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Abstract:  As a direct extension of the asymptotic spatial homogenization method we develop a tem-
poral homogenization scheme for a class of homogeneous solids with an intrinsic time scale signifi-
cantly longer than a period of prescribed loading.  Two rate-dependent material models, the Maxwell
viscoelastic model and the power-law viscoplastic model, are studied as an illustrative examples.  Dou-
ble scale asymptotic analysis in time domain is utilized to obtain a sequence of initial-boundary value
problems with various orders of temporal scaling parameter. It is shown that various order initial-
boundary value problems can be further decomposed into: (i) the global initial-boundary value prob-
lem with smooth loading for the entire loading history, and (ii) the local initial-boundary value prob-
lem with the remaining (oscillatory) portion of loading for a single load period. Large time increments
can be used for integrating the global problem due to smooth loading, whereas the integration of the
local initial-boundary value problem requires a significantly smaller time step, but only locally in a
single load period. The present temporal homogenization approach has been found to be in good agree-
ment with a closed-form analytical solution for one-dimensional case and with a numerical solution in
multidimensional case obtained by using a sufficiently small time step required to resolve the load
oscillations.

1.0  Introduction

Mathematical homogenization method has been widely used for solving initial-boundary value prob-
lems with oscillatory coefficients. The validity of the asymptotic homogenization depends on the exist-
ence of distinct multiple length scales in the physical processes so that a small positive scaling
parameter quantifying the ratio between the scales can be identified. In general, multiple length scales
may exist in both space and time domains, although most of the recent research efforts have been
focussing on the spatial homogenization (see, for instance, [12][14]). In contrast to the spatial scale
separation, which is typically induced by spatial heterogeneities, the multiple temporal scales can be
attributed to at least three sources (or their combinations):

•  the interaction of multiple physical processes

Different physical processes, such as mechanical, thermal, diffusion, and chemical reaction, may
evolve along different time frames. Interaction between multiple physical processes requires consid-
eration of relevant time frames within a single reference time coordinate. An example problem fall-



2

ing into this category is a coupled thermo-mechanical process, which has been studied by Boutin
and Wong [2] using spatial-temporal homogenization approach. Most recently, a general setting for
the spatial-temporal asymptotic homogenization theory has been established by Yu and Fish [15].

•  existence of spatial heterogeneities

Spatial heterogeneities may cause dispersion of high frequency waves traveling in heterogeneous
media. The time frame corresponding to the successive reflection and refraction of waves between
the interfaces in microstructure could be significantly different from the time frame of the macro-
scopic wave motion. The earliest work on the multiple temporal scales induced by spatial heteroge-
neities is often attributed to Benssousan et al. [1] who studied parabolic equations with oscillatory
coefficients. Francfort [8] utilized multiple temporal scales to analyze thermo-elastic composites.
Kevorkin and Bosley [9] introduced an additional fast time scale to study the hyperbolic conserva-
tion laws with rapid spatial fluctuations. In the recent work Fish, Chen and Nagai [4][5] introduced
multiple slow temporal scales to alleviate the problem of secularity caused by high order terms in
the asymptotic analysis of wave propagation in heterogeneous solids and established a nonlocal con-
tinuum approach to capture dispersion effects [6][7].

•  existence multiple time scale within a single physical process on a single spatial scale

In many engineering problems multiple temporal scales arise in a single physical process taking place
in a homogeneous medium. For example, slow degradation of materials properties due to creep, relax-
ation and fatigue, subjected to rapidly oscillatory loading exhibit multiple temporal scales. This cate-
gory of problems possess an intrinsic slow time scale, which may significantly differ from the
frequency of external input.

In the present manuscript, we focus on the third category of problems. Attention is restricted to the
asymptotic homogenization of rate-dependent solids. The prediction of long-term behavior of rate-
dependent solids subjected to oscillatory loading requires significant computational resources, in par-
ticular, for nonlinear solids subjected to non-harmonic loading. This is because the resolution of high
frequency loading requires time integration increments, which are much smaller than the observation
time window. The primary objective of this manuscript is to develop a temporal homogenization
scheme by which the initial-boundary value problem with locally periodic loading in time domain can
be approximated by: (i) the global initial-boundary value problem with smooth loading for the entire
loading history, and (ii) the local initial-boundary value problem with the remaining (oscillatory) por-
tion of loading for a single load period in selected region(s) of the time domain.

