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Abstract

The manuscript presents a novel model reduction approach for periodic heterogeneous media,
which combines the multiple scale asymptotic (MSA) expansion method with the transformation
field analysis (TFA) to reduce the computational cost of a direct homogenization approach without
significantly compromising on solution accuracy. The evolution of failure in micro-phases and interfaces
is modeled using eigendeformation. Adaptive model improvement strategy incorporating a hierarchical
sequence of computational homogenization models is employed to control the accuracy of the model.
We present the model formulation and the computational details along with verification (with respect
to direct homogenization) and validation (with respect to physical experiments) studies.

1 Introduction

The importance of composite materials for high-performance applications that require high specific
strength and/or stiffness, low electrical conductivity, transparency to radio emissions, and resistance
to corrosion has been recognized more than half a century ago. Yet the supporting modeling and
simulation tools used in practice are often ranging from the rule of mixtures dating back to the
Renaissance era to various effective medium models of Eshelby [1], Hashin [2], Mori and Tanaka [3], self-
consistent approaches of Hill [4] and Christensen [5] among many others. The emerging computational
homogenization methods based on the mathematical homogenization theory pioneered by Babuska [6],
Bensoussan [7], Suquet [8], Sanchez-Palencia [9], Guedes and Kikuchi [10] and Terada and Kikuchi [11]
had so far very little or no impact on practitioners. This can be attributed to the following reasons:

1. Material characterization and calibration to experimental data are often available on the macroscale
only;

2. Lack of accuracy in the vicinity of high gradient regions; and

3. Computational cost.

The first barrier is concerned with scale-specific measurements of in-situ properties, uncertainty
quantification and indirect calibration by inverse methods [12]. The second barrier is concerned with
the principal limitations of the homogenization approach: periodicity and uniformity of macroscale
fields. Various hierarchical techniques [13, 14] and higher order homogenization techniques [15] have
been developed to extend the range of validity of O(1) computational homogenization approaches.
The present manuscript does not address the first two barriers, but rather focuses on the last one.
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Figure 1: Linking micromechanical and macromechanical problems through a mesomechanical model.

The third barrier is purely computational. The computational complexity of solving a two-scale
nonlinear problem is tremendous. To illustrate the computational complexity involved, consider a
macro-problem with Ncells Gauss points, n load increments in the macroscale, and Icoarse and Ifine

average iterations in the macro- and micro- scales, respectively. The total number of linear solves of
a micro-problem is Ncells · n · Icoarse · Ifine - a formidable computational cost if the number of unit cells
and degrees-of-freedom in a unit cell is substantial. This tyranny of scales can be effectively addressed
by a combination of parallel methods and by introducing an intermediate mesomechanical model as
shown in Figure 1. While parallelization in space is very natural since unit cell problems are fully
parallelizable in space (see for instance Feyel and Chaboche [16]), parallelization in time remains an
outstanding issue. Some promising results on parallelization in time have been obtained by utilizing
waveform relaxation scheme [17] and space-time variational multigrid method [18].

Development of mesomechanical models for periodic heterogeneous continua has been an active
research area in the past decade. Perhaps, one of the oldest mesomechanical approaches is based
on purely kinematical Taylor’s hypothesis (closely related to Cauchy-Born rule) which assumes a
uniform deformation in the fine scale; it satisfies compatibility but fails to account for equilibrium
across microconstituents boundaries. A major progress in mesomechanical modeling (obviously at the
expense of computational cost) has been made by utilizing boundary element method [19], the Voronoi
cell method [20], the spectral method [21], the transformation field analysis [22, 23], the Fast Fourier
Transforms [24, 25], the network approximation method [26] and the mathematical homogenization
with eigenstrains [27, 28, 29, 30, 31] based on the Transformation Field Analysis (TFA) [32]. Despite
significant progress, the need for flexible low-cost mesomechanical approach, which can be easily
adapted to meet accuracy needs, still remains.

The Transformation Field Analysis synonymous with the pioneering work of Dvorak and Ben-
veniste [32], has its roots in early works of Laws [33], Willis [34] and Dvorak [35]. It is based on a
brilliant idea that allows precomputing certain information (localization operators, concentration ten-
sors, transformation influence functions) in the preprocessing phase prior to nonlinear analysis, which
consequently can be carried out with a small subset of unknowns. By this approach the effect of eigen-
strains, representing inelastic strains, thermal strains or phase transformation strains, is accounted
for by solving a linear elasticity problem and is linearly superimposed with the deformation induced
by uniform overall strain. The salient feature of TFA based approaches is that unit cell equilibrium
equations, which have to be satisfied Ncells ·n ·Icoarse ·Ifine times in the direct homogenization approach
(see earlier discussion) are satisfied a priori, in the preprocessing stage.

In this manuscript we develop an adaptive mesomechanical approach which is based on the gener-
alization of the mathematical homogenization theory with eigenstrains [25, 26, 27, 31] in the following
two respects:

i. it accounts for interface failure in addition to failure of microconstituents; interface failure is
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modeled using so-called eigendisplacements - a concept similar to eigenstrains used for modeling
of inelastic deformation of phases; eigenstrains and eigendisplacements are collectively called
eigendeformation.

ii. it is equipped with an adaptive model improvement capability; it incorporates a hierarchical
sequence of computational homogenization models where the most inexpensive member of the
sequence represents simultaneous failure of each microphase (inclusion, matrix and interface),
whereas the most comprehensive model of the hierarchical sequence coincides with a direct
homogenization approach (see for instance [11]);

The paper is organized as follows: The fundamental properties of the response fields and definitions
of the spatial scales along with the governing equations are provided in Section 2. Section 3 outlines the
formulation of the generalized mathematical homogenization with eigendeformation that decomposes
the original boundary value problem into micro- and macro-scale problems. Derivation of reduced
order model, nonlocal damage evolution law, and model improvement strategies are discussed in
Section 4. Section 5 focuses on the implementation details of the reduced order model including stress
update, consistent tangent operator and extension to large macroscopic deformation. Verification and
validation studies are given in Section 6. A summary and a glimpse on future work conclude the
manuscript.

2 Problem setting and governing equations

Consider a heterogeneous body formed by the repetition of a locally periodic microstructure occupying
an open, bounded domain, Ω ⊂ Rnsd , with nsd being the number of space dimensions, as shown in
Fig. 2. The microstructure (unit cell) is composed of two or more different materials and is denoted by
Θ ⊂ Rnsd . The size of the unit cell is taken to be small compared to the dimensions of the macroscopic
domain Ω. The ratio between the size of the unit cell and the macroscopic domain is denoted by a
small positive constant, ζ. Under loads, the response of the heterogeneous body rapidly oscillates in
space due to the fluctuations in the material properties within the unit cell. In other words, response
fields are functions of the macroscale coordinate system, x, as well as the microscale coordinate
system, y ≡ x/ζ, which may be regarded as a stretched position vector within the microstructure.
Schematically, this is denoted by

f ζ (x) = f (x,y (x)) (2.1)

where, f denotes response fields; and superscript ζ indicates the dependence of the response field on
the microstructural heterogeneities. The macroscopic spatial derivative of f ζ may be calculated by
the chain rule

f ζ
,xi

(x) = f,xi (x,y) +
1
ζ
f,yi (x,y) (2.2)

where, a comma followed by a subscript variable xi or yi denotes a partial derivative with respect to
the components of the macroscopic and microscopic position vectors, respectively.

All response fields are assumed to be locally periodic throughout the deformation process

f (x,y) = f (x,y + kŷ) (2.3)

where, ŷ denotes the periods of the microstructure; and k is a nsd × nsd diagonal matrix with integer
components.

In this manuscript, a damage process within the microconstituents and interfaces is modeled us-
ing continuous damage mechanics (CDM) although the methodology developed is applicable to other
inelastic models. A history-dependent damage parameter, ωζ

ph , is introduced to represent the state
of damage in the micro-phases (inclusion and matrix). Similarly, the adhesion between the microcon-
stituents is modeled using CDM, in which the interface damage parameter, ωζ

int, represents the state of
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Figure 2: Macro- and microscopic structures.

adhesion. A simple Coulomb type friction model is considered to account for tractions introduced due
to surface roughness along the debonded surfaces. Unilateral contact conditions are imposed along
the interfaces to prevent interpenetration of microconstituents upon compressive loading. Similar in-
terface model has been previously employed by Raous et al. [36] to characterize the behavior of fibrous
ceramic composites.

In Sections 2 to 5 we derive the formulation for small deformation problems. Extension to large
macro-deformation is given in Section 5.3. We consider the following governing equations on x ∈ Ω
and t ∈ [0, to]

σζ
ij,j (x, t) + bζ

i (x, t) = ρζ (x, t) üζ
i (x, t) (2.4)

σζ
ij (x, t) =

[
1− ωζ

ph (x, t)
]
Lζ

ijkl (x) εζ
kl (x, t) (2.5)

εζ
ij (x, t) = uζ

(i,j) (x, t) ≡ 1
2

(
∂uζ

i

∂xj
+

∂uζ
j

∂xi

)
(2.6)

ωζ
ph (x, t) = ωζ

ph

(
σζ

ij , ε
ζ
ij , s

ζ
ph

)
(2.7)

where, uζ
i denotes displacements; σζ

ij the Cauchy stress; εζ
ij the strain; ωζ

ph ∈ [0, 1] with ωζ
ph = 0

corresponding to the state of no damage, and ωζ
ph = 1 denoting a complete loss of load carrying

capacity; bζ
i the body force; ρζ (x, t) the density; t the temporal coordinate; Ω and [0, to] the spatial

and temporal problem domains, respectively; superposed single and double dot correspond to material
time derivative of orders one and two, respectively; and Lζ

ijkl the tensor of elastic moduli obeying the
conditions of symmetry

Lζ
ijkl = Lζ

jikl = Lζ
ijlk = Lζ

klij (2.8)

and positivity
∃C0 > 0; Lζ

ijklξijξkl ≥ C0ξijξkl ∀ξij = ξji (2.9)

The evolution equation of ωζ
ph is given in a functional form (Eq. 2.7) as a function of strain, stress

and additional state variables sζ
ph (see [37]for various damage evolution equations).

The initial and boundary conditions are assumed to be a function of the macroscale coordinates
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only

uζ
i (x, t) = ûi (x) ; x ∈ Ω; t = 0 (2.10)

u̇ζ
i (x, t) = v̂i (x) ; x ∈ Ω; t = 0 (2.11)

uζ
i (x, t) = ūi (x, t) ; x ∈ Γu; t ∈ [0, to] (2.12)

σζ
ij (x, t) nj = t̄i (x, t) ; x ∈ Γt; t ∈ [0, to] (2.13)

in which, ûi and v̂i are the initial displacement and velocity fields, respectively; ūi and t̄i are the
prescribed displacements and tractions on the boundaries Γu and Γt, respectively, where Γ = Γu ∪ Γt

and Γu ∩ Γt = ∅, and; ni is the unit normal to Γt.
Let Sζ denote the interface between the microconstituents which is the union of the interfaces in

the unit cells

Sζ =
all cells⋃

α=1

Sα (2.14)

The momentum balance along the interface is given by

σζ
ijnj

∣∣∣
Sζ

+

+ σζ
ijnj

∣∣∣
Sζ
−

= tζi (x, t)
∣∣∣
Sζ

+

+ tζi (x, t)
∣∣∣
Sζ
−

= 0 (2.15)

where, tζi is the traction along the interface; and Sζ
+ and Sζ

− denote the two sides of the interface.
Damage progression may lead to a discontinuity of the displacements along the interface due to
decohesion denoted as

δζ
i (x, t) ≡ Juζ

i (x, t)K = uζ
i

∣∣∣
Sζ
−
− uζ

i

∣∣∣
Sζ

+

(2.16)

where, δζ
i is the displacement jump along the microconstituent interfaces; and J·K is the jump operator.

