEPU presented by the authorsin [1]. The original paper [1] focused on the exposition
of basic ideas including fine scale enrichment, homogenization-like integration scheme
and the interface formulation between the MEPU and homogenized elements, but was
limited to idealized scenarios such as: (i) linear problems, (ii) O(2) enrichment functions
and (iii) periodic fine scale fields. For nonlinear problems, enrichment functions have to
be recomputed for optimal performance. Enrichment functions extracted from the
O mathematical homogenization might be sufficient in the regions with moderate
coarse scale gradients, but might be inadequate in the vicinity of boundary layers.
Accounting for random or nonperiodic fields is not a trivial task since fine scale
enrichment functions in this case are either unknown or cannot be periodicaly extended
over the entire coarse scale problem domain.

The outline of this paper is as follows. Section 2 describes the higher order
enrichment functions. Formulation for the nonperiodic fields is presented in Section 3.
Generalization to nonlinear problems is given in Section 4. Verification studies follow
the derivationsin the corresponding sections.

2. MEPU for higher order periodic fields

2.1 Formulation

We start by stating the key result from the mathematical homogenization theory for
periodic elastic heterogeneous media. Consider a three-term double-scale asymptotic
expansion of the solution, u, = u’(x) +£u'(x, y) + U’ (X, y) , wherex and y = x /( are
the coarse and fine scale position vectors, respectively; 0 <(=1/L <1, and
[, L denote the characteristic size of the fine and coarse scale, respectively. In reference
[1], only the first order term decomposed as

uil(X1 Y) = X (y)glg (x)

0_,0 _¢,0 0
i =Uix) _(ui,xj +Um)/2

(1)

&
was considered for the enrichment. In (1) y,,(y) is the first order influence function
(symmetric with respect to kl indices). The approximation of solution field was
constructed by replacing &, and ¢z, (y) in Eqg. (1) with an independent set of degrees-



of-freedom a,,, and the influence functions defined over the local supports y,,, (X)N_ (),
respectively.

In the present manuscript, we consider the second order term of the fine scale solution.
Following [31], the decomposition of the second order term is given as

uiz(x, y)= Uijmn(y)gr?n,xj (x) (2

wheren,..(y) is the second order influence function to be used as the second order
enrichment in MEPU. Using a similar procedure as for the first term enrichment, we
constructs the second order enrichment by replacing «92“, ;and & 277il.,m(y) in Eqg. (2) with
a set of independent degrees-of-freedom b, ., and the second order influence functions
defined over the local supportsz,,,,(X)N, (X) , respectively.

It is convenient to replace the pair of subscripts kI in y,, and a,, denoting the first

order enrichment modes by a single upper case Roman subscript, A. Likewise, we replace
the subscripts jmn in 7, and b, denoting the second order enrichment modes by

jmna
another single upper case Roman subscript, B. The resulting enriched solution
approximation states

U =N, (x)d,, + N, )] za (), + 775 ()05, ] (3

where summation convention is employed for the repeated indices;, Greek subscripts
denote finite element nodes. Note that the shape functions used for the coarse scale

discretization, Nﬁ(x), might be different from those used in the partition of unity
decomposition N_(x) . Numerical experiments in Section 2.2 suggest that for nearly
optimal performance with lower order elements Nﬂ(x) should be quadratic while
N, (x) linear. It is instructive to note that while in the mathematical homogenization
theory y,, and n are functions of the fine scale coordinate, y, in MEPU, y.,, and 7,

serve to forming the enriched shape functions expressed in term of a single physical
coordinate, X.

With the second order enrichment in place, MEPU is equipped with the deformation
modes capable of capturing linear variation of coarse scale strain gradients over the unit
cell domain. Such an enrichment is necessary in the high gradients region, such as in the
vicinity of cracks or cutouts where the characteristic size of the unit cell is comparable to
the coarse scale features. Nevertheless, the second order enrichment involves additional
degrees-of-freedom, and therefore should be used in the critical regions only.

For linear problems, the influence functions x, (y) and 7,.,,(y) in Eq. (3) can be

precomputed by solving a unit cell problem (s). The continuum version of the unit cell
problemfor y,, (y) isgiven by



|:|_ijkl (Zmn(k,yl) + Ik'”“)]yj =0on ®

Zimn(y):Zimn(y—’_ 9) on a® (4)
Zim(Y)=0 on 00"

where 90 is the unit cell boundary and 90*" are the vertices of the unit cell; L, - the
linear elasticity constitutive tensor; 1., = (540 + O )/ 2; ¥ is the basic period of

the unit cell; Eq. (4)c is often replaced by the normalization condition f X,d© = 0. For
(C]

the formulation of the discrete unit cell problem we refer to [32].

