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Abstract 

 
We present a generalization of the Multiscale Enrichment based on Partition of Unity (MEPU) 

formulation originally reported in [1] to account for boundary layers, nonperiodic fields and 

nonlinear systems. MEPU is aimed at extending the range of applicability of the mathematical 

homogenization theory to nonlinear nonperiodic systems with inseparable fine and coarse scales. 

Performance studies for both continuum and coarse grained discrete systems are conducted to 

validate the formulation. 
 

1. Introduction 
Multiscale Enrichment based on the Partition of Unity or MEPU developed in [1] is a 

synthesis of the mathematical homogenization and the Partition of Unity (PU) methods. 
Its primary objective is to extend the range of applicability of the mathematical 
homogenization theory to problems where scale separation may not be possible. The 
method [1] has been applied to enriching the coarse scale continuum descriptions (PDEs) 
with fine scale features as well coarse grained discrete formulations with relevant 
atomistic data. MEPU takes advantage of the simplicity of scale bridging offered by the 
mathematical homogenization theory and the elegance of enforcing 0C  continuity of 
solution without compromising on the sparsity provided by the PU framework. It is free 
of some of the drawbacks inherent in each of its two constituents, namely: the 
discontinuity of the fine scale enrichment function arising from the mathematical 
homogenization theory and the complexity emanating from integrating coupling terms in 
the PU based methods. 

MEPU falls into the category of Sparse Global Enrichment Methods (SGEM), which 
employ global enrichment functions, but give rise to sparse matrices as opposed to the 
classical global-local methods [2]. Among the noteworthy SGEMs are the s-version of 
the finite element method [3,4,5,6] with application to strong [7,8] and weak [9,10,11,12] 
discontinuities, various multigrid-like scale bridging methods [ 13 , 14 , 15 , 16 ], the 
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Extended Finite Element Method (XFEM) [17,18,19], the Generalized Finite Element 
Method (GFEM) [20,21] and the Discontinuous Galerkin (DG) [22,23] method.  

The XFEM and GFEM are based on the local [24] and global [25,26] Partition of 
Unity frameworks, respectively. In XFEM, the enrichment functions describe spatial 
features, such as asymptotic crack fields [27], local flow fields [28] as well as arbitrary 
discontinuities, while in GFEM, they describe special handbook function [29,30]. 

The primary objective of the present manuscript is to generalize the formulation of 
MEPU presented by the authors in [1]. The original paper [1] focused on the exposition 
of basic ideas including fine scale enrichment,  homogenization-like integration scheme 
and the interface formulation between the MEPU and homogenized elements, but was 
limited to idealized scenarios such as: (i) linear problems, (ii) (1)O enrichment functions 
and (iii) periodic fine scale fields. For nonlinear problems, enrichment functions have to 
be recomputed for optimal performance. Enrichment functions extracted from the 

(1)O mathematical homogenization might be sufficient in the regions with moderate 
coarse scale gradients, but might be inadequate in the vicinity of boundary layers. 
Accounting for random or nonperiodic fields is not a trivial task since fine scale 
enrichment functions in this case are either unknown or cannot be periodically extended 
over the entire coarse scale problem domain. 

The outline of this paper is as follows. Section 2 describes the higher order 
enrichment functions.  Formulation for the nonperiodic fields is presented in Section 3.  
Generalization to nonlinear problems is given in Section 4.  Verification studies follow 
the derivations in the corresponding sections. 

2. MEPU for higher order periodic fields 

2.1 Formulation 
We start by stating the key result from the mathematical homogenization theory for 

periodic elastic heterogeneous media. Consider a three-term double-scale asymptotic 
expansion of the solution, 0 1 2 2( ) ( , ) ( , )i i i iu u u uζ ζ= + +x x y x y , where x  and y x /ζ=  are 
the coarse and fine scale position vectors, respectively; 0 / 1l Lζ< = , and 
,l L denote the characteristic size of the fine and coarse scale, respectively. In reference 

[1], only the first order term decomposed as 
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was considered for the enrichment. In (1) ( )iklχ y  is the first order influence function 
(symmetric with respect to kl indices). The approximation of solution field was 
constructed by replacing 0

klε  and ( )iklζχ y  in Eq. (1) with an independent set of degrees-
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of-freedom kla α and the influence functions defined over the local supports ( ) ( )ikl Nαχ x x , 
respectively. 