The unilateral contact conditions with adhesion on Sζ are then given as

tNζ (x, t) −
[
1− ωζ

int (x, t)
]
kζ

N (x) δNζ (x, t) ≤ 0; δNζ (x, t) ≥ 0 (2.17)

{tNζ (x, t) −
[
1− ωζ

int (x, t)
]
kζ

N (x) δNζ (x, t)}δNζ (x, t) = 0 (2.18)

in which, tNζ and δNζ are normal components of traction and displacement jump at the interface,
respectively; ωζ

int ∈ [0, 1] is the interface damage variable indicating the state of debonding along the
interface, with undamaged state being ωζ

int = 0 and kζ
N being the interface stiffness along the normal

direction. In the tangential directions, a Coulomb type friction model is considered in addition to
adhesion

tTζ
ρ (x, t) = tTaζ

ρ (x, t) + tTfζ
ρ (x, t) (2.19)

tTaζ
ρ (x, t) −

[
1− ωζ

int (x, t)
]
kζ

T (x) δTζ
ρ (x, t) = 0 (2.20)

∥∥∥tTfζ (x, t)
∥∥∥ ≤ µF

∣∣∣tNζ (x, t)−
[
1− ωζ

int (x, t)
]
kζ

N (x) δNζ (x, t)
∣∣∣ (2.21)

∥∥∥tTfζ
∥∥∥ < µF

∣∣∣tNζ −
(
1− ωζ

int

)
kζ

NδNζ
∣∣∣ ⇒ δ̇Tζ

ρ = 0 (2.22)
∥∥∥tTfζ

∥∥∥ = µF

∣∣∣tNζ −
(
1− ωζ

int

)
kζ

NδNζ
∣∣∣ ⇒ δ̇Tζ

ρ = κtTfζ
ρ (2.23)

where, tTζ
ρ and δTζ

ρ are the tangential components of traction and displacement jump at the interface,
respectively; boldface symbols indicate the vector form; tTaζ

ρ and tTfζ
ρ are tangential traction due to

adhesion and Coulomb friction, respectively; kT is the interface stiffness along the tangential direction;
µF the friction coefficient; and κ ≥ 0. The subscript ρ is used for three dimensional problems only
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where it ranges from 1 to 2. The evolution of the interface damage, ωζ
int, is given in the functional

form as
ωζ

int (x, t) = ωζ
int

(
tζi , δ

ζ
i , s

ζ
int

)
(2.24)

in which, sζ
int denote the interface state variables. Additional details are provided in Section 4.1.

The interface model with unilateral contact, adhesion and friction conditions can be summarized
as follows: In case of pure tensile loading along the interface, the normal direction behavior is governed
by the adhesion conditions. When compressive normal forces are present, displacement jump in the
normal direction vanish (i.e., closure) and unilateral contact conditions are employed. In the presence
of tangential and tensile forces along the interface, tangential behavior is governed by the adhesion
condition given by Eq. 2.20. For compressive loads, friction conditions are in effect (Eqs. 2.21-2.23)
in addition to adhesion.

3 Generalized Mathematical Homogenization With Eigen-

deformation

The governing equations (Eqs. 2.4-2.24) are solved approximately using two-scale mathematical ho-
mogenization with eigendeformation. The eigendeformation includes both the phase damage (modeled
by eigenstrains) and interface damage (modeled by eigendisplacements). We extend the original for-
mulation developed in [25, 26, 27], which accounted for damage at the micro-phases only. The 2-scale
asymptotic expansions of the displacement field, uζ

i , phase damage, ωζ
ph, and interface damage, ωζ

int,
on x ∈ Ω; y ∈ Θ and t ∈ [0, to] are given as

ui (x,y, t) ≈ u0
i (x, t) + ζu1

i (x,y, t) (3.1)
ωph (x,y, t) ≈ ω0

ph (x,y, t) + ζω1
ph (x,y, t) (3.2)

ωint (x,y, t) ≈ ω0
int (x,y, t) + ζω1

int (x,y, t) (3.3)

The strain field is obtained by substituting Eq. 3.1 into Eq. 2.6 and exploiting the chain rule given by
Eq. 2.2

εij (x,y, t) ≈ ε0ij (x,y, t) + ζε1ij (x,y, t) (3.4)

in which, the first and second order strain components are in the form

ε0ij (x,y, t) = u0
(i,xj)

(x, t) + u1
(i,yj)

(x,y, t) (3.5)

ε1ij (x,y, t) = u1
(i,xj)

(x,y, t) (3.6)

The average strains are defined by integrating Eq. 3.4 over the unit cell domain

ε̄ij (x, t) =
1
|Θ|

∫

Θ
εij (x,y, t) dΘ = u0

(i,xj)
(x, t) + O (ζ) (3.7)

where, |Θ| denotes the volume of Θ.
The first and second order stress components are evaluated by substituting the asymptotic strain

field decomposition given by Eq. 3.4 into the constitutive equation (Eq. 2.5) and using the asymptotic
expansion of the phase damage variable (Eq. 3.2)

σij (x,y, t) ≈ σ0
ij (x,y, t) + ζσ1

ij (x,y, t) (3.8)

Further assuming Lζ
ijkl = Lijkl (y) gives

σ0
ij (x,y, t) =

[
1− ω0

ph (x,y, t)
]
Lijkl (y) ε0kl (3.9)

σ1
ij (x,y, t) =

[
1− ω0

ph (x,y, t)
]
Lijkl (y) ε1kl − ω1

ph (x,y, t) Lijkl (y) ε0kl (3.10)
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The average stress field is obtained by integrating Eq. 3.8 over the unit cell

σ̄ij (x, t) =
1
|Θ|

∫

Θ
σij (x,y, t) dΘ =

1
|Θ|

∫

Θ
σ0

ij (x,y, t) dΘ + O (ζ) (3.11)

The first and second order equilibrium equations are obtained by substituting Eq. 3.8 into Eq. 2.4,
making use of the chain rule (Eq. 2.2) and applying Eq. 2.1 to the body force (bζ

i = bi (x,y, t))

O(ζ−1) : σ0
ij,yj

(x,y, t) = 0 (3.12)

O(1) : σ0
ij,xj

(x,y, t) + σ1
ij,yj

(x,y, t) + bi (x,y, t) = ρü0
i (x, t) (3.13)

Considering the O(ζ−1) equilibrium equation and combining it with Eqs. 3.5, 3.7 and 3.9 yields
{

Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]}
,yj

= 0 (3.14)

where, µij is the inelastic strain defined as

µij (x,y, t) = ω0
ph (x,y, t)

[
ε̄ij (x, t) + u1

(i,yj) (x,y, t)
]

(3.15)

The evolution equation of the phase damage variable, ω0
ph, is expressed in terms of the asymptotic

terms of strain, stress and state variables as

ω0
ph (x,y, t) = ω0

ph

(
σ0

ij , ε
0
ij , s

0
ph

)
(3.16)

Integrating the O(1) equilibrium equation (Eq. 3.13) and exploiting periodicity of stresses yields
momentum balance of the macroscopic problem

σ̄ij,xj (x, t) + b̄i (x, t) = ρ̄ü0
i (x, t) (3.17)

where, b̄i and ρ̄ are the unit cell average body force and density, respectively.
Next, we consider asymptotic expansions of interface conditions. Substituting asymptotic expan-

sion of stress (Eq. 3.8) into Eq. 2.15 leads to the expressions for the first and second order interface
tractions on x ∈ Ω; y ∈ S; t ∈ [0, to]

ti (x,y, t) ≈ t0i (x,y, t) + ζt1i (x,y, t) (3.18)
t0i (x,y, t) = σ0

ij (x,y, t) nj (3.19)

t1i (x,y, t) = σ1
ij (x,y, t) nj (3.20)

The resulting momentum balance equations at the interface are given as

O(1) : σ0
ijnj

∣∣
S+

+ σ0
ijnj

∣∣
S−

= t0i (x,y, t)
∣∣
S+

+ t0i (x,y, t)
∣∣
S−

= 0 (3.21)

O(ζ) : σ1
ijnj

∣∣
S+

+ σ1
ijnj

∣∣
S−

= t1i (x,y, t)
∣∣
S+

+ t1i (x,y, t)
∣∣
S−

= 0 (3.22)

Since the leading order displacement field, u0
i , is a function of the macroscopic spatial coordinate

system, x, only, it is continuous within a unit cell. Thus, the leading order displacement discontinuity
is of the order O(ζ)

δi (x,y, t) ≈ ζδ1
i (x,y, t) (3.23)

In order to ensure traction continuity along the interface, normal and tangential interface stiffness
coefficients should be of the order O(ζ−1), i.e.,

kζ
N (x) =

1
ζ
kN (y) ; kζ

T (x) =
1
ζ
kT (y) (3.24)

7



where, kN (y) and kT (y) are of order O(1). The interface conditions along the normal and tangential
directions may be obtained by substituting the traction and displacement jump decompositions into
Eqs. 2.17-2.24. In what follows, superscripts denoting the leading order terms of the interface tractions,
interface displacement jumps and damage variables are omitted for conciseness of presentation.

The O(ζ−1) equilibrium equation given by Eq. 3.14, contact conditions at the interface, along
with the periodicity assumption of local fields and evolution equations for damage variables define the
so-called unit cell problem. The unit cell problem is summarized in Box 1. Equation 3.17 along with
macroscopic domain boundary and initial conditions given by Eqs. 2.10-2.13, and constitutive relation
given by Eq. 3.9 define the so-called macroscale problem. The macroscale problem is summarized
in Box 2. Note that inertia effects appear in the macroscale problem only; the unit cell problem is
quasi-static with time corresponding to history dependence.

Given: material properties, Lijkl, kN , kT , µF and macroscopic strains, ε̄ij

Find : microscopic deformations u1
i ∈ Ω̄× Θ̄× [0, t0] → R which satisfy on x ∈ Ω and t ∈ [0, t0]

• Equilibrium: {
Lijkl (y)

[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]}
,yj

= 0; y ∈ Θ

• Kinematics:
µij (x,y, t) = ωph (x,y, t)

[
ε̄ij (x, t) + u1

(i,yj) (x,y, t)
]
; y ∈ Θ

• Unilateral contact and adhesion conditions in the normal direction (y ∈ S):

tN (x,y, t) − [1− ωint (x,y, t)] kN (y) δN (x,y, t) ≤ 0; δN (x,y, t) ≥ 0

{tN (x,y, t) − [1− ωint (x,y, t)] kN (y) δN (x,y, t)}δN (x,y, t) = 0

• Friction and adhesion conditions in the tangential direction (y ∈ S):

tTρ (x,y, t) = tTa
ρ (x,y, t) + tTf

ρ (x,y, t)

tTa
ρ (x,y, t) − [1− ωint (x,y, t)] kT (y) δT

ρ (x,y, t) = 0∥∥tTf
∥∥ (x,y, t) ≤ tcrit (x,y, t)∥∥tTf
∥∥ (x,y, t) < tcrit (x,y, t) ⇒ δ̇T

ρ (x,y, t) = 0∥∥tTf
∥∥ (x,y, t) = tcrit (x,y, t) ⇒ δ̇T

ρ (x,y, t) = κtTf
ρ (x,y, t) ; κ ≥ 0

tcrit (x,y, t) = µF

∣∣tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t)
∣∣

• Θ-periodic boundaries on y ∈ ΓΘ

• Evolution equations for ωph (x,y, t) and ωint (x,y, t)

Box 1: Unit cell problem based on classical mathematical homogenization.
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Given: average body force, b̄i, average density, ρ̄, initial and boundary conditions, ûi, v̂i, ūi, t̄i, and the
solution of the unit cell problem summarized in Box 1 at time t ∈ [0, t0]
Find : macroscopic deformations u0

i ∈ Ω̄× [0, t0] → R

• Momentum balance (x ∈ Ω; t ∈ [0, t0]):

σ̄ij,xj
(x, t) + b̄i (x, t) = ρ̄ü0

i (x, t)

• Kinematics (x ∈ Ω; t ∈ [0, t0]):
ε̄ij (x, t) = u0

(i,xj)
(x, t)

• Constitutive relation (x ∈ Ω; t ∈ [0, t0]):

σ̄ij (x, t) =
1

|Θ|
∫

Θ

Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]
dΘ

• Initial and boundary conditions:

u0
i (x, t) = ûi (x) ; x ∈ Ω; t = 0

u̇0
i (x, t) = v̂i (x) ; x ∈ Ω; t = 0

u0
i (x, t) = ūi (x, t) ; x ∈ Γu; t ∈ [0, to]

σ0
ij (x, t) nj = t̄i (x, t) ; x ∈ Γt; t ∈ [0, to]

Box 2: Macroscale problem.

