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1 Introduction

Efficient solution of large systems of equations Ax = b arising from partial dif-
ferential equations remains a challenging problem for nonsymmetric and indefi-
nite systems. For symmetric and positive definite systems, standard multigrid
methods are very efficient solvers due to their optimal complexity (compu-
tational work is proportional to the number of unknowns). However, when
the system is nonsymmetric or highly indefinite, multigrid methods may not
perform as well [2]. Such systems arise in a variety of applications including
linearized Navier-Stokes equations, saddle-point problems, least squares prob-
lems with constraints and systems with an indefinite constitutive tensor arising
as a result of localized damage in solids. Some multilevel methods have been
applied for certain weakly indefinite systems. However, the existing strategies
impose restrictions on the coarse grid, requiring that these grids are suffi-
ciently fine for the proposed algorithms to converge [3], [4]. For nonsymmetric
and highly indefinite systems, various methods have been proposed, yet a gen-
eral and efficient methodology is still an ongoing area research. [5], [6] utilize
multigrid procedures in the context of normal equations. [7] proposes an op-
erator (matrix) dependent black box multigrid for a single partial differential
equation on structured grid problems. In [8] the authors employ a special en-
ergy minimization interpolation techniques for convection diffusion problems.
Recently, an interesting idea to use a “self correcting” multigrid has been pro-
posed [9], [10]. “self correcting” multigrid finds the algebraically smooth error
components unresolved by multigrid when applied to the homogeneous prob-
lem Az = 0 with a random initial guess, and adjust the coarsening process
accordingly. Other approaches include a straight forward application of the
multigrid method as a preconditioner to Krylov iterative solvers [11], [12], [13].
However, convergence depends on the type of multigrid method used and the
spectrum of the preconditioned system [1], [13], [14]. Consequently, [14] and
[15] proposed to “remove” the smallest eigenvalues of the preconditioned linear
system by shifting them. This involves computations of the smallest eigenval-
ues which sometimes can be expensive.

This work follows the Global Basis (GB) method [16], [17] and in particular,
the Generalized Global Basis (GGB) method [1] when applied to general non-
linear problems solved by Newton’s method. The GGB method stabilizes the
entire multilevel procedure by constructing an additional coarse grid correction
spanned by the unresolved eigenmodes of the multilevel iteration. In this sense,
the GGB method fits into the “self-correcting” multigrid methodology. The
idea is to filter out modes that are “non-converging” and “slow-to-converge”
and resolve them on an additional coarse grid. This accelerates the itera-
tive process and yields rates of convergence similar to the application of the
unaccelerated multilevel method applied to a positive definite system. Conse-
quently, any multilevel method may be applied to difficult systems, assuming
only a small number of those eigenmodes are to be filtered. The method can



be used as a stand alone solver or as a preconditioner to Krylov methods.
Krylov methods reduce the amount of modes needed.

In this paper we introduce and study two strategies to reduce the setup cost
associated with GGB. Our objective is to reduce the overall CPU time when
GGB is applied to a sequence of linear systems such as those arising from non-
linear problems solved by Newotn’s method. Since most of the computational
work is governed by the eigen computations, reuse of eigenspace information
may lead to significant CPU time savings. The first scheme (GGBea), com-
putes only a few eigenvectors at each linear solve and appropriately enriches
an existing prolongation operator. The second strategy is a modified GGB
method termed MGGB. The method predicts whether the previous prolonga-
tion may be used at the current step or a new subspace should be computed.
Both strategies are based on a criterion that measures the maximum principal
angle between subspaces.

The paper is organized as follows. In the following section, a brief introduc-
tion of the GGB method is presented. In Section 3, we motivate the idea of
eigenspace reuse on a simple 1D nonlinear (and nonsymmetric) modified Bratu
problem. In Section 4, we discuss the GGBa and MGGB strategies that em-
ploy those ideas. In Section 6, we study performance of the proposed strategies
on various problems. Finally, we conclude with some remarks in Section 7.