Once the solution of Eq. (4) is obtained, 7;,,(y) can be determined through the
following unit cell problem

|:Lisk| (Zrmk5j| +77Jmn(k,y.)ﬂny + Lij (Zrm(k,y|) + Oy Oy )— Lim=0 on ©

njmnk(y)zﬂjmnk(y+9) on 00 5
M (¥)=0 0N 00"

where Ejmn is the homogenized constitutive tensor given as
_ 1 q
Lijm = @L) Lijw (Zmn(k,yl) + Iklmn) Q) (6)

The two unit cell problems are typically solved using finite element method. The
stiffness matrix for the higher order unit cell problem (5) is identical to that of the
O(1) unit cell problem, whereas the right hand side vector - depends on the solution of the

O(1) problem. For the implementation details we refer to [31].

The discrete system of coarse scale equations is obtained using standard Galerkin
method (see for instance [19,20]) and the Homogenization-Like Integration (HLI)
scheme developed in[1].

Remark 1: The main difference between the mathematical homogenization and MEPU is
that the influence functions y,, and 7, in the mathematical homogenization are

multiplied by known macroscopic fields, £°(x) and Ve’(x), respectively. In MEPU,
however, these influence functions are multiplied by unknown coefficients, which are
found from the weak form on a subspace. Certainly, the resulting method is more
expensive than the homogenization theory because of the introduction of new variables
and yet, numerical experiments conducted in [1] and in the present manuscript suggest
significant gainsin accuracy.




2.2 Verification

In this section, the second order MEPU formulation is verified for a two-dimensional
linear elastic fracture problem. The geometry and boundary conditions of the model
problem are shown in Figure 1a. The uniform displacement boundary condition is applied
along the top and bottom edges of the plate. Due to symmetry, only the upper half of the
plate is analyzed.
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Figure 1: Configuration for the two-dimensional linear elastc fracture problem:
(a) problem domain and loading; (b) material distribution

The heterogeneous properties are represented by a unit cell with a square inclusion.
One half of the problem domain consists of 16x16 unit cells as shown in Figure 1b. The
phase properties of the fine scale constituents are listed in Tablel.

Table|: Materia properties for the two-dimensional unit cell

Y oung's Modulus (GPa) Poisson’s ratio
Inclusion Material 60 0.2
Matrix Material 2 0.2

The reference solution is obtained using a fine mesh with each unit cell discretized by
6x6 quadratic elements, totaling 9216 elements. For comparison, three methods are
investigated: (i) mathematical homogenization (HOMO) on the entire problem domain,
discretized with 16x16 quadratic finite elements possessing homogenized properties; (ii)
as in (i) but replacing 2x4 HOMO elements around the crack tip by the O(1)) MEPU
elements; (iii) as in (ii), but replacing the closest two O(1) MEPU elements around the
crack tip by the second order MEPU elements (denoted as O(¢) MEPU). The polynomial

order of the coarse scale fields in the two MEPU versions is quadratic. All the meshes are
shown in Figure 2.



The results of the total strain energy and the stress intensity factor are summarized in
Table Il. The stress intensity factors were evaluated using the virtual crack closure
integral method [33]. It can be seen that by adding higher order enrichment functions in
just two elements in the critical region the quality of the solution can be significantly
improved.

0 HOMO 0 HOMO
o MEPU with X

0 HOMO
o MEPU with X
B MEPU with X 1

Wi
(@ (b) (0

Figure 2: Mixed mesh for the two-dimensional linear elastic fracture problem:
(a) the HOMO mesh; (b) the HOMO O(2) MEPUmesh; (c) the HOMO O(1) & O(&) MEPU mesh

Table I1: Numerial results for the two-dimensional linear elastic fracture problem

Total Strain Energy Stress Intensity Factor
Methods E Error (%) K Error (%)
HOMO 1.1015E+07 2.26 1.2795E+06 4,53
o MEPU 1.0980E+07 1.93 1.2595E+06 2.89
O(¢) MEPU 1.0840E+07 0.63 1.2144E+06 0.79
REF 1.0772E+07 - 1.2241E+06 -