In the present manuscript, we consider the second order term of the fine scale solution. 
Following [31], the decomposition of the second order term is given as 

 2 0
,( , ) ( ) ( )

ji ijmn mn xu η ε=x y y x  (2) 

where ( )ijmnη y  is the second order influence function to be used as the second order 
enrichment in MEPU. Using a similar procedure as for the first term enrichment, we 
constructs the second order enrichment by replacing 0

,mn jε  and 2 ( )ijmnζ η y  in Eq. (2) with 
a set of independent degrees-of-freedom jmnb α and the second order influence functions 
defined over the local supports ( ) ( )ijmn Nαη x x , respectively.  

It is convenient to replace the pair of subscripts kl  in iklχ  and kla α  denoting the first 
order enrichment modes by a single upper case Roman subscript, A. Likewise, we replace 
the subscripts jmn  in ijmnη and jmnb α  denoting the second order enrichment modes by 
another single upper case Roman subscript, B. The resulting enriched solution 
approximation states  

 [ ]( ) ( ) ( ) ( )i i iA A iB Bu N d N a bβ β α α αχ η= + +x x x x  (3) 

where summation convention is employed for the repeated indices; Greek subscripts 
denote finite element nodes. Note that the shape functions used for the coarse scale 
discretization, ( )Nβ x , might be different from those used in the partition of unity 
decomposition ( )Nα x . Numerical experiments in Section 2.2 suggest that for nearly 
optimal performance with lower order elements  ( )Nβ x  should be quadratic while 

( )Nα x  linear. It is instructive to note that while in the mathematical homogenization 
theory iAχ  and iBη  are functions of the fine scale coordinate, y, in MEPU, iAχ  and iBη   
serve to forming the enriched shape functions expressed in term of a single physical 
coordinate, x. 

With the second order enrichment in place, MEPU is equipped with the deformation 
modes capable of capturing linear variation of coarse scale strain gradients over the unit 
cell domain. Such an enrichment is necessary in the high gradients region, such as in the 
vicinity of cracks or cutouts where the characteristic size of the unit cell is comparable to 
the coarse scale features. Nevertheless, the second order enrichment involves additional 
degrees-of-freedom, and therefore should be used in the critical regions only.  

For linear problems, the influence functions ( )iklχ y  and ( )ijmnη y  in Eq. (3) can be 
precomputed by solving a unit cell problem (s). The continuum version of the unit cell 
problem for ( )iklχ y  is given by 



 - 4 - 

 

( )( , ) ,
0

ˆ( ) ( )

( ) 0

l
j

ijkl mn k y klmn y

imn imn

vert
imn

L I on

on

on

χ

χ χ

χ

⎡ ⎤+ = Θ⎣ ⎦

= + ∂Θ

= ∂Θ

y y y
y

 (4) 

where ∂Θ  is the unit cell boundary and vert∂Θ  are the vertices of the unit cell; ijklL - the 

linear elasticity constitutive tensor; ( ) / 2klmn mk nl nk mlI δ δ δ δ= + ;  ŷ  is the basic period of 

the unit cell; Eq. (4)c is often replaced by the normalization condition 0ikldχ
Θ

Θ =∫ . For 

the formulation of the discrete unit cell problem we refer to [32]. 

 Once the solution of Eq. (4) is obtained, ( )ijmnη y  can be determined through the 
following unit cell problem 
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where ijmnL is the homogenized constitutive tensor given as 

 ( )( ),
1

lijmn ijkl klmnmn k yL L I dχ
Θ

= + Θ
Θ ∫  (6) 

The two unit cell problems are typically solved using finite element method. The 
stiffness matrix for the higher order unit cell problem (5) is identical to that of the 
(1)O unit cell problem, whereas the right hand side vector   depends on the solution of the 
(1)O  problem. For the implementation details we refer to [31]. 

The discrete system of coarse scale equations is obtained using standard Galerkin 
method (see for instance [19,20]) and the Homogenization-Like Integration (HLI) 
scheme developed  in [1].  