2 Overview of the Generalized Global Basis (GGB) Method

Consider a generic two-level multigrid V-cycle for the solution of linear system
of equations

Ku=f (1)
in which the system matrix K € RV*¥ is generally nonsymmetric indefinite.
Let S be defined as the smoothing iteration matrix

S=1I-M'K, (2)

with a relaxation procedure M € RV*Y and the identity matrix I. Let v; and
v, denote the number of pre- and post- smoothing, respectively. If the error
after iteration i is e! = u — u‘, than reduction of the error after one V-cycle is
controlled by the multigrid iteration matrix Rg, given as

€i+1 = ST Ss" i = RMgei. (3)
where T' € RV*¥ is the coarse grid correction given by
T = I - P(RKP)™'RK, (4)

with the prolongation operator from the coarse grid to the fine grid P : R —
R, and the restriction operator R : R¥Y — R™. For symmetric systems the



restriction operator is usually taken as the transpose of the prolongation op-
erator i.e. R = PT. T is a projector satisfying 7" = T2 with a spectral radius
of p(T) = 1. Multilevel methods consist of two major elements: smoothing
and coarse grid correction. When symmetric positive definite (SPD) systems
are considered, classical iterative methods, used as smoothers, eliminate the
oscillatory components of the error leaving the smooth components almost
untouched. This motivates the use of a coarse grid correction, where smooth
components of the error are effectively approximated on a coarser grid. How-
ever, for difficult systems such as indefinite and/or nonsymmetric systems,
smoothing may leave some oscillatory modes untouched, and thus standard
multilevel methods might magnify these modes rather than reducing them [2].
Recently, the Generalized Global Basis (GGB) method for highly indefinite
and nonsymmetric systems has been proposed [1]. The current paper is a di-
rect extension of the GGB method when applied to a sequence of linear solves
generated by Newton’s method. The GGB method [1] is a generalization of the
global basis method [16], [17]. It accelerates (stabilizes) the entire multigrid
procedure in the following way. It first identifies all the troublesome modes of
the applied multigrid method by solving for the highest eigenvalues \; of the
multigrid iteration matrix in equation (3)

Ry = Mo i=1,...,N. (5)

The troublesome modes are the highest eigenvalues that are either not converg-
ing (indefinite) or “slow-to-converge” modes. The non converging eigenvalues
are those that lie outside the unit circle | ;| > 1, and the “slow-to-converge”
are the ones that lie inside the unit circle, however very close to one, i.e.
1 -6 < || < 1, for some small positive constant ¢. For this purpose, an im-
plicitly restarted Arnoldi method [18] from ARPACK [19] is employed. Next,
based on the computed eigenvalues, say k eigenvalues, the GGB method con-
structs an additional coarse grid correction, with the prolongation operator
spanned by the corresponding eigenvectors

\ |
Qr =span{p}i = | ¢y ... ¢ | - (6)
| |

Nxk

As shown in [1], the additional coarse grid is used as a multigrid filter, elimi-
nating those troublesome modes. Therefore, this method belongs to the class
of “self correcting” multigrid methods, which find the algebraically smooth
error components unresolved by multigrid [9] and [10]. However, as opposed
to [9] and [10] the algebraically smooth error components are obtained directly
from the eigenvalue problem (5). Figure 1 schematically illustrates the archi-
tecture of the method used in the paper. Black circles denote local smoothing
at each level, and GMRES/QMR is an outer accelerator. The GGB cycle is



used to precondition Krylov methods. We note that other GGB cycles are also

GMRES\QMR

ML GGB ML

Fig. 1. Generalized Global Basis (GGB) cycle

possible for nonsymmetric systems (see Figure 2). The overall error reduction
of a single GGB cycle illustrated in Figure 1, without an external accelerator
and one smoothing iteration at each level can be written as

et = (STS)2 Fgqp(STS) e = R.Iﬁ(gFGG’BRj\hgei: (7)

where ST'S is the multilevel iteration matrix and vy, v, correspond to the
number of V-cycles. Fggp is the additional projector (filter), given as

Feep=1- Qf(Q}KQf)_IQ}Ka (8)

where the prolongation operator (y and the restriction @} are spanned by
the highest modes of Ry4g given in (6).