3. Generalization to nonperiodic and random fields

3.1 Formulation

The formulation of MEPU presented in Section 2 is limited to periodic fields.
Periodicity is required to extend the local enrichment functions y,,,,, over the entire (or

portion of) coarse scale problem domain. In general, however, not only that the fields
may not be periodic, their microstructure may not be known. At best, one can only
sample (or scan) for the microstructure characteristics at some discrete points as shown in
Figure 3. Thus the enrichment functions and therefore the element shape functions may
not be known over the entire problem domain. From the formulation point of view
material data are required at the coarse scae elements Gauss points only. From the
practical point of view, the experimental sampling data and the finite element mesh data
have to be completely independent. Thus in practice, experimental measurements are
carried out independently at some discrete points and then material datais assigned to the
corresponding coarse scale el ements.



With this in mind, let 7, =uy,, denote the union of influence functions computed

over the unit cell domains ®' positioned at the coarse scale elements Gauss points. The
solution approximation defined over the unit cell domainsis given as

U = Nﬁ(X)diﬁ_'_/%iA(X)Na(X)aAa (7)
where for simplicity of illustration the O(1) MEPU approximation is employed.

Figure 3: Assigning different microstructure to various global subdomains

The discrete system of equations is obtained using the standard Galerkin method.
Various integrals are evaluated using Homogenization-Like Integration (HLI) scheme
developed and analyzed in [1] with only exception that the integrand at the coarse scale
element Gauss points is a function of the influence function computed from the unit cell
solution positioned at that point. Thus the integration scheme can be expressed as

ngauss ngauss

1= [Jao= "3 w5 (x')= Y W,Jﬁ [#(x')do @®

where [Jis the biunit parent domain, W the weight function, J the Jacobian, and ngauss
the number of quadrature points.

The HLI scheme schematically depicted in Figure 4, positions the unit cell at the
center of each coarse scale Gauss points. The value of the integrand at the coarse scale
Gauss point is replaced by the integral over the unit cell domain normalized by the
volume of the unit cell.

Remark 1. When solving Eq. (4) for different unit cells, application of periodic
boundary condition may not be appropriate. Moreover, for nonperiodic fields the unit
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cells could be of arbitrary shape subjected to Dirichlet boundary conditions. An
aternative strategy consists of defining somewhat larger domain than that of the unit cell,
applying appropriate Dirichlet boundary conditions, and then computing the influence
functions from the data extracted from the original unit cell domain [34].

Remark 2: For highly randomly microstructure, Homogenization-Like Integration
(HL1) scheme may not be sufficiently accurate; therefore integration over the entire
coarse element domain might be needed instead.

®3
Figure 4: Modified HLI scheme for nonperiodic fields

3.2 Verification

In this section MEPU formulation for nonperiodic fields is studied in the context of
enriching continuum and discrete coarse-grained descriptions. We first consider a two-
dimensional continuum problem as shown in Figure 5. The problem domain consists of
circular inclusions of various diameter sizes randomly distributed in a matrix material. A
uniform displacement boundary condition in the vertical direction is applied along the top
edge. Symmetric essential boundary conditions are applied along the left and the bottom
edges of the model.

For the reference solution, the domain was discretized with 129,260 triangular
elements, with a typical element size smaller than of the smallest inclusion. For the
O(@) MEPU formulation, the domain was modeled with eight coarse scale triangular
elements. For each coarse scale element, three different unit cell problems positioned at
the element Gauss points have been analyzed to obtain the influence functions. Each unit
cell problem was discretized with approximately 500 elements. Figure 4 depicts the
coarse scale mesh consisting of 8 triangles as well as 24 unit cells.
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Figure 5: nonperiodic continuum problem

The results of the total strain energy and the strain component ¢ at three arbitrary

selected points shown in Figure 5 are summarized in Table 1. We compare the MEPU
results with the homogenization method (HOMO) and the reference solution. For the
homogenization methods, we employ the same nonperiodic influence functions used in
MEPU to compute the homogenized constitutive tensor.

Table I1l: Numerial results for the two-dimensional linear elastic fracture problem

Methods Total Strai nOEnergy Strain ¢,

Error (%) Error (%) - A Error (%) - B Error (%) - C
HOMO 2.65 9.69 8.57 5.97
MEPU 0.55 3.81 3.32 3.48

For the second example, we consider a coarse grained discrete system: a linear
homopolymer model with 32 chains (each chain is made up of 16 identical repeating
monomers) as shown in Figure 6.