Remark 1: The main difference between the mathematical homogenization and MEPU is 
that the influence functions iAχ  and iBη  in the mathematical homogenization are 
multiplied by known macroscopic fields, 0 ( )ε x and ε0( )∇ x , respectively. In MEPU, 
however, these influence functions are multiplied by unknown coefficients, which are 
found from the weak form on a subspace. Certainly, the resulting method is more 
expensive than the homogenization theory because of the introduction of new variables 
and yet, numerical experiments conducted in [1] and in the present manuscript suggest 
significant gains in accuracy. 
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2.2 Verification 
In this section, the second order MEPU formulation is verified for a two-dimensional 

linear elastic fracture problem. The geometry and boundary conditions of the model 
problem are shown in Figure 1a. The uniform displacement boundary condition is applied 
along the top and bottom edges of the plate. Due to symmetry, only the upper half of the 
plate is analyzed.  

 
Figure 1: Configuration for the two-dimensional linear elastc fracture problem:  

(a) problem domain and loading; (b) material distribution 

The heterogeneous properties are represented by a unit cell with a square inclusion. 
One half of the problem domain consists of 16x16 unit cells as shown in Figure 1b. The 
phase properties of the fine scale constituents are listed in Table I. 

Table I: Material properties for the two-dimensional unit cell 

 Young’s Modulus (GPa) Poisson’s ratio 
Inclusion Material 60 0.2 

Matrix Material 2 0.2 
 

The reference solution is obtained using a fine mesh with each unit cell discretized by 
6x6 quadratic elements, totaling 9216 elements. For comparison, three methods are 
investigated: (i) mathematical homogenization (HOMO) on the entire problem domain, 
discretized with 16x16 quadratic finite elements possessing homogenized properties; (ii) 
as in (i) but replacing 2x4 HOMO elements around the crack tip by the (1)O MEPU 
elements; (iii) as in (ii), but replacing the closest two (1)O  MEPU elements around the 
crack tip by the second order MEPU elements (denoted as ( )O ε  MEPU). The polynomial 
order of the coarse scale fields in the two MEPU versions is quadratic. All the meshes are 
shown in Figure 2.  

(a)  (b)
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The results of the total strain energy and the stress intensity factor are summarized in 
Table II. The stress intensity factors were evaluated using the virtual crack closure 
integral method [33]. It can be seen that by adding higher order enrichment functions in 
just two elements in the critical region the quality of the solution can be significantly 
improved. 

Figure 2: Mixed mesh for the two-dimensional linear elastic fracture problem: 

(a) the HOMO mesh; (b) the HOMO (1)O MEPUmesh; (c) the HOMO (1) & ( )O O ε MEPU mesh 

 
Table II: Numerial results for the two-dimensional linear elastic fracture problem 

Total Strain Energy Stress Intensity Factor Methods E Error (%)  K Error (%) 
HOMO 1.1015E+07 2.26  1.2795E+06 4.53 
(1)O MEPU 1.0980E+07 1.93  1.2595E+06 2.89 
( )O ε MEPU 1.0840E+07 0.63  1.2144E+06 0.79 

REF 1.0772E+07 -  1.2241E+06 - 
 

3. Generalization to nonperiodic and random fields 

3.1 Formulation 
The formulation of MEPU presented in Section 2 is limited to periodic fields. 

Periodicity is required to extend the local enrichment functions ,
ijk ijkl

χ η over the entire (or 
portion of) coarse scale problem domain. In general, however, not only that the fields 
may not be periodic, their microstructure may not be known. At best, one can only 
sample (or scan) for the microstructure characteristics at some discrete points as shown in 
Figure 3. Thus the enrichment functions and therefore the element shape functions may 
not be known over the entire problem domain. From the formulation point of view 
material data are required at the coarse scale elements Gauss points only. From the 
practical point of view, the experimental sampling data and the finite element mesh data 
have to be completely independent. Thus in practice, experimental measurements are 
carried out independently at some discrete points and then material data is assigned to the 
corresponding coarse scale elements.  