——| GMRES\QMR ——| GMRES\QMR

.\.\N;/ ./XG‘GB GGB ML
(a) GGB filter on the right (b) GGB filter on the left

Fig. 2. Various GGB cycles for nonsymmetric systems



3 Motivation

The GGB method is useful for solving very difficult problems such as highly
indefinite and/or nonsymmetric systems that require one linear solve or a se-
quence of linear solves. For the later, the method is most attractive for prob-
lems with multiple right hand sides such as linear transient problems or shift-
and-invert eigenvalue problems, since the indefinite and “slow-to-converge”
eigenspace given in (5) has to be computed only once at the setup phase and
can later be reused throughout the entire sequence of linear solves. However,
if the method is applied to a sequence of linear solves, for instance, those that
arise from nonlinear problems solved by Newton’s method, then the left hand
side (the Jacobian matrix) as well as the right hand side changes from one
Newton iteration to the other. This results in an eigen computation for each
linear solve in the sequence which may dominate the entire computational
cost. However, if the sequence of Jacobians are gradually changing, than the
eigenspace information can be reused without significantly affecting the con-
vergence rate of the GGB method. In practice, the total linear solve iterations
will sometimes increase but overall C PU time can be reduced due to savings
resulting from reuse of eigenspace.
To motivate the MGGB approach we consider the following 1D nonlinear
boundary value problem on the interval = [0, 1] with homogeneous Dirich-
let boundary conditions

u +au' + et =0 (9)

urz=0)=ulz=1)=0

This problem is referred to as the “modified Bratu problem” [20]. The standard

“Bratu problem” is obtained for &« = 0 with two known bifurcated solutions

for A < A, no solutions for A > A, and a unique solution when A = A, [21].

To numerically solve (9) the domain is discretized into N — 1 segments with
1

equal length i = —. A central difference discretization is employed leading

to the following difference scheme
F(UZ) = ﬁui“ + YUj—1 — QU,Z + )\h26ui = 0, (10)

where 8 = (1+%) and v = (1—%). Applying Newton’s method to (10) yields
the following sequence of linear systems to be solved for the search direction
Sj-

Jsi = —F(u;). (11)

J = F'(u;) is the Jacobian matrix, given by the following stencil
tridiagly, —2 + Ah%e", p). (12)

The singular turning point of the curve (o = 0) is obtained for A = A, =
3.5138307 [21]. Moreover, it is easily verified that at the turning point exactly



one eigenvalue of J changes its sign and the system becomes indefinite. For
a > 0 the linear system becomes nonsymmetric and will therefore pose dif-
ficulties to iterative solvers. We apply a standard multigrid method to (11).
Figure 3 shows the fine and coarse meshes. We assume an odd number of fine

Fig. 3. Fine and coarse meshes

grid points N, with n = % coarse grid points.

Linear interpolation is used to transfer from coarse grid to fine grid Py, :
R" — RY, and either a full weighting R, = %Pg;g or injection

010
Rinject = 010 . (13)
010

are used for restriction.

The problem parameters are set to A = 3 and o = 1.5, with initial guess
uo = 2sin(mwz), placing the nonlinear problem (9) in the indefinite and non-
symmetric region. One pre- and post- Gauss-Siedel smoothing iteration is
performed. For the GGB filter (8) we chose four eigenvectors corresponding
to the largest eigenvalues obtained from solving (5). Figures 4 and 5 show
the spectrum and highest modes of the M Gj,; iteration matrix, respectively,
as the nonlinear iteration proceeds. Red circles are used to mark the largest
magnitude modes picked for the GGB filter. The figures illustrate that the
largestest eigenvalue move significantly as the nonlinear iteration proceeds.
This implies, for this problem, that eigen information needs to be recomputed
for the GGB method to perform appropriately. In fact, if the initial eigen
space computed at the first Newton step is reused throughout the linear se-
quence, eventually the GGB method fails to converge. While this example
illustrates the limitations of eigen reuse, it is worthwhile to point out that the
MGty iteration matrix is well behaved. Using only the eigen space informa-
tion computed at the first Newton iteration, the GGB method converges quite
satisfactory.