The two-scale nonlinear boundary value problems summarized in Box 1 and Box 2 can be solved
using direct computational homogenization procedures (see for instance [11] and [16]). Instead, we
proceed by formulating a mesomechanical approach based on the generalization of the mathematical
homogenization theory with eigendeformation. We start by introducing the decomposition of the
microscale displacement field [25, 26, 27]

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t) + ũi (x,y, t) (3.25)

where, Hikl is a Θ-periodic function, and ũi is the displacement field induced by damage process
within the microconstituents and interfaces. The microscale displacement field decomposition given
by Eq. 3.25 is valid for arbitrary damage state. We first consider the state in which microconstituents
are free of damage with perfect bonding along the interfaces (i.e., ωph = 0, δi = 0). In this case, the
damage induced displacement field vanishes and the equilibrium of the unit cell reduces to:

Elastic Influence Function (EIF) Problem:

Given Lijmn (y), find Hikl (y) : Θ̄ → R such that:

{Lijmn (y) Amnkl (y)},yj
= 0; y ∈ Θ

Aijkl (y) = Iijkl + Gijkl (y) ; Gijkl (y) = H(i,yj)kl (y)
Θ− periodic boundary conditions on y ∈ ΓΘ

where, Iijkl is the fourth order identity tensor. The elastic influence function (EIF) problem is solved
for Hikl. For a comprehensive treatment of the linear unit cell problem see [10, 38].

9



Next, consider the case when ε̄ij = 0 and arbitrary damage variables ωph and ωint. Equation 3.14
then reduces to

{Lijkl (y) [ε̃kl (x,y, t)− µkl (x,y, t)]},yj
= 0 (3.26)

Equation 3.26 constitutes an elasticity problem with eigenstrains, µij , within the microconstituents
and eigendisplacements, δi, along the interface. The solution may be expressed by means of damage
influence functions as

ũi (x,y, t) =
∫

θ

hph
ikl (y, ŷ) µkl (x, ŷ, t) dŷ +

∫

S

hint
im (y, ŷ) δm (x, ŷ, t) dŷ (3.27)

in which, hph
ikl and hint

im are the influence functions for damage within the microconstituents and along
the interfaces, respectively. Expressions similar to the first term in Eq. 3.27 can be found in [31,
32, 39, 40]. The phase influence function, hph

ikl, is computed by solving the so-called Phase Damage
Influence Function (PDIF) problem defined below.

Phase Damage Influence Function (PDIF) Problem:

Given Lijmn (y), find hph
ikl (y, ŷ) : Θ̄× Θ̄ → R such that:

{
Lijmn (y)

(
gph
mnkl (y, ŷ) + Imnkld (y − ŷ)

)}
,yj

= 0; y, ŷ ∈ Θ

gph
ijkl (y, ŷ) = hph

(i,yj)kl (y, ŷ)

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
iklK (y, ŷ) = 0 on y, ŷ ∈ Θ

where, gph
ijkl is the polarization function for phase damage; and d the Dirac delta function. The interface

influence function, hint
ip , satisfies the so-called Interface Damage Influence Function (IDIF) Problem

defined below

Interface Damage Influence Function (IDIF) Problem:

Given Lijmn (y), find hint
ip (y, ŷ) : Θ̄× S → R such that:

{
Lijmn (y) gint

mnp (y, ŷ)
}

,yj
= 0; y ∈ Θ, ŷ ∈ S

gint
ijp (y, ŷ) = hint

(i,yj)p
(y, ŷ)

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
ip K (y, ŷ) = Qipd (y − ŷ) when y ∈ S or ŷ ∈ S

in which, gint
ijp is the polarization function for the interface damage; and Qip denotes transformation

from the local interface to the global Cartesian coordinate system.
We now proceed to constructing a unit cell problem that incorporates the influence functions.

Based on Eq. 3.25, the O(ζ−1) equilibrium equation takes the form

{Lijmn(y) [Amnkl(y)ε̄kl(x, t) + ε̃kl(x,y, t)− µkl (x,y, t)]},yj
= 0 (3.28)

where, the damage induced strain, ε̃ij , is given as

ε̃ij(x,y, t) = ũ(i,yj)(x,y, t) =
∫

θ

gph
ijkl (y, ŷ) µkl (x, ŷ, t) dŷ +

∫

S
gint
ijm (y, ŷ) δm (x, ŷ, t) dŷ (3.29)
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Premultiplying Eq. 3.28 by the interface damage influence function, hint
ip , integrating by parts

over the unit cell Θ, using Green’s theorem and considering the periodicity as well as the symmetry
conditions on Lijkl, the relation between the interface tractions and phase stresses are obtained

tp (x, ŷ, t) = −
∫

Θ
gint
ijp (y, ŷ) Lijmn (y) [Amnkl (y) ε̄kl(x, t) + ε̃mn(x,y, t)− µmn(x,y, t)] dy (3.30)

Equations 3.15, 3.29, 3.30 along with the interface conditions summarized in Box 1 and damage
evolution equations constitute a series of integral equations with inequality constraints. This system
is summarized in Box 3.

Given: material properties, Lijkl, kN , kT , µF ; influence functions, Hikl, hph
ikl, hint

ip , and macroscopic strains,
ε̄ij

Find : µij ∈ Ω̄× Θ̄× [0, t0] → R and δi ∈ Ω̄× S × [0, t0] → R which satisfy on x ∈ Ω and t ∈ [0, t0]

• Kinetics (ŷ ∈ S):

tp (x, ŷ, t) = −
∫

Θ

gint
ijp (y, ŷ) Lijmn [Amnkl (y) ε̄kl(x, t) + ε̃mn(x,y, t)− µmn(x,y, t)] dy

• Kinematics (y ∈ Θ):

ε̃ij(x,y, t) =

∫

θ

gph
ijkl (y, ŷ) µkl (x, ŷ, t) dŷ +

∫

S

gint
ijm (y, ŷ) δm (x, ŷ, t) dŷ

µij (x,y, t) = ωph (x,y, t) [Aijkl (y) ε̄kl (x, t) + ε̃ij (x,y, t)]

• Unilateral contact and adhesion conditions in the normal direction (y ∈ S):

tN (x,y, t) − [1− ωint (x,y, t)] kN (y) δN (x,y, t) ≤ 0; δN (x,y, t) ≥ 0

{tN (x,y, t) − [1− ωint (x,y, t)] kN (y) δN (x,y, t)}δN (x,y, t) = 0

• Friction and adhesion conditions in the tangential direction (y ∈ S):

tTρ (x,y, t) = tTa
ρ (x,y, t) + tTf

ρ (x,y, t)

tTa
ρ (x,y, t) − [1− ωint (x,y, t)] kT (y) δT

ρ (x,y, t) = 0∥∥tTf
∥∥ (x,y, t) ≤ tcrit (x,y, t)∥∥tTf
∥∥ (x,y, t) < tcrit (x,y, t) ⇒ δ̇T

ρ (x,y, t) = 0∥∥tTf
∥∥ (x,y, t) = tcrit (x,y, t) ⇒ δ̇T

ρ (x,y, t) = κtTf
ρ (x,y, t) ; κ ≥ 0

tcrit (x,y, t) = µF

∣∣tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t)
∣∣

• Evolution equations for ωph (x,y, t) and ωint (x,y, t)

Box 3: Unit cell problem based on the generalized mathematical homogenization with eigenstrains.

4 A Reduced Order Model

To reduce the computational cost of direct homogenization method, the integral equations in Box 3
are decomposed using separation of variables for the interface damage, damage induced strain, phase
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damage and inelastic strain fields

ωph (x,y, t) =
∑

γ

N
(γ)
ph (y) ω

(γ)
ph (x, t); µij (x,y, t) =

∑
γ

N
(γ)
ph (y) µ

(γ)
ij (x, t) (4.1)

ωint (x,y, t) =
∑

β

N
(β)
int (y) ω

(β)
int (x, t); δ̂i (x,y, t) =

∑

β

N
(β)
int (y) δ̂

(β)
i (x, t) (4.2)

γ = 1, 2, . . . ; β = 1, 2, . . .

The phase shape functions, N
(γ)
ph , are assumed to be C−1 (Θ) continuous matching the continuity

of the displacement derivatives. On the other hand, the interface shape functions, N
(β)
int , are taken to

be C0 (S) due to C0 (S) continuity of the displacement jumps at the interface, i.e. δ̂i ∈ C0 (S). In
Eq. 4.2, displacement jumps are decomposed into opening/sliding components in the local coordinate

system, δ̂(β) =
[
δN(β)

(
δT (β)

)T
]T

.

Both N
(γ)
ph and N

(β)
int are assumed to satisfy the partition of unity property

∑
γ

N
(γ)
ph (y) = 1;

∑

β

N
(β)
int (y) = 1 (4.3)

In the following, superscripts, η and γ are reserved for functions denoting phase fields, whereas, α and
β are reserved for the interfaces fields.

We further define weighted average fields as

ω
(γ)
ph (x, t) =

∫

Θ
ϕ

(γ)
ph (y) ωph (x,y, t) dy; µ

(γ)
ij (x, t) =

∫

Θ
ϕ

(γ)
ph (y) µij (x,y, t) dy (4.4)

ω
(β)
int (x, t) =

∫

S
ϕ

(β)
int (y) ωint (x,y, t) dy; δ̂

(β)
i (x, t) =

∫

S
ϕ

(β)
int (y) δ̂i (x,y, t) dy (4.5)

in which, the phase and interface weight functions, ϕ
(γ)
ph and ϕ

(β)
int satisfy positivity

ϕ
(γ)
ph (y) ≥ 0; ϕ

(β)
int (y) ≥ 0 (4.6)

and normalization ∫

Θ
ϕ

(γ)
ph (y) dy = 1;

∫

S
ϕ

(β)
int (y) dy = 1 (4.7)

conditions. It can be easily shown that Eqs 4.1, 4.2, 4.4, and 4.5 imply orthonormality of the shape
and weight functions for arbitrary damage state within the phases and interfaces

∫

Θ
ϕ

(γ)
ph (y) N

(η)
ph (y) dy = δK

γη (4.8)
∫

S
ϕ

(β)
int (y) N

(α)
int (y) dy = δK

βα (4.9)

in which, δK
γη is the Kronecker delta.

We now focus on various choices of the weight and shape functions satisfying orthonormality
(Eqs. 4.8 and 4.9), partition of unity (Eq. 4.3), positivity (Eq. 4.6) and normalization (Eq. 4.7)
conditions.

Consider a two-scale heterogeneous material composed of nph phases and nint interfaces (e.g., for
fibrous or woven composites, nph is typically 2 with matrix and fiber phases occupying domains, Θ(M)

and Θ(F ), respectively, and nint = 1). The microstructure is further partitioned into n subdomains
denoted by Θ(η), η = 1, 2, . . . , n. The partitioning is constructed so that each subdomain belongs to
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a single phase (Θ(η)
⋂

Θ(M) ≡ Θ(η) or Θ(η)
⋂

Θ(F ) ≡ Θ(η)), Θ ≡ ⋃n
η=1 Θ(η) and Θ(η)

⋂
Θ(γ) ≡ ∅ for

η 6= γ. The phase shape and weight functions (N (η)
ph and ϕ

(η)
ph , respectively) are selected to be piecewise

constant in Θ with nonzero values within their corresponding partitions, Θ(η), only

N
(γ)
ph (y) =

{
1 if y ∈ Θ(η)

0 elsewhere
(4.10)

ϕ
(γ)
ph (y) =

1∣∣Θ(η)
∣∣N

(γ)
ph (y) (4.11)

where,
∣∣Θ(η)

∣∣ is the volume of partition Θ(η). It is a trivial exercise to verify that the above phase shape
functions satisfy the orthonormality (Eq. 4.8) and partition of unity (Eq. 4.3) conditions, whereas the
weight functions satisfy the normalization and positivity conditions. It is important to note that
the local supports, Θ(η), are arbitrary noncontiguous domains. This choice proves to be valuable in
devising an adaptive partitioning strategy discussed in Section 4.3.

The interface is divided into m partitions such that S ≡ ⋃m
α=1 S̄(α). In contrast to the phase

partitioning, interface partitions overlap as schematically shown in Fig. 3.

S̄(α) = S(α)
⋃ m∑

β=1
β 6=α

O(αβ) (4.12)

where S(α) is the nonoverlapping region in S̄(α); and O(αβ) is the overlap between neighboring parti-
tions S̄(α) and S̄(β). The interface shape functions, N

(α)
int , are constructed by a linear combination of

finite element shape functions corresponding to the nodes in the interface partition, S(α)

N
(α)
int (y) =

∑

a∈S(α)

Na (y) ; y ∈ S (4.13)

in which, Na are standard finite element shape functions associated with the microscopic finite element
mesh node a. The interface weight functions are chosen to be piecewise constant

ϕ
(α)
int (y) =

{
1/

∣∣S(α)
∣∣ if y ∈ S(α)

0 elsewhere
(4.14)

where
∣∣S(α)

∣∣ is the area of interface partition, S(α). Again, it is a trivial exercise to verify that the
interface shape and weight functions satisfy the aforementioned four conditions (Eqs. 4.3, 4.6, 4.7,
and 4.9).