For the global initial-boundary value problem a large time increment can be used, whereas the integra-
tion of the local initial-boundary value problem requires a significantly smaller time step, but only
locally in the time domain, where a full response is sought. It is apparent that the present temporal
homogenization approach closely resembles the classical spatial homogenization scheme. The global
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initial value problem is equivalent to the macroscopic boundary value problem with homogenized
coefficients, whereas the postprocessing of local fields within the Representative Volume Element
(RVE) is equivalent to the local initial-boundary value problem in the temporal homogenization
scheme. The main conceptual difference between the two will be shown to exist for nonlinear prob-
lems. For nonlinear heterogeneous solids both the macroscopic and the RVE problems are nonlinear,
whereas the temporal homogenization of viscoplastic solids gives rise to nonlinear global initial-
boundary value problem and a linear local initial-boundary value problem. It will be shown that non-
linearities do reappear in the higher order initial-boundary value problems, which can be used to
improve the quality of the global-local approximation, but are rarely used in practice. 

Two rate-dependent material models, the Maxwell viscoelastic model and the power-law viscoplastic
model [10][11], are considered as illustrative examples. We start with the definition of multiple tempo-
ral scales in Section 2.1. In Section 2.2, the temporal homogenization scheme for the linear Maxwell
viscoelastic model is presented. It is shown that a long-term response can be obtained by solving the
time-averaged zero-order homogenized initial-boundary value problem along with the smooth portion
of external loading. The deviation from the smooth solution is obtained by solving a local linear initial-
boundary value problems within one period of load cycle. In Section 2.3, we extend the temporal
homogenization scheme to the power-law viscoplastic solid. In Section 3 the temporal homogenization
approach is verified against the closed-form reference solution for one-dimensional viscoelastic and
viscoplastic solids. In multidimensions, two numerical examples comparing the temporal homoge-
nized approach with the reference solutions obtained with a time step sufficiently small to resolve the
local load fluctuations are described in Section 4.

2.0  Temporal homogenization of the rate-dependent solids subjected to 
locally periodic loading

2.1  Definition of multiple temporal scales

In the present work, we assume that the intrinsic time scale , which is determined by material proper-
ties and serves as the characteristic length of the natural time coordinate , describes a relatively long-
term behavior compared with a single period of loading. To characterize the fast varying features of
response fields induced by the locally periodic loading as shown in Figure 1, we assume that there
exists a small positive scaling parameter  so that a fast time coordinate  can be identified and
defined as 

(1)

We further assume that the response fields are locally periodic in the time domain with respect to , or
at least in the statistical sense. The period of external loading denoted by  serves as characteristic
length of the fast time coordinate. Thus, the scaling parameter  can be defined as

tr
t
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(2)

With the definition of the fast varying variable  as well as the -periodicity assumption, all the
response fields denoted by  can be defined by using the conventional nomenclature:

(3)

where  denotes the position vector in space. The time differentiations in this case can be expressed
using the chain rule:

(4)

where the comma followed by a subscript variable denotes a partial derivative and superscribed dot
denotes the time derivative. 

Figure 1. Natural and fast time coordinates

2.2  Temporal homogenization of the Maxwell viscoelastic solids under cyclic loading

The initial-boundary value problems for the Maxwell viscoelastic model is summarized below:

Equilibrium equation: on (5)

Constitutive equation: on (6)

Kinematic equation: on (7)

Initial conditions: on (8)

Boundary conditions: on (9)
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where  is a body force;  and  are the components of stress and strain tensors, respectively;
 represents the components of elastic compliance tensor and  denotes the components of the

inverse of viscosity tensor; both  and  are assumed to be symmetric and positive definite; 
represents the components of displacement vector;  is the observation time in the natural time coor-
dinates;  is the load period in the fast (scaled) time coordinates as shown in Figure 1;  denotes the
spatial domain while  and  are the corresponding boundary portions where displacements  and
tractions  are prescribed, respectively;  denotes the normal vector component on the boundary; 
is the initial displacement. Summation convention for repeated subscripts is adopted.