To summarize, the Bratu exercise illustrates that eigen reuse must be done
carefully. In the next Section we develop a set of criteria to automatically
determine when the eigen space needs to be re-computed.
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4 Strategies to reuse eigenspace information

We propose two strategies that reuse already computed prolongation opera-
tor. The first is termed GGBa and the second is MGGB. GGBa is based on
augmenting new information into a previously computed prolongation opera-
tor. In the first Newton iteration a GGB filter is constructed by solving the



eigen problem of the multigrid iteration matrix R}, for k£ non-converging and
“slow-to-converge” eigenvalues

Rugqi = Na  i=1.k (14)

where superscripts denote the nonlinear iteration count. As the nonlinear it-
eration proceeds, and the next linear system is to be solved, we propose to
compute only ¢ eigenvalues and eigenvectors, such that ¢ < k. The idea is
to enrich the space of a prolongation operator with new eigenvectors. The
updated operator after iteration j, may be written in the following way,

Q' =[Q" U, ... U], (15)
where
Q' = {a1, ¢, - a1} (16)
and the U matrices are given by
U ={d,...d} i>1, (17)
obtained from o o
Rl = Mgl i=1,..,t. (18)

In words, U’ contains the eigenvectors computed at the current iteration while
@’ is the accumulated prolongation operator. Thus the idea of the GGBa
method is to always recompute a limited amount of eigen information and to
use it to augment the prolongation operator used in the previous Newton iter-
ation. Of course, as the nonlinear iteration proceeds the prolongation operator
grows increasing the size of the coarse grid.

Further, if the difference between the two subspaces (7 and U’T! is close
than the gain associated with the new information is insignificant. One way to
measure the difference between the two subspaces is to compute the maximum
principal angle between them. Computation of principal angles between sub-
spaces is performed in many applications, for example data analysis, random
processes, stochastic realization and more [22].

Angles between subspaces are defined in the following way (for more details
see [22], [27]).

Let F and G be the column space of (7 and U’*!, respectively, and let s =
dim(F) and t = dim(G) with s > k > . The principal angles 61, ...,0, € [0, §
between F and G may be defined recursively for p=1,...,¢ by

cos(0p) = Magyeg MaTper v’ w = v Wy (19)
subject to
o] = lwl|=1, v'v =0, w'w;=0, i=1,.,p—1 (20)

The vectors vy, ...,v; and wy, ..., wy are called principal vectors. More explic-
itly, definition (19) follows if the subspaces F and G are orthogonalized, and



rotated such that the inner product between their columns are maximized and
reordered in an ascending order.

In our context the rank of the prolongation @’ is much smaller than the rank
of the multigrid iteration matrix R’ ;. For this purpose, we choose the Bjorck-
Golub algorithm [22] to compute the principal angles. This algorithm is based
on a singular value decomposition (SVD). Let the columns of Q € RV** and
U € R¥** be an orthonormal bases for range(F) and range(G), say computed
by a QR factorization, i.e.,

Qj = QR1 21
Ut = Uk, ()
where Q7Q = I,, UTU = I,. Further, let
01
QUu=2z| . (VI 1>0>..>0>0 (22)

O

be the reduced SVD of QTU, where Z € RVN*$, V € R¥**. The principal angles
are given by

= arccos(o;) i=1,..,t (23)

0;
where 0 < 6, < ... < 6; < 7 and the columns of QZ and UV are the principal
directions.
For computational purposes, the space of the prolongation (); is enriched by
new U/*! eigenvectors only if the maximum principal angle 8, > 6,,, where 6.,
is some tolerance angle. This strategy may be very effective if the multigrid
iteration matrices vary from iteration to iteration since the enriched space
might better capture the highest problematic modes. However, if the iteration
matrices only slightly changes than the maximum principal angle will stay
below the tolerance and computing ¢ new eigenvectors might not be justified
as they do not contribute to the space.
The second strategy, termed MGGB (modified generalized global basis), is
based on the full reuse of a previously computed prolongation operator. Again,
if the iteration matrices only slightly changes than full reuse may result in sat-
isfactory convergence rate and yet the C'PU time savings might be significant.
Thus, the goal of this strategy is to avoid the exact computation of ¢ eigen-
vectors, which was employed by GGBa strategy.
To do this, we measure how far are the vectors {¢/} from being eigenvectors
of Rﬂé using a Rayleigh quotient type measure

| Rovigq: — paill2

<6 =1,k 24
B (24)