(c)(b)(a)  
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With this in mind, let ˆ I
iA iAχ χ= ∪  denote the union of influence functions computed 

over the unit cell domains IΘ  positioned at the coarse scale elements Gauss points.  The 
solution approximation defined over the unit cell domains is given as 

 ˆ( ) ( ) ( )i i iA Au N d N aβ β α αχ= +x x x  (7) 

where for simplicity of illustration the (1)O  MEPU approximation is employed.  

 
Figure 3: Assigning different microstructure to various global subdomains 

 

The discrete system of equations is obtained using the standard Galerkin method. 
Various integrals are evaluated using Homogenization-Like Integration (HLI) scheme 
developed and analyzed in [1] with only exception that the integrand at the coarse scale 
element Gauss points is a function of the influence function computed from the unit cell 
solution positioned at that point. Thus the integration scheme can be expressed as  

 ( ) ( )
1 1

1

I

ngauss ngauss
I I

I I I I I
I I

I J fd W J f W J f d
= = Θ

= = = Θ
Θ∑ ∑∫ ∫χ χ  (8) 

where is the biunit parent domain, W  the weight function, J  the Jacobian, and ngauss 
the number of quadrature points. 

The HLI scheme schematically depicted in Figure 4, positions the unit cell at the 
center of each coarse scale Gauss points. The value of the integrand at the coarse scale 
Gauss point is replaced by the integral over the unit cell domain normalized by the 
volume of the unit cell.  

Remark 1: When solving Eq. (4) for different unit cells, application of periodic 
boundary condition may not be appropriate. Moreover, for nonperiodic fields the unit 
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cells could be of arbitrary shape subjected to Dirichlet boundary conditions. An 
alternative strategy consists of defining somewhat larger domain than that of the unit cell, 
applying appropriate Dirichlet boundary conditions, and then computing the influence 
functions from the data extracted from the original unit cell domain [34]. 

Remark 2: For highly randomly microstructure, Homogenization-Like Integration 
(HLI) scheme may not be sufficiently accurate; therefore integration over the entire 
coarse element domain might be needed instead.  

 
Figure 4: Modified HLI scheme for nonperiodic fields 

3.2 Verification 
In this section MEPU formulation for nonperiodic fields is studied in the context of 

enriching continuum and discrete coarse-grained descriptions. We first consider a two-
dimensional continuum problem as shown in Figure 5.  The problem domain consists of 
circular inclusions of various diameter sizes randomly distributed in a matrix material. A 
uniform displacement boundary condition in the vertical direction is applied along the top 
edge. Symmetric essential boundary conditions are applied along the left and the bottom 
edges of the model.  

For the reference solution, the domain was discretized with 129,260 triangular 
elements, with a typical element size smaller than of the smallest inclusion. For the 

(1)O MEPU formulation, the domain was modeled with eight coarse scale triangular 
elements. For each coarse scale element, three different unit cell problems positioned at 
the element Gauss points have been analyzed to obtain the influence functions. Each unit 
cell problem was discretized with approximately 500 elements. Figure 4 depicts the 
coarse scale mesh consisting of 8 triangles as well as 24 unit cells. 

1Θ

2Θ

3Θ

eΩ Ω

1Θ

2Θ

3Θ

eΩ Ω
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Figure 5: nonperiodic continuum problem 

 
The results of the total strain energy and the strain component 

22
ε  at three arbitrary 

selected points shown in Figure 5 are summarized in Table III. We compare the MEPU 
results with the homogenization method (HOMO) and the reference solution. For the 
homogenization methods, we employ the same nonperiodic influence functions used in 
MEPU to compute the homogenized constitutive tensor. 

Table III: Numerial results for the two-dimensional linear elastic fracture problem 

Strain 
22
ε  

Methods Total Strain Energy 
Error (%) Error (%) - A  Error (%) - B Error (%) - C 

HOMO 2.65 9.69 8.57 5.97 
MEPU 0.55 3.81 3.32 3.48 

 
For the second example, we consider a coarse grained discrete system: a linear 

homopolymer model with 32 chains (each chain is made up of 16 identical repeating 
monomers) as shown in Figure 6.  