Employing the above definitions of the phase and interface weight functions, Eqs. 4.4 and 4.5
reduce to

ω
(η)
ph (x, t) =

1∣∣Θ(η)
∣∣
∫

Θ(η)

ωph (x,y, t) dy µ
(η)
ij (x, t) =

1∣∣Θ(η)
∣∣
∫

Θ(η)

µij (x,y, t) dy

ω
(α)
int (x, t) =

1∣∣S(α)
∣∣
∫

S(α)

ωint (x,y, t) dy δ̂
(α)
i (x, t) =

1∣∣S(α)
∣∣
∫

S(α)

δ̂i (x,y, t) dy
(4.15)

Substituting Eqs. 4.1-4.2 into Eqs. 3.15 and 3.29, premultiplying the resulting equation by ϕ
(η)
ph ,

and integrating over the unit cell yields

n∑

γ=1

[
δK
ηγIijkl − P

(ηγ)
ijkl ω

(η)
ph (x, t)

]
µ

(γ)
kl (x, t)− ω

(η)
ph (x, t)

m∑

β=1

[
R̂(ηβ)

ij · δ̂(β) (x, t)
]

= ω
(η)
ph (x, t) A

(η)
ijklε̄kl (x, t)

(4.16)
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S
(α)

S
(β)

O
(αβ)

S
(α)
= S

(α)

O
(αβ)fiber

matrix

interface

Nint
(α)
(y)

S
(β)

O
(αβ)

ϕint
(α)
(y)

}
S
(α)

}
S
(β)

Figure 3: The interface shape and weight functions: (a) Interface partitions in multidimensions, (b)
Interface shape and weight function in one dimension.

where

P
(ηγ)
ijkl =

1∣∣Θ(η)
∣∣

∫

Θ(η)

P̃
(γ)
ijkl (y) dy (4.17)

A
(η)
ijkl =

1∣∣Θ(η)
∣∣

∫

Θ(η)

Aijkl (y) dy (4.18)

R̂(ηβ)
ij =

1∣∣Θ(η)
∣∣

∫

Θ(η)

R̃(β)
ij (y) dy (4.19)

P̃
(η)
ijkl (y) =

∫

Θ(η)

gph
ijkl (y, ŷ) dŷ (4.20)

R̃(α)
ij (y) =

∫

S̄(α)

gint
ijp (y, ŷ) N

(α)
int (ŷ) êp (ŷ) dŷ (4.21)

where, êp are the basis vectors in the local normal and tangential directions along the interface.
Summation convention is not applied for the repeated superscripts.

Substituting Eqs. 4.1-4.2 into Eq. 3.30, premultiplying the result by ϕ
(α)
int , and integrating over the

interface gives

t̂(α) (x, t) +
M∑

β=1

D̂(αβ) · δ̂(β) (x, t) +
n∑

γ=1

F̂(αγ)
ij µ

(γ)
ij (x, t) = −Ĉ(α)

ij ε̄ij (x, t) (4.22)

where,

t̂(α) (x, t) ≡ 1
|S(α)|

∫

S(α)

t̂ (x,y, t) dy (4.23)
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in which, t̂ =
[
tN

(
tT

)T
]T

is the traction vector in local coordinates; and

Ĉ(α)
ij =

1∣∣S(α)
∣∣

∫

S(α)

∫

Θ

gint
mnp (y, ŷ) Lmnkl (y) Aklij (y) êp (ŷ) dydŷ (4.24)

D̂(αβ) =
1∣∣S(α)

∣∣
∫

S(α)

∫

Θ

gint
mnp (y, ŷ) Lmnkl (y) R̃(β)

kl (y)⊗ êp (ŷ) dydŷ (4.25)

F̂(αγ)
ij =

1∣∣S(α)
∣∣

∫

S(α)

∫

Θ

gint
mnp (y, ŷ) Lmnkl (y)

(
P̃

(γ)
klij (y)− IklijN

(γ)
ph (y)

)
êp (ŷ) dydŷ (4.26)

We now turn our attention to the contact, adhesion and friction conditions along the interfaces. The
adhesion conditions in the normal direction are expressed in terms of tN(α) and δN(α) by employing
Eqs. 4.2, integrating with respect to ϕ

(α)
int , using the orthonormality, and positivity of the weight

functions give

tN(α) (x, t)−
[
1− ω

(α)
int (x, t)

]
k

(α)
N δN(α) (x, t) 6 0; δN(α) (x, t) > 0 (4.27)

where
k

(α)
N =

1∣∣S(α)
∣∣
∫

S
kN (y) dy (4.28)

and the consistency condition is given as
{

tN(α) (x, t)−
[
1− ω

(α)
int (x, t)

]
k

(α)
N δN(α) (x, t)

}
δN(α) (x, t) = 0 (4.29)

In the tangential direction, the adhesion condition may be obtained similarly to the expressions in the
normal direction.

tTa(α) =
[
1− ω

(α)
int (x, t)

]
k

(α)
T δT (α) (x, t) (4.30)

where, k
(α)
T is defined analogous to k

(α)
N . The friction condition along the interfaces is given by

∥∥∥tTf(α)
∥∥∥ 6 µF

∣∣∣tN(α) (x, t)−
[
1− ω

(α)
int (x, t)

]
k

(α)
N δN(α) (x, t)

∣∣∣ (4.31)

∥∥∥tTf(α)
∥∥∥ < µF

∣∣∣tN(α) (x, t)−
[
1− ω

(α)
int (x, t)

]
k

(α)
N δN(α) (x, t)

∣∣∣
⇒ δ̇T (α) (x, t) = 0

(4.32)

∥∥∥tTf(α)
∥∥∥ = µF

∣∣∣tN(α) (x, t)−
[
1− ω

(α)
int (x, t)

]
k

(α)
N δN(α) (x, t)

∣∣∣
⇒ δ̇T (α) = κtTf(α), κ > 0

(4.33)

Equations 4.16, 4.22, 4.27, 4.29, and Eqs. 4.30-4.33 constitute a discrete system of equations in terms
of µ

(γ)
ij and δ̂

(β)
i , with contact constraints. The resulting reduced order model is termed thereafter

as (m + n) point model, in which m and n denote the number of interface and phase partitions,
respectively. The (m + n) point model is summarized in Box 4.
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Given: coefficient tensors and material parameters: P
(ηγ)
ijkl , A

(η)
ijkl, R̂

(ηβ)
ij , Ĉ

(α)
ij , D̂(αβ), F̂

(αγ)
ij , k

(α)
N , k

(α)
T , µF

and the macroscopic strain, ε̄ij

Find : µ
(γ)
ij ; γ = 1, 2, . . . , n and δ

(α)
i ; α = 1, 2, . . . ,m which satisfy on x ∈ Ω and t ∈ [0, t0]

• Kinetics:

t̂(α) (x, t) +
m∑

β=1

D̂(αβ) · δ̂(β) (x, t) +
n∑

γ=1

F̂
(αγ)
ij µ

(γ)
ij (x, t) = −Ĉ

(α)
ij ε̄ij (x, t)

• Kinematics:

n∑
γ=1

[
δK
ηγIijkl − P

(ηγ)
ijkl ω

(η)
ph (x, t)

]
µ

(γ)
kl (x, t)− ω

(η)
ph (x, t)

m∑

β=1

[
R̂

(ηβ)
ij · δ̂(β) (x, t)

]

= ω
(η)
ph (x, t) A

(η)
ijklε̄kl (x, t)

• Unilateral contact and adhesion conditions in the normal direction:

tN(α) (x, t)−
(
1− ω

(α)
int (x, t)

)
k

(α)
N δN(α) (x, t) 6 0; δN(α) (x, t) > 0

{
tN(α) (x, t)−

(
1− ω

(α)
int (x, t)

)
k

(α)
N δN(α) (x, t)

}
δN(α) (x, t) = 0

• Friction and adhesion conditions in the tangential direction:

tT (α) (x, t) = tTa(α) (x, t) + tTf(α) (x, t)

tTa(α) (x, t) =
(
1− ω

(α)
int (x, t)

)
k

(α)
T δT (α) (x, t)

∥∥tTf(α)
∥∥ 6 t

(α)
crit (x, t)∥∥tTf(α)

∥∥ < t
(α)
crit (x, t) ⇒ δ̇T (α) (x, t) = 0∥∥tTf(α)

∥∥ = t
(α)
crit (x, t) ⇒ δ̇T (α) (x, t) = κtTf(α) (x, t) , κ > 0

t
(α)
crit (x, t) = µF

∣∣∣tN(α) (x, t)−
(
1− ω

(α)
int (x, t)

)
k

(α)
N δN(α) (x, t)

∣∣∣

• Evolution equations for ω
(γ)
ph (x, t) and ω

(α)
int (x, t)

Box 4: (m + n) point model.

The constitutive relation for the macroscopic problem is obtained by substituting Eq. 3.9 into
Eq. 3.11, and using the decompositions given by Eqs. 4.1-4.2

σ̄ij (x, t) = L̄ijklε̄kl (x, t) +
m∑

β=1

R̄(β)
ij · δ̂(β) (x, t) +

n∑

γ=1

M̄
(γ)
ijklµ

(γ)
kl (x, t) (4.34)
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in which,

L̄ijkl =
1
|Θ|

∫

Θ

Lijmn (y) Amnkl (y) dy (4.35)

R̄(β)
ij =

1
|Θ|

∫

Θ

Lijkl (y) R̃(β)
kl (y) dy (4.36)

M̄
(γ)
ijkl =

1
|Θ|

∫

Θ

Lijmn (y)
(
P̃

(γ)
klij (y)− IklijN

(γ)
ph (y)

)
dy (4.37)

The formulation of homogenized tangent moduli Lijkl = ∂σ̄ij/∂ε̄kl is given in Section 5.2.

4.1 A nonlocal damage evolution

It is well known [41, 42] that strain softening caused by evolution of damage gives rise to loss ellipticity
and consequently discrete solutions are mesh-dependent. This deficiency of the CDM model can be
alleviated using nonlocal formulation [43] (among several other methods), a variant of which is adopted
here.

We start by defining the nonlocal strain and stress fields over partition Θ(γ) as

ε
(η)
ij (x, t) =

∫

Θ(η)

ϕ
(η)
ph (y) ε0ij (x,y, t) dy =

1∣∣Θ(η)
∣∣
∫

Θ(η)

ε0ij (x,y, t) dy (4.38)

σ
(η)
ij (x, t) =

∫

Θ(η)

ϕ
(η)
ph (y)σ0

ij (x,y, t) dy =
1∣∣Θ(η)

∣∣
∫

Θ(η)

σ0
ij (x,y, t) dy (4.39)

The nonlocality of the above fields requires that the phase partitions be constructed such that the
characteristic nonlocal volume, ΘC, is fully encompassed by the corresponding smallest partitions, i.e.,
ΘC ⊂ Θ(γ) for each γ = 1, 2, . . . , n. This formalism was originally proposed by Fish and Yu [44].