10



* pitl
where p is the Rayleigh quotient defined as p = % ?f’;?q’, and ¢ is some small

constant. Using the fact that ¢/¢; = 1, in our case, 1(24) can be rewritten as

||R5\jtré%' - (Q?Rﬂré%) gill <

a7 RYigasl =

i=1,..k (25)

Moreover, measure (25) is related to the acute angle between Rﬂéq,- and g;,
6= L(Rﬂéqi, ¢;) in the following way,

| RYi6a — paill2
]

= tan6. (26)

This can be seen by starting with the definition of the acute angle

- l¢T R%H i) ol
cos 0 = Z(Rljigai, ¢:) = ||;%ﬂ§qgi||2 IRl 0
So, . *
cos” 0 = ||Rjg§pqi||% N R’Jéqillgp—pp’*ﬁ pp -
Using the relation
R0 — palls = | Bgaill — o, 29)
we arrive at
cos? ) = 1 op 30)

I1RYigq — paill3 + p*p
and (26) follows (for more details see [27]).
One can generalize the acute angle # to an angle between the vector Rﬂéqi and
the subspace @/ (as opposed to a single vector), assuming real eigenvectors.
Define a projection of Rﬂéqi onto the subspace (7

. . N —1 . - . . .
y=Q ((@)'Q) (@) Riba = Q@) Ritba: (31)
The cosine of the angle between Rﬂéqi and @’ is given by
. . . . T .
cos 3 = y" Rigt — (QJ (QJ)TR%‘%%) Rligai
Iyl R¥igall  1Q7(Q9)T Riigaillll Ryigasl
. - T i .
(@ )TRﬂéq_i) (@ )TR]AE%') (32)
1@ Rvigaillll Ryigall
_ @) Riiball
IR gaill

11



The square of the cosine is further simplified by,

1(@)" Rigasl’

cos’ f =

| RAigaill?
(¢ Riises) + -+ (' Bida) + -+ (df Riaa) 33
il [Rigal %
(qlTRﬂéqi)Q +o PP+t (q,{Rﬂéqif
- IR gaill”
Substituting (27) into (33) yields,
cos? § — (q?Rﬂéqi)Q + .+ ||R§\j:éqz||2 cos” 0 + ... + (q,{Rﬂéqi)Q
IRial "
(o Riibas)” \ (af Riibar)”
= —||R_J/\_A|—éqz||2 +...+cos®O+ ...+ —||Rﬂé%||2

and since all the terms on the right hand side are greater or equal to zero, we
get the following bound

! (35)
HRﬂgllZi_pqu + 1’

cos®> B> cos’ 6 =

which relates Rayleigh quotient to an angle between subspaces. Note that
the measures proposed for the MGGB method assume |[A\| > ... > [\g] >
. > |An|, which is a drawback to the method since no measure can take
into account flipping in the order of the eigenvalues and the corresponding
eigenvectors. The GGBa would capture this behavior.
Nevertheless, in most cases where the multigrid iteration matrix only slightly
varies from one iteration to the other, the MGGB strategy is found to be the
most attractive method.

5 Numerical Results

In order to illustrate the behavior of the MGGB and GGB methods, we ap-
ply the solvers to the following nonlinear (and nonsymmetric) problems: A
1D modified Bratu problem and 2D/3D, steady, thermal-convection flows.
In the first problem we use a central difference discretization and standard
multigrid methods, and in the second the nonsymmetric algebraic systems are
generated by the MPSalsa code [23], [24] and a smooth aggregation multilevel
method [25] implemented in the ML package [26], is used as preconditioner to
the restarted GMRES(m) method.

12



5.1 1D modified Bratu problem preconditioned by standard multigrid

We apply the following left preconditioners to GMRES for the solution of the
modified Bratu problem described in (9). A standard multigrid with restric-
tion based on full weighting and injection described in Section 3, GGB method
based on the same standard multigrid method and the corresponding MGGB
method. One pre- and post- Gauss-Siedel smoothing sweep is applied to all
methods. We don’t consider here the GGBa« strategy described in Section 4.
Table 1 shows the convergence of the various preconditioners for a system of
size N = 315. The problem parameters are chosen to be A = 3 and a = 1.3,
with initial guess ug = 2sin(7z), yielding a nonlinear problem (9) that is in-
definite and nonsymmetric. For the linear solve, we use the following stopping
criteria ||||:;||||i < 1078, where 7* = f — Ku® is the residual at the inner iter-

ation i. The outer iteration is terminated when F' < 10~%. Results obtained
for MGGB methods, use a measure based on an approximate angle between
subspaces described in Section (4), with a critical angle for recomputing the
GGB filter set to 6., = 20°. We choose only 4 modes to construct the filter.
In general, all the multigrid methods maintain the same rate as the prob-
Table 1

Convergence of various preconditioners to GMRES applied to modified Bratu

problems of size 115, 315 and 515, respectively. The problem parameters are set to
A=3and a=1.3.