For simplicity, only two types of the interaction potentials are considered: strong 
bonding potential between the neighboring units belonging to the same chain and the 
weak interaction between the remaining units. The quadratic approximation of the 
Lennard-Jones potential  

 ( ) ( ) ( ) ( )2 21 2
1 0 2 0

1 1,  
2 2a bE r a r r E r b r rε ε= − + − = − + −  (9) 

A

B C
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has been employed, where ( )0 1, 2kr k = are the interatomic distances at the equilibrium; 

a and b are constants defined by: 
3

1
2
1

36 4a ε
σ

= and
3

2
2
2

36 4b ε
σ

= , where 10
1 3.405 10σ −= × , 

18
1 2.0288 10ε −= × ; 10

2 3.405 10σ −= × , 21
2 2.0288 10ε −= × . The cut off distance for the 

weak interactions is defined as 1.5 lengths between the neighboring units in a chain. The 
polymer model consists of total 480 and 1239 strong and weak bonds, respectively. 

 

 
Figure 6: the initial configuration of the polymer model 

 
The model is subjected to a constant coarse scale strain field in x-direction. The 

displacement results for each unit are obtained using molecular mechanics (the reference 
solution), MEPU and quasi-continuum (QC) method based on the Born rule. Table IV 
summarizes the total number of the degrees-of-freedom used in each method and the 
relative error in L2 norm and maximum norms of displacements. 

Table IV: Numerial results for the polymer problem 

Methods REF MEPU QC 

The Number of DOF 654 72 24 
L2 Norm - 2.18% 8.94% 

Displacement error in: 
Maximum Norm - 8.44% 26.55% 
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4. Extension to nonlinear problems 

4.1 Formulation 
In this section MEPU is generalized to nonlinear problems. For simplicity, attention is 

restricted to material nonlinearity and rate-independent plasticity model. As a prelude, we 
summarize the basic equations of nonlinear mathematical homogenization, which serve 
the foundation for the nonlinear variant of MEPU. Derivation details can be found in 
Appendix A.  

We start with the governing equations defined on the finest scale of interest 
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where ijklLζ  is the instantaneous elasto-plastic constitutive tensor, and d
dt

≡ .  

For the (1)O homogenization theory a two-term asymptotic expansions of the velocity 
field is employed 

 ( ) ( ) ( ) ( )0 1 2
i i iu u u Oζ ζ ζ= + +x x x, y  (11) 

where the first term is assumed to be independent of the fine scale details. Separation of 
variables for the second term in the velocity field yields 

 ( ) ( )1 0
k mnk mnxu χ ε= y x  (12) 

where symmetric coarse scale velocity gradient ( )0
mnxε x  is defined as  

0 0
0 0

( , )
1 ( )
2n

m n
mnx m x

n m

u uu
x x

ε ∂ ∂
≡ = +

∂ ∂
 

The ( )1O ζ −   rate equilibrium equation gives a unit cell (fine scale) problem  

 
( )

( ) ( )
,

, ,,

0

/ 2
j

k ll

ijkl klmn mnkl y

mnkl mnl y mnk ymn k y

L I φ

φ χ χ χ

⎡ ⎤+ =⎣ ⎦

≡ = +
 (13) 

where material properties in the unit cell ( ),ijklL ty  and therefore ( ),klm tχ y are history-

dependent. The coarse scale properties are given as ( )1
ijmn ijkl klmn mnklL L I dφ

Θ
= + Θ
Θ ∫ . 

The resulting ( )1O  coarse scale equilibrium equation is given as 
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 ,
0

j
ij ix

bσ⎡ ⎤ + =⎣ ⎦  (14) 

Since the instantaneous constitutive tensor is nonlinear function of stresses, it is 
necessary to integrate the fine scale constitutive equations along the prescribed loading 
path in order to obtain the current stress state. For simplicity, we adopt a simple 
predictor-corrector update algorithm. For the implicit algorithm and for extension to large 
deformation plasticity we refer to [ 35 ]. The basic predictor-corrector mathematical 
homogenization algorithm is outlined below: 

 
1. Coarse scale solution phase 

1a. Using Newton’s method for the coarse scale problem, find the coarse scale 
displacement increment 0

ku αΔ  
1b. Compute the coarse scale strain increment 

 ( )
0 0

, , / 2
mnx mnk k

mnk m nk n mk

B u

B N N
α α

α α α

ε

δ δ

Δ = Δ

= +
 (15) 

2. Predictor phase (for each Gauss point in the unit cell) 
2a. Predict the fine scale strain increment using the influence function computed from 
the previous time step 

 ( )( )0 0n
kl klmn mnkl mnxIε φ εΔ = + Δ  (16) 

where the superscript ( )• denotes the time step. 