We proceed by approximating stresses and strains at any point in a unit cell in terms of the phase
shape functions and nonlocal phase stress and strain values as

ε0ij (x,y, t) =
∑

γ

N
(γ)
ph (y) ε

(γ)
ij (x, t) ; σ0

ij (x,y, t) =
∑

γ

N
(γ)
ph (y) σ

(γ)
ij (x, t) (4.40)

Substituting Eq. 4.40 into Eq.3.16 yields

ω0
ph (x,y, t) = ω0

ph

(∑
γ

N
(γ)
ph (y) ε

(γ)
ij (x, t) ,

∑
γ

N
(γ)
ph (y) σ

(γ)
ij (x, t) ,

∑
γ

N
(γ)
ph (y) s(γ)

ph (x, t)

)
(4.41)

Premultiplying Eq. 4.41 by the phase weight functions and integrating over the unit cell yields

ω
(η)
ph (x, t) =

∫

Θ
ϕ

(η)
ph (y) ω0

ph

(∑
γ

N
(γ)
ph (y) ε

(γ)
ij (x, t) ,

∑
γ

N
(γ)
ph (y) σ

(γ)
ij (x, t) ,

∑
γ

N
(γ)
ph (y) s(γ)

ph (x, t)

)
dy

(4.42)
Note that ϕ

(η)
ph is equal to 1/

∣∣Θ(η)
∣∣ over Θ(η) and 0 elsewhere. Over Θ(η), the only nonzero phase

shape function is N
(η)
ph and its value over this partition is equal to one. Therefore, Eq. 4.42 reduces to

ω
(η)
ph (x, t) = ω

(η)
ph

(
ε
(η)
ij (x, t) , σ

(η)
ij (x, t) , s(η)

ph (x, t)
)

(4.43)

which is identical to Eq. 3.16 except that the evolution equation is defined with respect to nonlocal
quantities. We now describe the model in detail.
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The nonlocal phase damage variable, ω
(η)
ph is taken to be a monotonically increasing function of

nonlocal phase deformation function κ
(η)
ph . The evolution of phase damage may be expressed as

ω
(η)
ph (x, t) = Φph

(
κ

(η)
ph (x, t)

)
;

∂Φph

(
κ

(η)
ph

)

∂κ
(η)
ph

≥ 0 (4.44)

The nonlocal phase deformation function, κ
(η)
ph is a function of phase damage equivalent strain

κ
(η)
ph (x, t) = max

{〈
υ

(η)
ph (x, τ)− υ

(η)
ini

〉
+

∣∣∣∣ τ ≤ t

}
(4.45)

where, υ
(η)
ph is nonlocal phase damage equivalent strain; and υ

(η)
ini the threshold value of υ

(η)
ph below

which no damage in Θ(η) is allowed to occur. The nonlocal phase damage equivalent strain is defined
based on the strain-based damage theory [45] as

υ
(η)
ph (x, t) =

√
1
2

(
F(η)ε̂(η)

)T L̂(η)
(
F(η)ε̂(η)

)
(4.46)

in which, ε̂(η) is the vector of principal components of the average strains,ε(η)
ij , in Θ(η); L̂(η) the tensor

of elastic moduli in principal directions of ε(η); F(η) denotes the weighting matrix. The purpose of
the weighting matrix is to differentiate between the damage accumulation in tensile and compressive
loading directions

F(η) (x, t) =




h
(η)
1 0 0
0 h

(η)
2 0

0 0 h
(η)
3


 when nsd = 3 (4.47)

h
(η)
ξ (x, t) =

1
2

+
1
π

atan
[
c
(η)
1

(
ε̂
(η)
ξ − c

(η)
2

)]
(4.48)

where c
(η)
1 and c

(η)
2 represent the contribution of tensile and compressive loadings in the principal

directions.
The nonlocal strain in a phase partition Θ(η) is given as

ε
(η)
ij (x, t) = A

(η)
ijklε̄kl (x, t) + ε̃

(η)
ij (x, t) (4.49)

where,

ε̃
(η)
ij (x, t) =

m∑

β=1

R̂(ηβ)
ij · δ̂(β) (x, t) +

n∑

γ=1

P
(ηγ)
ijkl µ

(γ)
kl (x, t) (4.50)

The evolution of phase damage as a function of the phase deformation function follows an arctan-
gent law [28]

Φ(η)
ph =

atan
(
a

(η)
ph κ

(η)
ph (x, t)− b

(η)
ph

)
+ atan

(
b
(η)
ph

)

π/2 + atan
(
b
(η)
ph

) (4.51)

in which, a
(η)
ph and b

(η)
ph are material parameters.

The evolution equations for the interface damage are defined in a similar fashion to those of the
phases. The nonlocal interface damage variable, ω

(β)
int , is given as

ω
(β)
int (x, t) = Φint

(
κ

(β)
int (x, t)

)
;

∂Φint

(
κ

(β)
int

)

∂κ
(β)
int

≥ 0 (4.52)
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The nonlocal interface deformation function, κ
(β)
int , is a function of interface damage equivalent dis-

placement jump
κ

(β)
int (x, t) = max

{
υ

(β)
int (x, τ)

∣∣∣ τ ≤ t
}

(4.53)

where, υ
(β)
int is the nonlocal interface damage equivalent displacements in S(β) which is expressed as

υ
(β)
int (x, t) = k

(β)
N δN(β) (x, t) + k

(β)
T

∥∥∥δT (β) (x, t)
∥∥∥ (4.54)

The evolution of interface damage as a function of the interface deformation function is given by the
following law

Φ(β)
int =

atan
(
a

(β)
int κ

(β)
ph (x, t) /b

(β)
int

)

atan
(
a

(β)
int

) ; Φ(β)
int ≤ 1 (4.55)

in which, a
(β)
int and b

(β)
int are material parameters.

4.2 Influence functions

The coefficient tensors of the (m + n) point model are functions of the elastic (Hikl), phase (hph
ikl),

and interface (hint
im) influence functions. The influence functions are obtained by numerically solving

the three unit cell problems: (i) elastic influence function (EIF), (ii) phase damage influence function
(PDIF), and, (iii) interface damage influence function (IDIF) problems defined in Section 3. Guedes
and Kikuchi [10] provides a comprehensive treatise on the solution of the EIF problem. In this section,
numerical approximations of the PDIF and IDIF problems are discussed.

Let Θ̂ be an arbitrary subdomain of Θ (i.e., Θ̂ ⊂ Θ), and define

d̂Θ̂ (y) =





1
|Θ̂| y ∈ Θ̂

0 elsewhere
(4.56)

In the limit
lim
|Θ̂|→0

d̂Θ̂ (y) = d (y − ŷ) ; ŷ ∈ Θ̂ (4.57)

The unit cell PDIF problem is approximated by replacing the Dirac delta function in the PDIF problem
box by d̂Θ̂ which gives

Discrete Phase Damage Influence Function (Discrete PDIF) Prob-
lem :

Given Lijmn (y), find hph
ikl (y, ŷ) : Θ̄× Θ̄ → R such that:

{
Lijmn (y)

(
gph
mnkl (y, ŷ) + Imnkld̂Θ̂ (y)

)}
,yj

= 0; y, ŷ ∈ Θ

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
iklK (y, ŷ) = 0 on y, ŷ ∈ Θ

The approximation to the phase influence function (solution of Discrete PDIF problem) and the exact
solution of PDIF problem are both denoted by hph

ikl for conciseness of the presentation. The weak form
of the PDIF problem states

∫

Θ
w(i,yj) (y) Lijmn (y) gph

mnkl (y, ŷ) dy +
1
|Θ̂|

∫

Θ̂
w(i,yj) (y) Lijkl (y) dy = 0; ŷ ∈ Θ̂ (4.58)
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Θ
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Θ

Figure 4: Evaluation of the phase influence function using element-by-element and partition-by-partition
methods.

where, wi ∈ V is the weight function; and V = {wi ∈ H1(Θ) | wi Θ−periodic}. The above equation is
discretized and solved using the finite element method. Θ̂ in Eq. 4.56 is selected either as a domain of
a single finite element or a group of elements in the microscopic mesh. In view of the definition of d̂Θ̂

provided in Eq. 4.56, hph
ikl may be fully computed by dividing the microstructure into npatch patches

and solving the weak form of PDIF problem (Eq. 4.58) npatch times. npatch is typically selected as
the number of finite elements, nel, or number of phase partitions, n. The evaluation of the phase
influence function based on element-by-element and partition-by-partition methods is schematically
illustrated in Fig 4. When npatch = nel, the phase influence functions can be computed a-priori and
only coefficient tensors need to be recomputed in the case of the dynamic partitioning scheme discussed
in the next section. When npatch = n, the phase influence functions are recomputed when the model
order is updated. Figure 5 illustrates the components of the phase influence function evaluated within
one element of a 2-phase unit cell.

The interface influence function is numerically approximated by considering an analogous formu-
lation to the evaluation of phase influence function discussed above. Let d̂Ŝ be an approximation to
the Dirac delta function to be subsequently defined, then the IDIF unit cell problem is replaced by

Discrete Interface Damage Influence Function (Discrete IDIF)
Problem:

Given Lijmn (y), find hint
ip (y, ŷ) : Θ̄× S → R such that:

{
Lijmn (y) gint

mnp (y, ŷ)
}

,yj
= 0; y ∈ Θ, ŷ ∈ S

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
ip K (y, ŷ) = Qipd̂Ŝ when y ∈ S or ŷ ∈ S

The interface influence function is approximated using standard finite element shape functions, Na (y);
a = 1, 2, . . . , nnd; and nnd is the total number of nodes in the microscopic finite element mesh. The
interface displacement jumps are modeled by placing double nodes along the interfaces. d̂Ŝ is then
expressed in terms of shape functions as

d̂Ŝ (ŷ) =
Na (ŷ)∫

Ŝ Na (ŷ) dŷ
; ŷ ∈ S (4.59)
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Figure 5: Components of the phase influence function using element-by-element approach.
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Figure 7: Components of the interface influence function.

where, Ŝ is the local support of Na along the interface. The function, d̂Ŝ , is schematically illustrated
in Fig. 6. hint

ip may be computed by solving the Discrete IDIF problem nin times, where, nin is the
number of double nodes placed along the interface. Figure 7 depicts the components of the interface
influence function evaluated for a pair of interface nodes.

4.3 Model improvement strategies

The (m+n) point model results in nonlinear system of 3m + 6n equations. Selection of m and n
is crucial to the accuracy and computational efficiency. Clearly, larger values of m and n lead to
a superior accuracy at the expense of increased computational cost. In addition to the selection of
the model degree, proper partitioning of the microconstituents affects the accuracy of the proposed
models.

Much like the discretizations in the finite element method, the optimal strategy for the selection of
the model degree and domains of each partition depend largely on the specificities of the macroscopic
problem in addition to the microstructural details. In this work, we study two partitioning strategies
termed as static domain partitioning (SDP) and dynamic domain partitioning (DDP).
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In SDP, selection of the model degree (m and n) and partitioning of the microstructure is carried
out prior to the macroscopic analysis. In this approach, m and n, and corresponding microstructural
domain partitions, Θ(γ) and S(α) are functions of macroscopic spatial coordinate, x, but do not vary
in time. In static partitioning coefficient tensors are computed once in the preprocessing stage and
remain constant throughout macroscopic analysis. Box 5 summarizes the preprocessing stage for static
partitioning. The preprocessing stage consists of the evaluation of the influence functions, partitioning
of the microstructural domain, and computation of the corresponding coefficient tensor, given the
model order (m and n). The computation of the elastic influence function, Hikl, interface and phase
influence functions, hint

im and hph
ikl, respectively, follows the procedure explained in the previous section.

The partitioning of the interface, S, and phase, Θ, is based on the elastic macroscopic strains, ε̄elij ,
computed in a preliminary linear analysis of the macroscopic problem. At each integration point of the
macroscopic mesh, the interface, S, is partitioned into S(α), α = 1, 2, . . . , m based on the magnitude
of interface damage strain, υint. Similarly, the phase damage equivalent strain, υph, is computed based
on which the microscopic domain, Θ, is partitioned into Θ(γ) , γ = 1, 2, . . . , n. The coefficient tensors
are evaluated using the integral expressions provided in the previous sections.

The dynamic domain partitioning (DDP) strategy is based on recomputing the microstructural
domain partitions as the macroscopic analysis progresses. By this approach, the domain partitioning,
as well as the model order vary in time. The number of interface and phase partitions m and n are
increased adaptively, as material failure evolves. Figure 8 illustrates the dynamic domain partitioning
algorithm. In DDP, the analysis is initiated with minimum number of interface and phase partitions
(typically, m = 1 and n = 2 for a 2-phase material). The model order is increased adaptively as a
function of normalized damage

f (ω) = int
(

κ
ω

ωcrit

)
(4.60)

in which, ω ∈
{

ω
(α)
int , ω

(γ)
ph

}
; ωcrit is the critical damage, above which no more repartitioning can occur;

and κ is the maximum allowable number of repartitioning; and int denotes the integer operator. The
updated numbers of phase and interface partitions are then expressed as:

t+∆tn = tn +
n∑

γ=1

δn(γ); δn(γ) = f
(

t+∆t
ω

(γ)
ph

)
− f

(
t
ω

(γ)
ph

)
(4.61)

t+∆tm = tm +
m∑

α=1

δm(α); δm(α) = f
(

t+∆tω
(α)
int

)
− f

(
tω

(α)
int

)
(4.62)

in which, the left subscript t+∆t and t denote current and previous values, respectively. The updated
model order is then used to recompute the coefficient tensors by invoking the algorithm outlined in
Box 5. A hierarchical repartitioning is adopted in which, those partitions, Θ(γ) and S(α) with nonzero
δn(γ) and δm(α) are repartitioned only. The hierarchical repartitioning is illustrated in Fig. 9.