Total linear solve iter. Average No. of iter.
Preconditioner N=115 | N=315 | N=515 || N=115 | N=315 | N=515
MG pun 133 112 102 8.31 8.00 7.84
MGip; 298 265 245 18.62 18.92 18.84
GGB with MGy 76 59 54 4.75 4.21 4.15
GGB with MGy 153 140 129 9.56 10.00 9.92
MGGB with MG gy 76 59 54 4.75 4.21 4.15
MGGB with MGy 161 145 133 10.06 10.35 10.23

lem size increases, i.e. are mesh independent. Yet, adding the additional GGB
operator (with only 4 modes) cuts in almost half the required number of it-
erations. It is also clear from Table 1 that GGB and MGGB with MGy
performs the best. In fact, both methods have similar convergence rates, yet
the prolongation in the case of MGGB is computed only once at the first iter-
ation and reused. Figure 6 compares the approximate ,,, = Z(Q7, R\;5Q7)
and exact angle f,,, = Z(Q7, U7*!) between subspaces. For both MGGB cases
the prolongation was computed only once. Notice that the convection term is
chosen to be less than the one presented in Section 3, however it illustrates well

13



the match and mismatch of the angles. In other words, the subspace Rﬂé@j
we use to approximation of the angle 6,,, in valid when the multigrid iteration
matrix only slightly changes as the MG,y case.

Angle between subspaces. MG = operator

full

T T
0.2F 4
O 1 1 1 1 1 1
2 4 6 8 10 12
Angle between subspaces. MGinj operator
101 : 7
‘o

5] 7

0 I I T N N N

2 4 6 8 10 12

Newton iter.

Fig. 6. Approximate and exact angle between subspace for MG,y and MGy
iteration matrices (N = 115), respectively.

5.2 Steady, thermal-convection flow, preconditioned by smooth aggregation

In this section we demonstrate the performance of GGB, GGBa and MGGB
methods applied to steady, thermal-convection flow. The governing PDEs are
the following Navier-Stokes with thermal energy equations

Momentum pu-Vu—-V-T—pg=0 (36)
Total mass V-(pu) =0 (37)
Thermal energy pCou-VT +V-q=0 (38)

The unknown quantities are u the fluid velocity vector, P the hydrodynamic
pressure and 7' the temperature. p, g, and C’p are respectively, the density,
the gravity vector and the specific heat at constant pressure. The Boussinesq
approximation is used for representing the body force term. The necessary
constitutive equations for T and q are

Stress tensor T=-PI+7Y =PI+ pu(Vu+ Vu’)
Heat flux q=—-kVT (39)

14



where p is the viscosity and « is the thermal diffusivity. (36)-(38) are ap-
proximated by a Galerkin Least Squares formulation. The resulting nonlinear
system of equations gives rise to a system of coupled, nonlinear and non-
symmetric algebraic equations. We employ MPSalsa [23], [24] to generate the
system of equations.

To solve the linear systems arising from Newton’s method, we use the follow-
ing preconditioners to a restarted GMRES(m) method. A smooth aggregation
multilevel method [25] implemented in ML package [26], a generalized global
basis (GGB) method [1] based on the smooth aggregation method from ML,
a GGBa method and an MGGB method. We apply a measure based on the
angle between subspaces (see Section 4) for the following cases. In GGB«
method the angle is used to determine whether the new computed subspace
is needed to enrich the prolongation. In all examples we compute two new
eigenvectors every nonlinear iteration. If # > 5° the new subspace is added.
In MGGB we use an approximate angle which is used to predict whether the
entire prolongation should be recomputed. If # > 20° a new filter is computed.
The approximate angle is computed between the previous prolongation (7
and two vectors given by

vi=Riigd  i=1,2 (40)

where q,j are the highest eigenvectors from subspace Q7. We employ LAPACK
subroutines [28] to compute the maximum principal angle. The angle is com-
puted numerically by first obtaining an orthogonal basis (QR factorization
based on Househoulder triangularization) and second using an SVD type ap-
proach (see Section 4 for more details).