To solve the initial-boundary value problem (5)-(10), we start by approximating the displacement field
in terms of the double temporal scales asymptotic expansion

(11)

where  ( ) are -periodic functions and  denotes the order of the terms in the expan-
sion. Note that the first term in the asymptotic expansion (11) is a function of both,  and , to reflect
the fact that the smooth and oscillatory parts of the displacement field could be of the same order of
magnitude. According to (7) and the chain rule in (4), the corresponding expansions of strains and the
strain rates can be expressed as

;     (12)

and

 ;      and (13)

Consequently, the expansion of stresses is obtained by substituting expansions in (12) and (13) into the
constitutive equation (6), which gives

(14)

where the stress components in the asymptotic expansion are determined from various order constitu-
tive equations:
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: on (16)

Having defined the expansions of response fields, the asymptotic expansion of the equilibrium equa-
tion can be obtained by substituting (14) into (5) which gives

:  on (17)

:  on (18)

where . From (8)-(10), along with the asymptotic expansion (11) and (14) for displace-
ments and stresses, the initial and boundary conditions (ICs and BCs) for the  order initial-
boundary problems (15)(17) are given by

 ICs: on 

 BCs: on (19)

on 

For the high order problems defined in (16)(18), both initial and boundary conditions are trivial.

To solve (15)-(18) along with the appropriate initial and boundary conditions for various order of
response fields, we introduce the temporal averaging operator , defined as 
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O ς0( ) ui
0 ui x t τ, ,( )= Γu 0 T,( ) 0 τ0,( )××

σij
0 nj fi x t τ, ,( )= Γf 0 T,( ) 0 τ0,( )××

< >•

< >• 1
τ0
-----   • τd

0

τ0

∫=

Φij
m x t τ, ,( ) σij

m σij
m〈 〉–=

Ψij
m x t τ, ,( ) eij

m eij
m〈 〉–=

χi
m x t τ, ,( ) ui

m ui
m〈 〉–=

Φij
m Ψij

m, χi
m

Ψij
m χj i,

m χi j,
m+( ) 2⁄= m 0 1 …, ,=



7

For the smooth portion of the  order homogenized solution, the constitutive relation and the field
equation can be obtained by applying temporal averaging operator (20) to (16) and (17) in the case of

, which yields

 on (23)

 on (24)

where -periodicity of  and  has been exploited. The corresponding initial and boundary condi-
tions for the  global initial-boundary value problem are given by averaging (18) over a single
load cycle, which yields 

ICs: on 

BCs: (25)

Solutions of ,  and  for the  order initial-boundary value prob-
lem represent the non-oscillatory long-term behavior of the response fields, which is independent of
the fast time variable . 

For the oscillatory portion of the  order homogenized solution, equations (15) and (21) lead to
the following constitutive relation:

 on (26)

The corresponding equilibrium equation is obtained by substructing (24) from (17) and exploiting the
definition in (21), which gives
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on 

It is worth noting that the initial-boundary value problem described by (22) and (26)-(28) is defined on
, i.e, it has to be solved for one load cycle only. This is because the response fields are

assumed to be periodic functions of  and the constitutive equation (26) need to be integrated with
respect to  only. 

In summary, the  order initial-boundary problem (15)-(17) defined on  has
been decomposed into two initial-boundary problems: one for the smooth long term behavior defined
on  which is independent of the fast time variable , and the second one on , for
a single load period evolving around the smooth solution. 

A similar two-step scheme is used for solving high order initial-boundary value problems. The high
order initial-boundary value problems can be obtained from (16) and (18)-(21), which yields:

For the global   initial-boundary value problem ( ):

Equilibrium equation:  on 

Constitutive equation: on (29)

Trivial initial and boundary conditions.

For the local   initial-boundary value problem ( ):
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The solution of (29) is trivial, i.e., the only contribution from the high order equations comes from the
local initial-boundary value problem. Hence, ,  and 
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2.3  Temporal homogenization of the viscoplastic solid subjected to locally periodic loading

In this section, we develop a temporal homogenization scheme for the power-law viscoplastic solid
[10]. The initial-boundary value problem in this case takes a similar form to that described in Section
2.2 (see equation (5), (7)-(9)), except for the constitutive equation which is given as

(31)

where  denotes the elastic strain components defined in (12) and  is postulated as a viscoplastic
strain which follows the power-law form flow rule:

(32)

where  and  are material constants;  is termed as the effective stress defined as

;       (33)
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in (32) is the drag stress. For simplicity, we assume that  and  follow linear hardening rules [13]:
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(35)

where all the components in the expansion are assumed to be locally periodic functions of the fast time
variable . From the definition in (35), together with the constitutive equation (31), the flow rule (32)
and the hardening rule (34), it can be shown that the asymptotic expansion of  and  are given
as:

(36)

The expansion of the norm of the effective stress  defined in (33) is given by

 (37)

where 

;      (38)
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: (42)

: (43)

where (42) indicates that the leading order viscoplastic strain is independent of , i.e. .
Furthermore, as a result of (40) and (42), the   back stress  and drag stress  defined in (34)
are also independent of  so that the   expansion of (34) is given by

(44)

where  and .