The DDP strategy offers certain advantages when the number of coefficient tensors recomputa-
tions is limited and/or preprocessing cost is substantially lower than the cost of nonlinear iterations.
Otherwise, SDP with large n and m might be advantageous both in terms of cost and accuracy.
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• Consider the linear elastic unit cell problem:

– Solve for the elastic influence functions, Hikl, and corresponding traction terms along the interface,
τikl

– Compute the elastic polarization tensor, Gijkl

– Compute the linear elastic homogenized moduli, L̄ijkl using Eq. 4.35.

• Loop â over the nodes along the interface of the unit cell mesh

– Compute the interface influence function, hint
im (y, ŷâ)

– Compute the interface polarization function, gint
ijm (y, ŷâ)

• Loop b̂ over the elements of the unit cell mesh

– Compute the phase influence function, hph
ikl (y, ŷb̂)

– Compute the phase polarization function, gph
ijkl (y, ŷb̂)

• Preliminary linear analysis of the macroscopic problem to obtain ε̄el
ij

• Loop B over each element of the macroscopic mesh

– Along the interface:

teli (xB,y) = τikl (y) ε̄el
kl (xB) ; y ∈ S

υel
int = ‖t̂el‖/ max

y
‖t̂el‖

– Identify m partitions of the interfaces based on υel
int

– Within the phases:

εel
ij (xB,y) = Aijkl (y) ε̄el

kl (xB) ; y ∈ Θ

υel
ph =

(
Fε̂el

)T
L̂

(
Fε̂el

)
/ max

y

{(
Fε̂el

)T
L̂

(
Fε̂el

)}

– Identify n partitions of the phases based on υel
ph

– Compute coefficient tensors for macroscopic element, B

Box 5: Preprocessing.

5 Numerical Implementation

5.1 Macroscopic stress update procedure

Given: Overall strain tε̄ij ; phase and interface damage variables, tω
(η)
ph , (η = 1, 2, . . . , n) and tω

(β)
int ,

(β = 1, 2, . . . ,m), respectively; increment of overall strain, ∆ε̄ij ; damage induced displacement jumps
in the local coordinate system, tδ̂

(β)
i ; and damage induced inelastic strains, tµij

(η). The left subscript
denotes increment step, i.e., t♦ and t+∆t♦ are the values at the previous and current increments,
respectively. For simplicity, the left subscripts of the current increments are often omitted in the
following presentation.
Compute: The overall stress, σ̄ij ; current values of damage variables, ω

(η)
ph and ω

(β)
int ; damage induced

displacement jumps, δ̂
(β)
i ; and inelastic strains, µ

(η)
ij .
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Figure 8: Dynamic domain partitioning (DDP) strategy.
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A vector of state variables, d is defined such that

d =
{

µ(1),µ(2), . . . ,µ(n), δ̂(1), δ̂(2), . . . , δ̂(m)
}T

(5.1)

in which µ(η) is the vector of inelastic strain components in Voigt notation.
In view of the governing equations of the reduced microscopic problem outlined in Box 4, the

damage induced displacement jumps and inelastic strains may be evaluated by invoking a Newton
process. The unilateral contact condition is imposed by considering a penalty algorithm. The tan-
gential friction model is implemented using an elastic stick formulation [46] as described below. The
resulting nonlinear system is expressed as

Ψ = K(ω(η)
ph , ω

(β)
int )d− f(ω(η)

ph ; ε̄ij) + f c (d) + ff (d) = 0 (5.2)

where, f c is the contribution due to penalty method aimed at enforcing unilateral contact constraint;
ff is the contribution of the friction model; f is the force vector;

K =

[
KPP(ω(η)

ph ) KPI(ω
(η)
ph )

KIP KII(ω
(β)
int )

]
(5.3)

and,

KPP =




Iijkl − P
(11)
ijkl ω

(1)
ph −P

(12)
ijkl ω

(1)
ph · · · −P

(1n)
ijkl ω

(1)
ph

−P
(21)
ijkl ω

(2)
ph Iijkl − P

(22)
ijkl ω

(2)
ph · · · −P

(2n)
ijkl ω

(2)
ph

...
...

. . .
...

−P
(n1)
ijkl ω

(n)
ph −P

(n2)
ijkl ω

(n)
ph . . . Iijkl − P

(nn)
ijkl ω

(n)
ph




(5.4)

KPI =




−R̂(11)
ij ω

(1)
ph −R̂(12)

ij ω
(1)
ph · · · −R̂(1m)

ij ω
(1)
ph

−R̂(21)
ij ω

(2)
ph −R̂(22)

ij ω
(2)
ph · · · −R̂(2m)

ij ω
(2)
ph

...
...

. . .
...

−R̂(n1)
ij ω

(n)
ph −R̂(n2)

ij ω
(n)
ph · · · −R̂(nm)

ij ω
(n)
ph




(5.5)

KIP =




F̂(11)
ij F̂(12)

ij · · · F̂(1n)
ij

F̂(21)
ij F̂(22)

ij · · · F̂(2n)
ij

...
...

. . .
...

F̂(m1)
ij F̂(m2)

ij · · · F̂(mn)
ij




(5.6)

KII =




D̂(11) + E(1) D̂(12) · · · D̂(1m)

D̂(21) D̂(22) + E(2) · · · D̂(2m)

...
...

. . .
...

D̂(m1) D̂(m2) · · · D̂(mm) + E(m)


 (5.7)

where,

E(β) =




(
1− ω

(β)
int

)
k

(β)
N 0 0

0
(
1− ω

(β)
int

)
k

(β)
T 0

0 0
(
1− ω

(β)
int

)
k

(β)
T


 (5.8)

The force vector, f , is expressed as

f =
[
A

(1)
ijklω

(1)
ph , A

(2)
ijklω

(2)
ph , . . . , A

(n)
ijklω

(n)
ph ,C(1)

kl ,C(2)
kl , . . . ,C(m)

kl

]T
ε̄kl (5.9)
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The penalty contribution due to unilateral constraint, f c is given as

f c =
1
χ

[
0, . . . , 0,

〈
δN(1)

〉
−

, 0, 0,
〈
δN(2)

〉
−

, 0, 0, . . . ,
〈
δN(m)

〉
−

, 0, 0
]T

(5.10)

in which, χ ¿ 1 is the penalty parameter; and 〈♦〉− ≡ (|♦| − ♦) /2.
The friction model is implemented based on the elastic stick formulation, in which the frictional

displacement jumps, δT (β), are decomposed as follows

δT (β) = δ
T (β)
el + δ

T (β)
slip (5.11)

where, δ
T (β)
el is the elastic slip which is recoverable upon unloading; and δ

T (β)
slip is the plastic slip. The

tangential tractions due to friction is then expressed as

tTf(β) =
µF

∣∣∣tN(β) −
(
1− ω

(β)
int

)
k

(β)
N δN(β)

∣∣∣
δcrit

δ
T (β)
el (5.12)

in which, δcrit is the magnitude of the maximum allowable elastic slip. Equation 5.12 implies that
the contribution of the frictional forces along the interface vanishes (i.e., ff = 0 ) when the normal
displacement jumps, δN(β) > 0. Under compression (i.e., δN(β) = 0 )

ff =
[
0, . . . , 0, 0, tTf(1), 0, tTf(2), 0, 0, . . . , tTf(m)

]T
(5.13)

In the presence of friction, δ
T (β)
el is stored as state variable in addition to d and damage variables.

In view of the definitions above, the stress update procedure consists of the following steps

1. Update the macroscopic strains: ε̄ij = tε̄ij + ∆ε̄ij

2. Solve Eq. 5.2 by Newton’s method

k+1d = kd−
(

∂Ψ
∂d

)∣∣∣∣
−1

kd

Ψ|kd (5.14)

3. Initialize the Newton procedure by setting k = 0, kd = td, kωph
(η) = tωph

(η), kωint
(β) = tωint

(β),
and kδ

T (β)
el = tδ

T (β)
el

4. loop until convergence

(a) Compute kK, kf , kf c, kff , and (∂Ψ/∂d)|−1
kd

(b) Evaluate Eq. 5.14 to obtain k+1d
(c) k ← k + 1

5. Compute the macroscopic stress σ̄ij using Eq. 4.34.
kK, kf and kf c may be obtained directly using Eqs. 5.3-5.10. Derivation of (∂Ψ/∂d) is given in

Section 5.2. The update of frictional contribution, kff , may be summarized as follows
Given: Displacement jumps,

k
δ̂(β), elastic part of the tangential displacement jumps, kδ

T (β)
el , and

normal tractions, ktN(β)

Compute: kδ
T (β)
el , ktTf(β) and kff

1. Separation along the interface: kδN(β) > 0 ⇒ ktTf(β) = 0

2. Compression along the interface: kδN(β) = 0
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(a) Compute predictor tangential displacement jumps

δ(β)
pr = tδ

T (β)
el + k∆δT (β) (5.15)

in which, k∆δT (β) is the tangential displacement jump increment at iteration k.

3. Elastic stick: ∥∥∥δ
(β)
pr

∥∥∥
δcrit

< 1 ⇒ ktTf(β) =
µF

ktN(β)

δcrit
δ(β)

pr (5.16)

kδ
T (β)
el = δ(β)

pr (5.17)

4. Plastic slip: ∥∥∥δ
(β)
pr

∥∥∥
δcrit

≥ 1 ⇒ ktTf(β) =
µF

ktN(β)

∥∥∥δ
(β)
pr

∥∥∥
δ(β)

pr (5.18)

kδ
T (β)
el = δ(β)

pr −
ktTf(β)

µF
ktN(β)

(∥∥∥δ(β)
pr

∥∥∥− δcrit

)
(5.19)

5. Construct kff using ktTf(β) as shown in Eq, 5.13

5.2 Macroscopic tangent moduli

In this section a closed form expression for the macroscopic tangent moduli, Lijkl, is derived. We
follow the notation introduced in Section 5.1 for the representation of the values of the fields at the
current and previous time steps. Recall that the macroscopic stress is expressed as

σ̄ij (x, t) = L̄ijklε̄kl (x, t) +
m∑

β=1

R̄(β)
ij · δ̂(β) (x, t) +

n∑

γ=1

M̄
(γ)
ijklµ

(γ)
kl (x, t) (5.20)

The coefficient tensors, L̄ijkl, R̄(β)
ij , and M̄

(γ)
ijkl are independent of the macroscopic strain, ε̄kl (x, t).

Differentiating Eq. 5.20 with respect to ε̄kl yields

Lijkl =
σ̄ij

ε̄kl
= L̄ijkl +

m∑

β=1

R̄(β)
ij · ∂δ̂(β)

∂ε̄kl
+

n∑

γ=1

M̄
(γ)
ijmn

∂µ
(γ)
mn

∂ε̄kl
(5.21)

It remains to evaluate ∂d/∂ε̄kl. We proceed by recalling the nonlinear system of equations to be solved

Ψ̂ = K(d)d− f(d; ε̄ij) + f c (d) + ff (d) = 0 (5.22)

Differentiating Eq. 5.22 with respect to ε̄kl and using the chain rule leads to

∂d
∂ε̄kl

= C−1 ∂f
∂ε̄kl

(5.23)

where,

C ≡ ∂Ψ̂
∂d

=
∂K
∂d

d + K− ∂f
∂d

+
∂f c

∂d
+

∂ff

∂d
(5.24)

∂f/∂ε̄kl may be obtained directly from Eq. 5.9

∂f
∂ε̄kl

=
[
A

(1)
ijklω

(1)
ph , A

(2)
ijklω

(2)
ph , . . . , A

(n)
ijklω

(n)
ph ,C(1)

kl ,C(2)
kl , . . . ,C(m)

kl

]T
(5.25)
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Derivative of the force vector, f , with respect to d may be obtained using the chain rule

∂f
∂d

=
n∑

γ=1

∂f

∂ω
(γ)
ph

∂ω
(γ)
ph

∂d
(5.26)

∂ω
(γ)
ph

∂d
=

∂ω
(γ)
ph

∂κ
(γ)
ph

∂κ
(γ)
ph

∂υ
(γ)
ph

∂υ
(γ)
ph

∂ε̂(γ)

∂ε̂(γ)

∂ε(γ)

∂ε(γ)

∂ε̃(γ)

∂ε̃(γ)

∂d
(5.27)