Due to nonsymmetry our algebraic multigrid experience with smoothed ag-
gregation shows the best performance is obtained when piecewise constants
are used as grid interpolants (unsmoothed aggregation). We also apply two
cycles of the aggregation method to precondition GMRES in order to have a
fair comparison to the GGB cycle (see Figure 1). For all problems, one pre-
and post- ILU(0) smoothing iteration is applied on each level, excluding the
coarse one. On the coarsest level a direct solve is applied.

The eigensolver used for GGB [1], GGBa and MGGB methods is the im-
plicitly restarted Arnoldi method implemented in ARPACK [19]. We initially
compute ten eigenvectors corresponding to largest magnitude eigenvalues to
construct the cycle illustrated in Figure 1. The accuracy of the eigensolver is
set to 107* and the restarted Arnoldi space is set to 50. The tolerance of the
linear solve is set to |||‘:;|||\2; < 1078, We report results for flow in three geome-

tries (i) 2D flow in a box (ii) 3D flow between cylinders and (iii) 3D flow in a
cube.
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5.2.1 2D flow in a box

Tables 2, 3 and 4 illustrate the convergence behavior of the various precon-
ditioners with GMRES(40) applied to a thermal-convection flow in a box.
A no-slip condition is enforced on all surfaces. A hot temperature is set on
one side of the box and a cold temperature is set on the other side. We set
Rayleigh number to 1.0 x 10° and the Prandtl number to 1.0. The results are
reported in Table 2, Table 3 and Table 4 for 32 x 32 elements with 4, 356
unknowns, 128 x 128 elements with 66, 564 unknowns and 256 x 256 elements
with 264,196 unknowns, respectively. We apply 3-levels of the aggregation
method from ML [26] to the 32 x 32 box, 4-levels to the 128 x 128 box and
5-levels to the 256 x 256 box. Note that MGGB recomputes the eigenspace
only at certain Newton iterations as indicated in the last column of the Ta-
bles. The computation is based on the approximate angle between subspaces
described in Section ?7.

It is clear from Table 2 that the fastest preconditioner to converge is the
smoothed aggregation multilevel method from ML [26], however the mini-
mum number of iterations is obtained by the GGB preconditioner. The MGGB
method converged faster and with fewer iterations than GGBa. On the 128 x
128 elements problem illustrated in Table 3, the MGGB method is the fastest
method to converge. GGBa also performs well computing only two new eigen-
vectors (except for the first step). The GB method performs worse than the
other methods. As expected, the GGB method performs the best in terms of it-
eration count. The performance of the preconditioners on the largest problem,
presented in Table 4, are quite interesting. The convergence of ML deteriorates
and the number of iterations and CPU time for convergence is much higher
than those obtained by the GGB family. The best performance in terms of
CPU time is obtained for MGGB. An important observation is that both
GGBa and MGGB methods reduce the amount of work done by the eigen-
solver compared to the GGB method.

Table 2

CPU time and iteration summary for thermal-convection flow in 32 x 32 box with
4,356 unknowns. 3-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors
Precnd. || Total | Eigensolver | Eigen % || Total | Average || Total | Itr. comp.
ML 8.69 - - 180 18.0 - -
GGB 13.88 5.73 41.28 105 10.5 100 1-10
GGBa 12.59 3.39 26.92 151 15.1 20 1-10
MGGB || 11.00 2.27 20.63 129 12.9 40 1-4

Figure 7 compares the exact angle 0., = Z(Q7,U’*!) to the approximate
angle 0,,, = Z(Q, RﬂéQj ) between subspaces. We compare the angles for a
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Table 3
CPU time and iteration summary for thermal-convection flow in 128 x 128 box
with 66,564 unknowns. 4-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors
Precnd. | Total | Eigensolver | Eigen % || Total | Average || Total | Itr. comp.
ML 324.31 - - 825 82.5 - -
GGB 335.30 108.68 32.41 355 35.5 110 1-10
GGBa 305.88 58.20 19.02 411 41.1 18 1-10
MGGB || 287.03 37.53 13.07 429 42.9 30 1,2,4
Table 4