For simplicity, only two types of the interaction potentials are considered: strong
bonding potential between the neighboring units belonging to the same chain and the
weak interaction between the remaining units. The quadratic approximation of the
L ennard-Jones potential

Ea(r):—gl+%a(r—rol)2, Eb(r):—gz+%b(r—r02)2 9)



has been employed, where r (k =1,2) are the interatomic distances at the equilibrium;

3 3
aand b are constants defined by: a= 36—\/2281 andb = 36\/2282 , whereo, =3.405x107°,
0 0>

g =2.0288x10"; o, =3.405x10", &, =2.0288x10"*". The cut off distance for the

weak interactions is defined as 1.5 lengths between the neighboring units in a chain. The
polymer model consists of total 480 and 1239 strong and weak bonds, respectively.

Figure 6: theinitial configuration of the polymer model

The model is subjected to a constant coarse scale strain field in x-direction. The
displacement results for each unit are obtained using molecular mechanics (the reference
solution), MEPU and quasi-continuum (QC) method based on the Born rule. Table IV
summarizes the total number of the degrees-of-freedom used in each method and the
relative error in L, norm and maximum norms of displacements.

Table IV: Numerial results for the polymer problem

Methods REF MEPU QC
The Number of DOF 654 72 24
. . L2 Norm - 2.18% 8.94%
Displacement error in: -
Maximum Norm - 8.44% 26.55%
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4. Extension to nonlinear problems

4.1 Formulation

In this section MEPU is generalized to nonlinear problems. For simplicity, attention is
restricted to material nonlinearity and rate-independent plasticity model. As a prelude, we
summarize the basic equations of nonlinear mathematical homogenization, which serve
the foundation for the nonlinear variant of MEPU. Derivation details can be found in
Appendix A.

We start with the governing equations defined on the finest scale of interest

oo, +h=0 on Q

ij,x
O-ij = Lijkl (Q_)gé

& =G, = (Ui, +u, )12 (10)
u=g on I,

oyn, =t on I,

where L5, isthe instantaneous elasto-plastic constitutive tensor, and (= %D :

For the O(1) homogenization theory a two-term asymptotic expansions of the velocity
field isemployed

07 (%) =07 (x)+ <0 (x,y)+O(¢?) (12)

where the first term is assumed to be independent of the fine scale details. Separation of
variables for the second term in the velocity field yields

Uy :ka(y)ér?nx(x) (12
where symmetric coarse scale velocity gradient g, ( X) isdefined as

1 ou u°
8.05?_88

T2 ox 8xm)

The O(g“’l) rate equilibrium equation gives aunit cell (fine scale) problem

I:Lijkl(lklmn+ mnkd )} _ =0

i

(13)
¢mnk| Elrm(k,yl) =(;(rml,yk +Zrmk,y| )/2

where material properties in the unit cell L, (y,t) and therefore z,, (y.t)are history-
dependent. The coarse scale properties are given as L, = @J@ Lt (I + B ) DO .

Theresulting O(1) coarse scale equilibrium equation is given as

-11-



5], +B =0 (14)

Since the instantaneous constitutive tensor is nonlinear function of stresses, it is
necessary to integrate the fine scale constitutive equations along the prescribed loading
path in order to obtain the current stress state. For simplicity, we adopt a simple
predictor-corrector update algorithm. For the implicit algorithm and for extension to large
deformation plasticity we refer to [35]. The basic predictor-corrector mathematical
homogenization algorithm is outlined below:

1. Coar se scale solution phase
la. Using Newton's method for the coarse scale problem, find the coarse scale

displacement increment Au;,
1b. Compute the coarse scale strain increment

0 0
Agq = Bia AUy,

mnx

B = (No O + N, 10 )/ 2

a,m~ nk

(15)

2. Predictor phase (for each Gauss point in the unit cell)
2a. Predict the fine scale strain increment using the influence function computed from
the previous time step

Az = (m + o | A2, (16)

where the superscript () denotes the time step.

2b. Use the standard stress integration procedure to update the fine scale stress aiﬁ”*l)
(see [36] for variety of methods).
2c. Recompute the fine scale instantaneous properties Ly
3. Corrector phase (for each Gauss point in the coarse scale elements)
3a. Given the updated values of the fine scale instantaneous properties I_Ej'](fl) solve for

the unit cell problem to obtain "

mnki
(n+1) (n+1) _
|:Liikl (l Kimn + ¢rmk| )ly, =0 (17)
3b. Correct the fine scale strain increment using the average value of the influence

function obtained at the previous and the current time steps (for each Gauss point in
the unit cell)

1 n n+!
Asg = [ L+ (Yot + P )}Aer?m (18)

3c. Update the fine scale stress field ai(j””) using one of the standard stress update
procedures.