∂f/∂ω
(γ)
ph may be obtained by differentiating Eq. 5.9 with respect to the phase damage variable, ω

(γ)
ph

∂f

∂ω
(γ)
ph

=
[
0, . . . , 0, A

(γ)
IJ ε̄J , 0, . . . , 0

]T
(5.28)

∂ω
(γ)
ph /∂κ

(γ)
ph is evaluated by differentiating Eq. 4.51

∂ω
(γ)
ph

∂κ
(γ)
ph

=
a

(γ)
ph[

π/2 + atan
(
b
(γ)
ph

)] [
1 +

(
a

(γ)
ph κ

(γ)
ph − b

(γ)
ph

)2
] (5.29)

∂κ
(γ)
ph /∂υ

(γ)
ph = 1 for damage process and vanishes if no damage is accumulated at the current time

step. From Eqs. 4.46 and 4.47 follows

∂υ
(γ)
ph

∂ε̂(γ)
=

1

2υ
(γ)
ph

(
F(γ)ε̂(γ)

)T
L̂(γ) ∂

(
F(γ)ε̂(γ)

)

∂ε̂(γ)
(5.30)

where,

∂
(
F(γ)ε̂(γ)

)

∂ε̂(γ)
=




∂
(
h

(γ)
1 ε̂

(γ)
1

)

∂ε̂
(γ)
1

0 0

0
∂

(
h

(γ)
2 ε̂

(γ)
2

)

∂ε̂
(γ)
2

0

0 0
∂

(
h

(γ)
3 ε̂

(γ)
3

)

∂ε̂
(γ)
3




(5.31)

and,
∂

(
h

(γ)
ξ ε̂

(γ)
ξ

)

∂ε̂
(γ)
ξ

=
c
(γ)
1 /π

1 +
[
c
(γ)
1

(
ε̂
(γ)
ξ − c

(γ)
2

)]2 ε̂
(γ)
ξ + h

(γ)
ξ (5.32)

No summation is implied for superscripts and for Greek indices. The derivative of the principal strain,
ε̂(γ), with respect to total strain, ε(γ) is evaluated by considering the Hamilton’s Theorem

(
ε̂
(γ)
i

)3
− I1

(
ε̂
(γ)
i

)2
+ I2ε̂

(γ)
i − I3 = 0 (5.33)

in which, I1, I2, and I3 are the three strain invariants. Differentiating Eq. 5.33 with respect to total
strain yields

∂ε̂
(γ)
i

∂ε
(γ)
kl

=
[
3

(
ε̂
(γ)
i

)2
− 2I1ε̂

(γ)
i + I2

]−1
[

∂I1

∂ε
(γ)
kl

(
ε̂
(γ)
i

)2
− ∂I2

∂ε
(γ)
kl

(
ε̂
(γ)
i

)
+

∂I3

∂ε
(γ)
kl

]
(5.34)
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The derivatives of the invariants are obtained as

∂I1

∂ε
(γ)
ij

= δK
ij (5.35)

∂I2

∂ε
(γ)
ij

= trace
(
ε(γ)

)
δK
ij − ε

(γ)
ij (5.36)

∂I3

∂ε
(γ)
ij

= ε
(γ)
ik ε

(γ)
kj − trace

(
ε(γ)

)
ε
(γ)
ij − 1

2
ε
(γ)
kl ε

(γ)
lk δK

ij +
1
2

(
trace

(
ε(γ)

))2
δK
ij (5.37)

In view of Eq. 3.4 and the derivative of Eq. 3.25, ∂ε(γ)/∂ε̃(γ) is equal to the identity tensor.
It is easy to show that phase average damage induced strains, ε̃(γ) may be expressed in terms of

the damage induced strains and displacements jumps

ε̃
(γ)
ij =

m∑

β=1

R̂(γβ)
ij · δ̂(β) +

n∑

η=1

P
(γη)
ijkl µ

(η)
kl (5.38)

Differentiating ε̃(γ) with respect to d

∂ε̃(γ)

∂d
=

[
P

(γ1)
ijkl P

(γ2)
ijkl · · · P

(γn)
ijkl R̂(γ1)

ij R̂(γ2)
ij · · · R̂(γm)

ij

]
(5.39)

which completes the evaluation of ∂f/∂d.
The derivative of the contact constraint penalty contribution f c with respect to d may be evaluated

directly from Eq. 5.10 in the form
∂f c

∂d
= − 1

2χ

[
0 0
0 df c

]
(5.40)

where,

df c =




1− sgn(δN(1)) 0 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0
0 0 0 1− sgn(δN(2)) 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 . . . 1− sgn(δN(m)) 0 0
0 0 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0




(5.41)

in which sgn (♦) = |♦|/♦ is the sign operator.
K is a function of phase and interface damage variables, ω

(γ)
ph and ω

(β)
int as shown in Eqs. 5.2-5.8.

Using the chain rule

∂K
∂d

=
n∑

γ=1

∂K

∂ω
(γ)
ph

∂ω
(γ)
ph

∂d
+

m∑

β=1

∂K

∂ω
(β)
int

∂ω
(β)
int

∂d
(5.42)

Equation 5.3 reveals that the nonzero components of the derivatives of K with respect to damage
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variables are ∂KPP/∂ω
(γ)
ph ; ∂KPI/∂ω

(γ)
ph ; and ∂KII/∂ω

(β)
int

∂KPP

∂ω
(γ)
ph

=




0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

−P
(γ1)
ijkl −P

(γ2)
ijkl . . . −P

(γn)
ijkl

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




(5.43)

∂KPI

∂ω
(γ)
ph

=




0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

−R̂(γ1)
ij −R̂(γ2)

ij . . . −R̂(γn)
ij

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




(5.44)

The only nonzero component in ∂KII/∂ω
(β)
int is ∂E(β)/∂ω

(β)
int , given by

∂E(β)

∂ω
(β)
int

=



−k

(β)
N 0 0
0 −k

(β)
T 0

0 0 −k
(β)
T


 (5.45)

The derivative of the interface damage variables,ω(β)
int , with respect to d may be expanded using the

chain rule
∂ω

(β)
int

∂d
=

∂ω
(β)
int

∂κ
(β)
int

∂κ
(β)
int

∂υ
(β)
int

∂υ
(β)
int

∂d
(5.46)

where,
∂ω

(β)
int

∂κ
(β)
int

=
b
(β)2
int[

atan
(
a

(β)
int

)] [
b
(β)2
int +

(
a

(β)
int κ

(β)
int

)2
] (5.47)

∂κ
(β)
int /∂υ

(β)
int = 1 for damage process and vanishes if no damage is accumulated at the time step.

∂υ
(β)
int

∂d
=

[
0, . . . , 0, k

(β)
N ,

δ
T (β)
1∥∥δT (β)

∥∥k
(β)
T ,

δ
T (β)
2∥∥δT (β)

∥∥k
(β)
T , 0, . . . , 0

]
(5.48)

We now turn our attention to the last term in C. When the elastic stick condition is in effect, consistent
linearization of the friction algorithm presented in Section 5.1 leads to

∂tTf(β) =
µF tN(β)

δcrit
∂δT (β) + n

µF

2χ

[
1− sgn

(
δN(β)

)]
∂δN(β) (5.49)

in which, n = tTf(β)/tN(β). In the presence of plastic slip the final result is

∂tTf(β) =
(
δK − n⊗ n

) µF tN(β)

∥∥∥δ
(β)
pr

∥∥∥
∂δT (β) + n

µF

2χ

[
1− sgn

(
δN(β)

)]
∂δN(β) (5.50)

Equations 5.49 and 5.50 are sufficient to evaluate the derivative of ff with respect to d in view of
Eq. 5.13.
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5.3 Extension to large macro-deformation

In Section 5.1 it was assumed that stress at the current increment σ̄ij can be computed from strain
tε̄ij and state of damage td in the previous increment as well as the current strain increment, ∆ε̄ij

that drives the evolution of eigenstrains and interface decohesion. In other words, only material
response was accounted for, while the effect of large deformation has been neglected. In this section
we discuss the effect of large deformation. For this purpose it is convenient to split the effect of
large deformation into two parts. One is due to large deformation within a local coordinate system
attached to a unit cell. The second is due to large rotation of the entire unit cell as a rigid body. The
former gives rise to unit cell distortion, while the latter, termed as macromechanical rotation, does not
affect stresses in the material or so-called co-rotational frame. While in principle, the proposed model
reduction approach can handle the two sources of deformation, accounting for unit cell distortion
requires repeated calculation of the influence functions. This in turn requires solution of the unit cell
problems at every increment and at every iteration, making the computational cost comparable to
that of the direct homogenization method.

On the other hand, accounting for macromechanical rotation increment, denoted as ∆R̄, can be
easily accommodated within the existing computational framework either by using a two-step stress
update approach or by utilizing co-rotational formulation [47, 48]. For instance, in the two-step
approach, stresses are first rotated to the material frame using macro-rotation increment, ∆R̄. This
is followed by material stress update as described in Section 5.1. Finally, updated stresses are rotated
back to the global Cartesian frame. For microstructures with obvious definition of material coordinate
system, such as in the case of fibrous composites, ∆R̄ is an incremental rotation of the specific material
coordinate system. On the other hand, in case of particles randomly distributed in the microstructure,
the incremental rotation, ∆R̄ can be computed from either the incremental vorticity [49] or from polar
decomposition.

6 Verification and Validation

Our numerical experimentation agenda includes three test problems: (i) verification for a single scale
(one unit cell) problem; (ii) verification for a two-scale problem, and; (iii) validation problem. For
verification, comparison is made to direct homogenization, while, for validation, comparison is made
to physical experiment.

6.1 Single-scale verification studies

We consider a single fibrous unit cell subjected to static loading. The geometry of the microstructure
is illustrated in Fig. 10. The unit cell consists of a fiber with a circular cross section. The volume
fraction of the fiber in the unit cell is 19.6%. The finite element mesh of the unit cell, depicted in
Fig. 10, consists of 930 hexahedral elements. The fiber phase consists of 270 elements and the material
properties are taken to be Young’s Modulus = 200 GPa and Poisson’s ratio = 0.3. The fiber material
is assumed to be isotropic elastic with no damage accumulation. The elastic properties of the matrix
material are taken as Young’s Modulus = 60 GPa and Poisson’s ratio = 0.3. The phase damage
evolution parameters of the matrix material are aph = 32, and bph = 16.3. The compressive principal
strain components do not contribute to damage accumulation. The weighting matrix (Eq. 4.48)
parameters are therefore chosen as c1 = 1× 105 and c2 = 0. The interface between the fiber and the
matrix phase consists of 176 double nodes. The interface damage evolution parameters are aint = 6.67,
and bint = 6.67× 10−4.

The macroscopic finite element mesh consists of a single 8 node hexahedral element. The coefficient
tensors are computed a-priori based on the elastic properties of the matrix and fiber materials. The
finite element analysis of the unit cell configuration using the original system of equations provided by
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Eqs. 2.4-2.6, 2.10-2.13, and 2.15-2.24 are evaluated as the reference solution for verification purposes.
Verification simulations consist of:

C1. Biaxial expansion in the directions orthogonal to the fiber in the presence of interface damage
only

C2. Uniaxial expansion in a direction orthogonal to the fiber in the presence of interface damage
only

C3. Biaxial expansion in the directions orthogonal to the fiber in the presence of interface and matrix
damage

C4. Uniaxial expansion in the directions orthogonal to the fiber in the presence of interface and
matrix damage

C5. Uniaxial expansion along the fiber direction in the presence of interface and matrix damage

In C1, The matrix and the fiber are assumed to be linear and elastic with damage accumulation
only along the interfaces. The simulations were conducted until full separation along the matrix-
fiber interface as shown in Fig. 11a. Figure 11b displays the force-displacement curves as computed
using the reference and a 1+0 point model. Note that number of phase partitions, n, is set to zero
since damage is not allowed to accumulate within phases and does not contribute to damage induced
fields. The force-displacement curves show an excellent agreement between the reference solution
and the 1+0 point model. Next, failure under uniaxial loading is considered (C2). Similar to C1,
the phase materials are assumed to be elastic. Figure 12a displays a nonuniform loading along the
interface. Therefore, characterization of the interface calls for multiple partitions. Figure 12b shows
the force-displacement comparison of the 1+0 and 2+0 point models against the reference solution.
Improved results can be seen as the model is refined. Simulations C3 and C4 employ identical loading
conditions with C1 and C2, respectively. In the present simulations, the matrix material is allowed to
accumulate damage in addition to interface debonding. The force displacement curves (Figs. 13, 14) in
both configurations are in reasonable agreement with the reference configurations for low point models
such as 1+1, 2+2 and 2+5 point models. In the last series of simulations (C5), uniaxial loading is
applied in the direction of the elastic fibers. Upon degradation of the phase materials, loading is
expected to be transferred by the fibers only. Figure 15 shows the force-displacement diagram for
configuration C5. The 1+1 point model successfully predicts the failure in the matrix and the post
failure stiffness.