CPU time and iteration summary for thermal-convection flow in 256 x 256 box
with 264, 196 unknowns. 5-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors
Precnd. Total | Eigensolver | Eigen % | Total | Average || Total | Itr. comp.
ML 4389.14 - - 3873 387.3 - -
GGB 2329.39 777.61 33.38 838 83.8 150 1-10
GGBa || 3248.76 272.75 8.40 2058 205.8 17 1-10
MGGB || 2172.93 236.80 10.90 1149 114.9 45 1-2,4

situation where the prolongation operator is computed only once in the first
iteration. It can be seen that the approximation is valid in the region where
the multigrid iteration matrices only slightly vary (Newton iterations six and
higher) for the 32 x 32 and 128 x 128 problems. Nevertheless, the general be-
havior is well captured. In the 256 x 256 box the approximated angle match
with the exact angle.

5.2.2 3D flow between two finite length cylinders

In this case the fluid is confined between two cylinders with an outer to inner
radius ratio of g and a ratio of length to outer diameter of 1. A no-slip condition
is enforced on all boundaries. A hot temperature is set to the inner cylinder
and a cold temperature is set to the outer cylinder. The ends of the annular
region are insulated. The momentum transport, total mass conservation and
energy transport are given in equations (36)-(38). Tables 5 and 6 illustrate the
convergence behavior of the various preconditioners. The mesh considered in
Table 5 consists of 768 elements with 5,400 unknowns, and 32, 768 elements
with 179,520 unknowns in Table 6. The Prandtl number is set to 1.0 for both
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Fig. 7. Approximate and exact angle between subspace for the 32 x 32, 128 x 128
and 256 X 256 boxes, respectively.

problems and the Rayleigh number to 4.0 x 103 and 7.6 x 103 for the small and
large problem, respectively. We apply 3-levels of aggregation from ML [26] to
the 768 elements problem, and 4-levels to the 179, 520 problem. All methods
are applied as preconditioners to GMRES(30) for both problems.

Table 5 indicate that MGGB converge in less C PU time than the rest of the
preconditioners. On the other hand the multilevel method by itself does not
perform well and converges in about twice the time of MGGB with a factor
of more than 10 in iterations. Indeed, applying a GGB type filter accelerates
the multilevel tremendously. Again, for the larger problem MGGB performs
the best in terms of C'PU time. Indeed, both MGGB and GGBa strategies
accelerate the GGB method by reusing previous computed prolongation.

Table 5
CPU time and iteration summary for thermal-convection flow between cylinders
with 5,400 unknowns. 3-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors
Precnd. || Total | Eigensolver | Eigen % || Total | Average || Total | Itr. comp.
ML 95.66 - - 1256 125.6 - -
GGB 57.93 22.40 38.67 142 14.2 100 1-10
GGBa 54.22 9.11 16.80 346 34.6 23 1-10
MGGB || 47.95 10.93 22.79 160 16 50 1-5
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Table 6
CPU time and iteration summary for thermal-convection flow between cylinders
with 179,520 unknowns. 4-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors
Precnd. Total | Eigensolver | Eigen % | Total | Average | Total | Itr. comp.
ML 3074.42 ; ; 717 | 51.21 ; ;
GGB | 4177.03 | 1697.40 40.64 | 280 20 140 1-14
GCGBa | 3435.32 | 800.27 23.30 || 313 | 22.35 33 1-14
MGGB || 2847.50 327.99 11.52 280 20 40 1,4-6

6 Conclusions

The Generalized Global Basis (GGB) method [1] provides robustness to mul-
tilevel methods applied to difficult systems (indefinite and nonsymmetric).
The efficiency of the method hinges on the highest eigenmodes computations.
We study two strategies to accelerate the GGB method applied to nonlinear
problems. Both strategies, GGBa and MGGB, reuse the previously computed
eigenspace based on the maximum principal angle between subspaces. Numer-
ical examples clearly show that MGGB outperforms all methods providing
significant time savings.
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