2b. Use the standard stress integration procedure to update the fine scale stress ( )1n
ijσ +  

(see [36] for variety of methods). 
2c. Recompute the fine scale instantaneous properties ( )1n

ijklL +  
3. Corrector phase (for each Gauss point in the coarse scale elements) 

3a. Given the updated values of the fine scale instantaneous properties ( )1n
ijklL + solve for 

the unit cell problem to obtain ( )1n
mnklφ +  

 
( ) ( )( )1 1

,
0

j

n n
ijkl klmn mnkl

y
L I φ+ +⎡ ⎤+ =⎣ ⎦  (17) 

3b. Correct the fine scale strain increment using the average value of the influence 
function obtained at the previous and the current time steps (for each Gauss point in 
the unit cell) 

 ( ) ( )( )10 01
2

n n
kl klmn mnkl mnkl mnxIε φ φ ε+⎡ ⎤Δ = + + Δ⎢ ⎥⎣ ⎦

 (18) 

3c. Update the fine scale stress field ( )1n
ijσ +  using one of the standard stress update 

procedures. 

4. Coarse scale solution update phase 
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4a. Using the corrected values of ( )1n
ijklφ +  and ( )1n

ijklL + , update the homogenized 
instantaneous properties 

 
( ) ( ) ( )( )1 1 11n n n
ijkl ijkl klmn mnklL L I dφ+ + +

Θ
= + Θ
Θ ∫  (19) 

 
4b. Update for the overall stress using the corrected values of ( )1n

ijσ +  

 
( ) ( )1 11n n
ij ij dσ σ+ +

Θ
= Θ
Θ ∫  (20) 

 
We now turn to the MEPU predictor-corrector algorithm, which is closely related to 

the aforementioned nonlinear homogenization procedure. The main difference between 
the two is that the fine and coarse scales in MEPU are simultaneously evolved. The 
computational cost of the fine scale computations is similar, but the solution phase in 
MEPU is computationally more involved since the system of equation to be solved 
consists of coarse scale and enrichment degrees-of-freedom. The MEPU predictor-
corrector algorithm is summarized below: 

 
1. Solution phase 

Using Newton’s method find the coarse and fine scale displacement 
increments md αΔ , pqa αΔ , respectively. 

2. Predictor phase (for each Gauss point in the unit cell) 
2a. Predict the fine scale strain increment using the influence functions computed 
from the previous time step 

 

( ) ( )( )
( )

( )
( )

1
2

0

, l

n n
kl klm m pqkl klm pqm pq

n n
pqkl pq k y

B d N B aα α α α αε φ χ

φ χ

Δ = Δ + + Δ

=

B
B  (21) 

2b. Use one of the standard stress integration procedures compute the fine scale stress 
( )1n
ijσ +   

2c. Recompute the fine scale instantaneous properties ( )1n
ijklL +  

3. Corrector phase (for each Gauss point in the coarse scale elements) 
3a. Given the updated values of the fine scale instantaneous properties ( )1n

ijklL + solve for 

the unit cell problem for ( 1)n
mnklφ +  and ( 1)n

pqmχ + following Eq. (17). 

3b. Update the ( )1 1 2n+ ⎡ ⎤= ⎣ ⎦B B B  using Eq. (21). 

3c. Correct the fine scale strain 0
klεΔ  

 ( ) ( )( ) ( ) ( )( )1 10 1 1
2 2

n n n n
kl klm m pqkl pqkl pqm pqm klm pqB d N B aα α α α αε φ φ χ χ+ +⎡ ⎤Δ = Δ + + + + Δ⎢ ⎥⎣ ⎦

 (22) 
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3d. Update the fine scale stress field ( )1n+σ  using one of the standard stress update 
procedures. 
4. Homogenization-like Integration(HLI)  phase 

Using the updated values of ( )1n+σ , ( )1n+B  and ( )1n+L  update the internal force vector 
and the tangent stiffness matrix using HLI scheme 
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1 1
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1 1
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+ +

=
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+ + +

=
= Θ

= Θ
Θ

= Θ
Θ

∑ ∫

∑ ∫

f B

K B L B

σA

A
 (23) 

where A  is the assembly operator and numel is the number of elements. 