4. Coarse scale solution update phase

-12 -



n+l

4a. Using the corrected values of gzﬁjk,
instantaneous properties

and LY, update the homogenized

L = |®|I Lo (1 + i’ ) d© (19)

4b. Update for the overall stress using the corrected values of o™

ijn+1 |®| J’ IJn+1 (20)

We now turn to the MEPU predictor-corrector algorithm, which is closely related to
the aforementioned nonlinear homogenization procedure. The main difference between
the two is that the fine and coarse scales in MEPU are simultaneously evolved. The
computational cost of the fine scale computations is similar, but the solution phase in
MEPU is computationally more involved since the system of equation to be solved
consists of coarse scale and enrichment degrees-of-freedom. The MEPU predictor-
corrector algorithm is summarized below:

1. Solution phase
Using Newton's method find the coarse and fine scae displacement
incrementsAd,, , Aa,, , respectively.

2. Predictor phase (for each Gauss point in the unit cell)
2a. Predict the fine scale strain increment using the influence functions computed
from the previous time step

A‘(3kl 3<Ima Ad +(¢qul N + Bklmoz)(pqm)A poc
i B2 (21)

¢(n) )

pakl qu(km)

2b. Use one of the standard stress integration procedures compute the fine scale stress

Gi(j n+1)

2c. Recompute the fine scale instantaneous properties Ly
3. Corrector phase (for each Gauss point in the coarse scale elements)
3a. Given the updated values of the fine scale instantaneous properties I_”T(,*l solve for

n+1)

the unit cell problem for g™ and 9

pam

3b. Updatethe B™? =[ B* B?] using Eq. (21).
3c. Correct the fine scale strainAgg

following Eqg. (17).

1 n+ 1 n+
Agﬁ = BkImaAdma +|:§(¢qul +¢qull ) Na + Z(Zgaqm +;(pqml ) Bklma} poo (22)

-13-



3d. Update the fine scale stress field 6'™ using one of the standard stress update
procedures.
4. Homogenization-like Integration(HLI) phase

Using the updated values of 6™, B™ and L™ update the internal force vector
and the tangent stiffness matrix using HLI scheme
numel ngauss

fint _ AZWJ| |J‘( n+1) n+1 de
(23)

numel ngauss

A ZWJ | |J‘( n+1) n+1B(n+1)d®

where A isthe assembly operator and numel is the number of elements.

4.2 Verification

In this section we consider athree-dimensional composite plate with a crack as shown
in Figure 7a. Rate-independent plasticity with isotropic hardening is assumed for the
matrix phase, whereas fibers are assumed to behave elastically. The phase properties are
summarized in Table V.

TableV: Material properties for the three-dimensional unit cell

Materials Young's Poiss_on’s Initial yield | Hardening Vol ume
Modulus ratio stress modulus fraction
Titanium Matrix 68.9 GPa 0.33 24 MPa 14 GPa 0.73
SiC Fiber 379.2 GPa 0.21 - - 0.27

For the reference solution, the composite plate was discretized with 140,400 finite

elements. For the MEPU and the mathematical homogenization method (HOMO), only
400 elements were considered. In both MEPU and HOMO formulations, the region
which is far away from the crack tip (shaded region in Figure 7b) was modeled with
linear homogenized elements. Details of the interface formulation can be found in [1].

-14 -
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Figure 7: Configuration for the three-dimensional fracture problem:
(@) the configuration of the model and the unit cell; (b) MEPU (HOMO) mesh

The problem has been solved incrementally with ten load increments. The MEPU and
HOMO formulations were compared to the reference solution in Figures 8 to 10. Figure 8
depicts the relative errors in the external work. Figure 9 gives the relative error in the
local stress component o, in the loading direction at an arbitrary selected point in the

vicinity of the crack tip (point A shown in Figure 7a). Figure 10 shows the relative error
in the overall stress component &, in the nearest unit cell at the crack tip. It can be seen
that MEPU formulation improves the accuracy of the solution compared to the
mathematical homogenization approach, but obviously at the expense of additional

degrees-of freedom, yet at a substantially lower computational cost than of the reference
solution.
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Figure 8: Therelative error in the external work vs. load increment
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Figure 9: Therelative error in the local stress o, vs. load increment
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Figure 10: Therelative error of the overall stress &, vs. load increment
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Appendix A: Nonlinear homogenization