6.2 Two scale verification study

We consider a crack propagation problem in a square panel with a blunt notch. Figure 16 illustrates
the macroscopic geometry and the finite element mesh of the composite panel. An initial notch of
length, a0, is introduced such that a0/l = 0.5, where l is the width of the panel. The thickness
to width ratio of the panel is t/l = 0.125 The macroscopic mesh is composed of 509 hexahedral
reduced integration elements. Finite elements far away from the crack tip are modeled as elastic with
homogenized properties computed using classical linear elastic homogenization theory. The inelastic
zone shown in Fig. 16 is composed of 320 elements. The composite material fibrous microstructure
is shown in Fig. 17. The fiber is assumed to be elastic with Young’s modulus, E = 200 GPa and
Poisson’s ratio, ν = 0.3. The matrix material is assumed to behave according to nonlocal damage
model presented in Section 4.1. The initial elastic properties of the matrix materials are: E = 60 GPa
and Poisson’s ratio, ν = 0.3. The phase damage evolution parameters of the matrix material are
aph = 32, and bph = 16.3. The weighting matrix parameters are chosen such that no damage is
accumulated when the material is under pure compression: c1 = 1×105 and c2 = 0. The fiber volume
fraction of the microstructure is 28.2%. The interface between the matrix and fiber is assumed to be
perfect. The microscale mesh is composed of 351 tetrahedral elements.
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Figure 10: Geometry and the finite element mesh of the fibrous unit cell.
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Figure 11: Interface debonding in the fibrous unit cell under biaxial expansion (C1).
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Figure 12: Interface debonding in the fibrous unit cell under uniaxial tension (C2).
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Figure 13: Force displacement curve under biaxial expansion orthogonal to the fiber direction (C3).
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Figure 14: Force displacement curve under uniaxial tension orthogonal to the fiber direction (C4).
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Figure 15: Force displacement curve under uniaxial tension along the fiber direction (C5).
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Table 1: Performance of the (m + n) point models and direct homogenization method
Model # of incr. # of iter. incr. / iter CPU time

(0+1) point 32 57 1.78 ∼ 1 min.
(0+5) point 32 122 3.81 ∼ 3 min.

variable point 32 109 3.41 ∼ 5 min.
(0+10) point 32 112 3.50 ∼ 25 min.

reference 9 81 9.00 ∼ 6 days

A number of (0 + n) point models were verified against the direct homogenization method for the
notched panel problem. In the direct homogenization method, the entire unit cell problem as outlined
in Box 1 is repeatedly solved at every increment and at every integration point of the macroscopic
finite element mesh (see for instance [11] and [16]). In the limit, as the (3n+2m) approach the
number of degrees of freedom in the direct homogenization approach the results of the two methods
will provide comparable results. Therefore, the direct homogenization approach is used as a reference
solution. The errors associated with the direct homogenization approach are well documented (see for
instance [10]) and the discussion on this subject is outside the scope of this manuscript.

In the first set of simulations, the 900 degree lay-up (i.e., fibers lie in the direction perpendicular
to the notch) of the microstructure is considered. The panel is subjected to uniform loading along the
fiber direction. Figure 18 depicts the crack propagation paths as calculated using (0+1), (0+5), and
(0+10) point models, in comparison to the direct homogenization method. It can be seen that the crack
tends to propagate close to the fiber direction with elastic fibers serving as “barriers” against mode
I propagation. Figure 19 illustrates crack propagation paths computed using a variable point model
and dynamic domain partitioning strategy. In the variable point model, damage zone is divided into 3
zones, and modeled with (0+10) point model immediately around the notch, (0+5) point model in the
intermediate zone, and (0+1) point model away from the notch using the static partitioning technique
(Fig. 19). In the dynamic domain partitioning, the highest order model is chosen to be (0 + 10). The
crack length versus loading (time) plots, illustrated in Fig. 20, indicates that (0 + 5) and (0 + 10)
point models, in addition to the variable point and dynamic domain partitioning are in reasonable
agreement with the direct homogenization method. Table 1 summarizes the computational cost of
various models in terms of total CPU time, number of iterations and average number of iterations per
increment. The computational cost of the (0 + 5) point model is roughly 3000 times lower than that
of direct homogenization, and the crack growth is within 85% accuracy which is acceptable from the
engineering standpoint.

In the second set of simulations, we consider a 00 lay-up, in which the fibers are parallel to the
notch. The panel is loaded orthogonal to the fiber direction. Figure 21 displays the snapshots of
the simulations conducted using (0 + 1), (0 + 2), and (0 + 5) point models compared to the direct
homogenization method. It can be seen that all models predict crack propagation in mode I. Figure 22
illustrates the crack length-versus load comparison for various (0 + n) point models and the direct
homogenization method. As in the previous example, the (0 + 5) point model was found to be in
excellent agreement with the reference solution.

7 Validation study

For model validation, we study fragmentation failure of a composite tube subjected to impact loading.
The tube crush experiment was conducted by Starbuck et al. [50]. The experiment is concerned with
the characterization of the energy absorption capabilities of carbon fiber reinforced composite tubes
under intermediate rate crushing loads. The specimen is a 10 cm-by-10 cm square tube with a 2 mm
thickness. The composite material consists of 0-90 woven T300B carbon fiber tows (with a tow size
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Figure 16: Geometry and the finite element mesh of the panel with a blunt notch.
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Figure 17: Fibrous microstructure of the panel with a blunt notch.
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(a) (0+1) point model

(c) (0+10) point model

(b) (0+5) point model

(d) reference solution

Figure 18: Crack paths of the (0 + n) point models and the reference solution for 900 lay-up.

(a) variable point model (b) dynamic domain partitioning

(0+10) point model

(0+5) point model(0+1) point model

(0+10) point model
(path of the crack)

(0+1) point model

Figure 19: Crack paths by the variable point model and dynamic domain partitioning method.
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Figure 20: Crack growth curves for 900 lay-up.

(a) (0+1) point model
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Figure 21: Crack paths of the (0 + n) point models and the reference solution for 00 lay-up.
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Figure 22: Crack growth curves for 00 lay-up.

Table 2: Material property values used in the tube crush simulation
E(F ) ν(F ) E(M) ν(M)

235 GPa 0.26 3.2 GPa 0.35

kN kT aint bint

1.E5 GPa/mm 1.E5 GPa/mm 6.67 1.7E3

a
(FT )
ph a

(FT )
ph c

(FT )
1 c

(FT )
2 υ

(FT )
ini

0.5 1.0 -100.0 0.0 0.0

a
(M)
ph a

(M)
ph c

(M)
1 c

(M)
2 υ

(M)
ini

4.0 1.0 -100.0 0.0 0.0

of 3000 individual fibers) and epoxy resin. The weight percentage of the fiber tows is 58%. The tube
specimen was subjected to 4 m/s constant velocity compressive loading and crushing behavior was
monitored. Figure 23 shows snapshots of the specimen at the beginning, during, and at the end of
the loading.

The microstructure of the carbon fiber composite is idealized using the finite element mesh depicted
in Fig. 24. The microstructural mesh of the woven composite system includes 370 and 1196 tedrahedra
in the fiber and matrix phases, respectively. The discretization of the 0-90 woven carbon fiber is shown
in Fig. 24b. We consider a (1 + 3) point model where the matrix-fiber interface is represented with a
single point; one point for matrix phase, and two points for fiber phase, one in each direction. The
(1+3) point model is considered throughout the tube geometry and no adaptivity is employed in this
simulation.

Static tension and compression coupon test data, provided by Starbuck et al. [50], is employed to
calibrate the failure properties of the interface and phase materials. The material properties used in
the simulation is summarized in Table 2. The total number of material parameters is 19, which include
the elastic properties of the matrix and the fiber, interface and phase failure parameters. The provided
coupon tests fail to adequately span all possible failure modes the material may exhibit. Therefore, a
number of assumptions were made for some of the material parameters. The elastic properties of the
fiber tows are obtained by considering them as fibrous composite. (Fig. 25). The Young’s modulus
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Figure 23: Snapshots of the tube specimen at the beginning, during and at the end of loading. Experiment
conducted by Starbuck et al. [50]
.

Figure 24: The finite element mesh of the woven carbon fiber composite microstructure of the tube specimen
.
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Figure 26: Stress-strain curves provided by the experiments and calibrated multiscale model
.

and Poisson’s ratio of the individual fibers (E(F ), ν(F )) as well as the matrix material (E(M), ν(M))
were calibrated based on the elastic properties provided by the coupon tests and the virgin properties
of the fiber tows. The interface behavior is assumed to be isotropic (kN = kT ). The frictional forces in
the tangential direction are assumed to be due to adhesion only (µF = 0). Within phases, the damage
is set to accumulate at the onset of loading: υ

(FT )
ini = υ

(M)
ini = 0, where, υ

(FT )
ini and υ

(M)
ini are threshold

values for the damage equivalent strains in the fiber tows and matrix phases, respectively. The failure
parameters were then set by minimizing the discrepancy between the experimental and simulated
stress-strain curves. Figure 26 illustrates the stress-strain curves provided by the experiments and
calibrated multiscale model.

The tube mesh consists of 17908 quadrilateral shell elements. Plane stress conditions were imposed.
The proposed model is incorporated into ABAQUS EXPLICIT finite element code. Fragmentation
of the composite tube was modeled using element deletion technique. By this approach, the elements
were set to vanish provided that one of the two criteria is satisfied: (a) full damage within the matrix
phase and in the circumferential fiber direction; (b) full damage within the matrix phase and debonding

43



Figure 27: Snapshots of the tube simulation at the beginning, during and at the end of loading.
.

along the matrix fiber interface.
Figure 27 illustrates the snapshots of the tube crush simulation prior to, during, and at the end of

the loading. Comparison of the experimental and simulated snapshots reveals a similar fragmentation
and failure pattern. Force-displacement curves are presented in Fig. 28. The simulated and the
experimental curves were found to be reasonable agreement; energy absorption (area under force-
displacement curve) predicted by the simulation was approximately 20% lower than in the actual
experiment. This discrepancy can be attributed to variety of factors including: uncertainty in material
data, material calibration error, strain rate sensitivity and others. The computational cost of the
tube crush simulations with the (1 + 3) point model is approximately 14 days using a single 3.16GHz
Pentium 4 processor. In view of the performance results of the two-scale verification study presented in
Section 6.2, tube crush simulation using the direct homogenization method is clearly computationally
exhaustive with the allocated computational resources.
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Figure 28: Experimental and simulated force-displacement curves of the tube specimen
.

8 Summary and Future Research Directions

We presented a new mesomechanical homogenization approach, which combines salient features of
multiple scale asymptotic expansion method with the transformation field analysis in attempt to reduce
the computational cost of a direct homogenization approach without significantly compromising on
solution accuracy. The method avoids repeated consideration of unit cell equilibrium equations by
means of residual-free influence functions computed at the preprocessing stage. The basic idea is that
residual-free deformation is expressed in terms of eigendeformation, which is subsequently expressed
in terms of state variables. The reduced model is obtained by defining average or nonlocal state
variables. It is effective because of two main reasons. First and the principal one is that the quantities
of interest are at a macroscopic level, which in turn depend on fine scale averages. Secondly, the
averages are anyway needed due to loss of ellipticity of governing equations stated on the fine scale.
Adaptivity is employed to control the accuracy of the reduced order model. We presented a heuristic
approach to adaptivity, but certainly a more rigorous framework based on error analysis in quantities
of interest would be advantageous [51]. Several challenges, however, remain. First is the experimental
calibration issue. Should the material properties of the direct homogenization model be calibrated or
that of reduced order model? In the present manuscript we have done the latter. The second is with
respect to the generality of the proposed approach; how to account for unit cell distortion, the strain
rate sensitivity and the multiplicative decomposition of deformation tensor into elastic and inelastic
parts? And finally, how is the existing framework can be extended to more than two scales? A 3-scale
mathematical homogenized approach with eigenstrains was developed in [44], but the lingering issue
of multiple scale model calibration requires further investigation.
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