4.2 Verification 
In this section we consider a three-dimensional composite plate with a crack as shown 

in Figure 7a. Rate-independent plasticity with isotropic hardening is assumed for the 
matrix phase, whereas fibers are assumed to behave elastically. The phase properties are 
summarized in Table V. 

Table V: Material properties for the three-dimensional unit cell 

Materials Young’s 
Modulus 

Poisson’s 
ratio 

Initial yield 
stress 

Hardening 
modulus 

Volume 
fraction 

Titanium Matrix 68.9 GPa 0.33 24 MPa 14 GPa 0.73 
SiC Fiber 379.2 GPa 0.21 - - 0.27 

 

For the reference solution, the composite plate was discretized with 140,400 finite 
elements. For the MEPU and the mathematical homogenization method (HOMO), only 
400 elements were considered. In both MEPU and HOMO formulations, the region 
which is far away from the crack tip (shaded region in Figure 7b) was modeled with 
linear homogenized elements. Details of the interface formulation can be found in [1]. 
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 Figure 7: Configuration for the three-dimensional fracture problem:  

(a) the configuration of the model and the unit cell; (b) MEPU (HOMO) mesh 

The problem has been solved incrementally with ten load increments. The MEPU and 
HOMO formulations were compared to the reference solution in Figures 8 to 10. Figure 8 
depicts the relative errors in the external work. Figure 9 gives the relative error in the 
local stress component 

22
σ in the loading direction at an arbitrary selected point in the 

vicinity of the crack tip (point A shown in Figure 7a). Figure 10 shows the relative error 
in the overall stress component 

22
σ  in the nearest unit cell at the crack tip. It can be seen 

that MEPU formulation improves the accuracy of the solution compared to the 
mathematical homogenization approach, but obviously at the expense of additional 
degrees-of freedom, yet at a substantially lower computational cost than of the reference 
solution.  
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Figure 8: The relative error in the external work vs. load increment 
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Figure 9: The relative error in the local stress 

22
σ vs. load increment 
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Figure 10: The relative error of the overall stress 

22
σ  vs. load increment 
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Appendix A: Nonlinear homogenization  

 
There are two commonly used approaches aimed at generalizing linear mathematical 
homogenization theory to nonlinear problems. The first of these approaches is based on 
the instantaneous decomposition of the second term in the velocity field  

 ( ) ( )1 0
k mnk mnxu χ ε= y x  (24) 
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where ( )mnkχ y  is an instantaneous influence function, which is recomputed at every 
macroscopic Gauss point, every iteration and every load increment within the global 
Newton method. This approach has been successfully used in the context of rate-
dependent, rate-independent plasticity and damage mechanics models and for problems 
involving small and large deformation (sees for instance [35]). It is very convenient for 
deriving a nonlinear variant of MEPU because by calculating ( )mnkχ y  instantaneous 
enriched shape functions are directly obtained as described in detail below.  
 
For completeness, it is instructive to mention an alternative nonlinear homogenization 
approach, which does not use the instantaneous decomposition (24). Instead, a nonlinear 
unit cell problem is stated as 
 

( ) ( )0 ( ) 0 1
, , , , 0

j
n

ij y t fσ ≡ Δ Δ =y ε ε ε  

 
where 0Δε  is (known) macroscopic strain gradient computed at every Gauss point in the 
macro-problem and 1Δε  is unknown microscopic strain field found by solving the 
nonlinear unit cell problem. The unit cell problem can be solved using weighted residual 
method, which states:  
 

( )

1

0 ( ) 0 1

1

:

, , 0T n

Find u such that

r d on

subjected to periodic u on
Θ

Δ

≡ Δ Δ Θ = Θ

Δ ∂Θ
∫ B σ ε ε ε

 

 
The two approaches provide similar results provided that the load increment is 
sufficiently small.  
 