There are two commonly used approaches aimed at generalizing linear mathematical
homogeni zation theory to nonlinear problems. The first of these approaches is based on
the instantaneous decomposition of the second term in the velocity field

0

G = Zog (¥) 800 (%) @
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where .. (y) isan instantaneous influence function, which is recomputed at every

macroscopic Gauss point, every iteration and every load increment within the global
Newton method. This approach has been successfully used in the context of rate-
dependent, rate-independent plasticity and damage mechanics models and for problems
involving small and large deformation (sees for instance [35]). It is very convenient for

deriving a nonlinear variant of MEPU because by calculating ., () instantaneous
enriched shape functions are directly obtained as described in detail below.

For completeness, it isinstructive to mention an alternative nonlinear homogeni zation
approach, which does not use the instantaneous decomposition (24). Instead, a nonlinear
unit cell problem is stated as

Ui?,yj (y,t)=f(e™,Ae0,Agt)=0

where Ag0 is (known) macroscopic strain gradient computed at every Gauss point in the
macro-problem and Ag! is unknown microscopic strain field found by solving the
nonlinear unit cell problem. The unit cell problem can be solved using weighted residual
method, which states:

Find Autsuch that:

r=[ BT6%(e™,Ae2,Az1)dO=0 on ©
®

subjected to periodic Aut on 0O

The two approaches provide similar results provided that the load increment is
sufficiently small.

We now discuss in more detail the first approach, which is adopted in the present
manuscript.

Consider governing equations (small deformation, nonlinear plasticity material model)
given in Eqg. (10). The asymptotic expansions for the displacements and velocities is
given by

U (X) =t (X, y) =07 (X, y)+SUH (X, )+ 20 (%, ) +O(&°)

V() =V (% y) =V (%, )+ V(%) + ¢ (%, ) +O(¢7)
where V¢ = U¢ . The chain rulefor the differentiationisgivenby: f, = f +¢ f,.
The strain tensor components are given by

& =( e + %) + e +O(§2)

where
k _ .,k k _ .,k
1 P R e (B
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and
-1 _
8 8|Jy

8—%ﬁﬁw
g—ﬂﬁww
Similarly, for small deformations the strain rate quantities are given as
-1--1 0-0 1-1 2
=¢ & +¢ &j +§5ij+o(§ )
where
-1

8 = 8|Jy

8—%ﬁﬁw
g—ﬂﬁww
The expansion of the stressratesis given as
=¢ 6+ ¢ % + {6 +0(¢7)
where
dilj( = Lijkiéii(i
The rate form of equilibrium eguationsis given as
él_2d_ii_,ly,- + é,_l(o.-ii_,lxj ll Yi )+ é' ( I?x +U|l Yj + bl )+O(§) =0
from where theO (¢ ) rate equilibrium equation yields
dii_,lyj = ( Lijklél?ly ),yJ =0
Pre-multiplying above by u° and taking the integral over the unit cell domain yields
-0 -0 _ -0 .0 .0 -1
J.@ 0P ( Ly )ij de = _J.@ 0, LUy IO + L@ u’s;"n,dr
=0 by periodicity
Assuming that the instantaneous properties remain positive definite yields
U, =0 or u’=0’(x)
TheO(¢™) rate equilibrium equation is
1

%M+qy—0

Since f =’ (x)= &g, =0=> ;" =0, it follows that
|:Lijkl (éigx +‘c"‘iily)j|’y =0
Consider the separation of variablesin the form of
Ui = Zom (V) e (X)

gkly = u(k )’i) mnxlrm(k i) gmnx mnk

which yields:
|:L|Jkl (‘9k|x+5 P )] y =0

or
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ér?nx |:Lijkl (Iklmn + Do )}’yj =0 Vér?nx
The resulting instantaneous unit cell problem is given by
I:Lijkl (N + B )]Yyi =0
TheO(1) equilibrium equation is given by
Gi?yxj +Gi?yyj +b =0
Taking the integral over the unit cell domain and exploiting periodicity yields
1 0 1 3
@jea”,xjdm@j@tm@ -0
or

[5,], +B=0
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