We now discuss in more detail the first approach, which is adopted in the present 
manuscript. 

 
Consider governing equations (small deformation, nonlinear plasticity material model) 

given in Eq. (10). The asymptotic expansions for the displacements and velocities is 
given by 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1 2 2 3

0 1 2 2 3

i i i i i

i i i i i

u u u u u O

v v v v v O

ζ

ζ

ζ ζ ζ

ζ ζ ζ

= = + + +

= = + + +

x x, y x, y x, y x, y

x x, y x, y x, y x, y
 

where i iv uζ ζ= . The chain rule for the differentiation is given by: 1
, , ,x x yf f f
ζ

ζ −= + .  
 

The strain tensor components are given by 
( )1 1 0 0 1 1 2

ij ij ij ij Oζε ζ ε ζ ε ζ ε ζ− −= + + +  
where 
      ( ) ( ), ,

,
j j

k k k k
ijx ijyi x i y

u uε ε= =  
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and 
1 0

0 0 1

1 1 2

ij ijy

ij ijx ijy

ij ijx ijy

ε ε

ε ε ε

ε ε ε

− =

= +

= +

 

Similarly, for small deformations the strain rate quantities are given as 
( )1 1 0 0 1 1 2

ij ij ij ij Oζε ζ ε ζ ε ζ ε ζ− −= + + +  
where 

1 0

0 0 1

1 1 2

ij ijy

ij ijx ijy

ij ijx ijy

ε ε

ε ε ε

ε ε ε

− =

= +

= +

 

The expansion of the stress rates is given as 
( )1 1 0 0 1 1 2

ij ij ij ij Oζσ ζ σ ζ σ ζ σ ζ− −= + + +  
where 

ij

k k
ijkl klLσ ε=  

The rate form of equilibrium equations is given as 

( ) ( ) ( )2 1 1 1 0 0 0 1
, , , , , 0

j j j j jij y ij x ij y ij x ij y ib Oζ σ ζ σ σ ζ σ σ ζ− − − −+ + + + + + =  

from where the ( )2O ζ −   rate equilibrium equation yields 

( )1 0
, ,

0
j j

ij y ijkl kly y
Lσ ε− = =  

Pre-multiplying above by 0
iu  and taking the integral over the unit cell domain yields 

( ) ( ) ( )
0 0 0 0 0 1

,,,

0 by periodicity

ljj
i ijkl kly ijkl i ij jk yi yy

u L d u L u d u n dε σ −

Θ Θ ∂Θ

=

Θ = − Θ+ Γ∫ ∫ ∫  

Assuming that the instantaneous properties remain positive definite yields 
( )0 0 0

, 0
lk y i iu or u u= = x  

The ( )1O ζ −   rate equilibrium equation is 
1 0
, , 0

j jij x ij yσ σ− + =  

Since ( )0 0 0 10 0i i kly iju u ε σ −= ⇒ = ⇒ =x , it follows that 

( )0 1

,
0

j
ijkl klx kly y

L ε ε⎡ ⎤+ =⎣ ⎦  

Consider the separation of variables in the form of 
( ) ( )1 0

k mnk mnxu χ ε= y x  

( ) ( )
1 1 0 0

, ,= =
l lkly mnx mnx mnklk y mn k yuε ε χ ε φ=  

which yields: 
( )0 0

,
0

j
ijkl klx mnx mnkl y

L ε ε φ⎡ ⎤+ =⎣ ⎦  

or 
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( )0 0
,

0
j

mnx ijkl klmn mnkl mnxy
L Iε φ ε⎡ ⎤+ = ∀⎣ ⎦  

The resulting instantaneous unit cell problem is given by 
( )

,
0

j
ijkl klmn mnkl y

L I φ⎡ ⎤+ =⎣ ⎦  

The ( )1O  equilibrium equation is given by 
0 1

, , 0
j jij x ij y ibσ σ+ + =  

Taking the integral over the unit cell domain and exploiting periodicity yields 
0

,
1 1 0

jij x id b dσ
Θ Θ

Θ+ Θ =
Θ Θ∫ ∫  

or 

,
0

j
ij ix

bσ⎡ ⎤ + =⎣ ⎦  
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