Having defined the expansions in (12), (36), and (40)-(44), we can obtain the asymptotic expansion of
the constitutive equation (31):

: on (45)
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where  and the definition of the elastic strain components  is given in (13). 

We note that the asymptotic expansions of the equilibrium equation and initial-boundary conditions in
this case are the same as those for the Maxwell viscoelastic model derived in Section 2.2 (see equa-
tions (17)-(19)). To solve the various order initial-boundary problems, we follow the decompositions
defined in (21) so that various order initial-boundary value problems can be again solved in two steps,
first for the whole loading history and the second for one period of load cycle. Following the  proce-
dure described in Section 2.2, the initial-boundary value problems for the responses fields of various
order can be summarized as follows:
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Initial condition:  on (47)

Boundary conditions: on 

 on 

For the global   initial-boundary value problem (using (46)):
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Initial condition:  on (48)

Boundary conditions: on 
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where the plastic strain rate  is obtained by averaging (43) over one period of load cycle, which

yields

(49)

with  and  defined in (40) and (41). The corresponding back stress and drag stress are governed

by the temporal average of (44):
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Note that the constitutive equation  for the oscillatory portion of  homogenized solutions in (47)
is linear while the constitutive equations for the high order oscillations remain nonlinear according to
(46). Also, the smooth portion of the high order homogenized solution is generally non-trivial in con-
trast to the solution  for the Maxwell viscoelastic model.

3.0  One-dimensional verification examples

In this section, the analytical and numerical solutions for the one-dimensional homogenized problems
are compared with the reference solutions in order to verify the present temporal homogenization
scheme.

3.1  One-dimensional solution of the Maxwell viscoelastic model

Consider a one-dimensional bar clamped at one end ( ) and subjected to loading at the other end
( ) as shown in Figure 1. A sinusoidal displacement with a period of  superimposed
on the constant field, , is chosen as a prescribed displacement. According to [15],
the material intrinsic time scale for the one-dimensional Maxwell viscoelastic model can be defined as 

(51)

where  denotes the viscosity,  is elastic stiffness, and  is the creep time. We assume that the
period of loading is much smaller than the material intrinsic time scale so that . The
prescribed displacement expressed in terms of the fast time coordinate is given as

(52)

where  is the amplitude of the prescribed displacement and  is the radial frequency of the load. 

 

Figure 2. One-dimensional bar and the oscillatory loading

Following (5)-(9), the reference solution for the strain field in one-dimensional viscoelastic problem
can be obtained by solving
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(53)

where  denotes the axial stress. The solution of (53) is given as 

(54)

where  follows from (51). Since the scaling parameter  is  , equation (54) can be
approximated as:

(55)

The homogenized solutions for the one-dimensional viscoelastic problem can be obtained by reducing
the equations in Section 2.2 to the one-dimensional case. Noting that  according to (1), the
leading order initial-boundary problem can summarized as follows:

The  global initial-boundary value problem:

(56)

The  local initial-boundary value problem:

(57)

The  analytical solution of the initial-boundary value problem  (56)-(58) is given by:
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(58)

which coincides with the corresponding reference solution (55) provided that .

3.2  One-dimensional solution for the power-law viscoplastic model

The loading is assumed to be the same as in (52) defined in Section 3.1. Following Section 2.3, the
source initial-boundary value problem can be stated as:

(59)

The closed form solution of (59) exists only when  and . For this case, the refer-
ence solution of the stress field can be obtained by solving the linear initial value problem

(60)

It can be seen that equation (60) is similar to (53) and thus the solution can be expressed in the form of
equation (55) where the material intrinsic time scale is defined as  and the scaling parame-
ter is given as . In the second part of this section, we will consider a general case of
(59) with nonzero hardening parameter and . 

Following Section 2.3, the leading order one-dimensional homogenized solution can be obtained by
solving the following two initial-boundary value problems.

The  local initial-boundary value problem:
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Ĥµ·
ς

ξς( )sgn=

uς t 0=( ) U0=        u; ς x 0=( ) 0         uς x d=( ) U0 ωtsin 1+( )=;=
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(61)

The solution of (61), which is a linear problem, can be easily obtained as

(62)

The  global initial-boundary value problem:

(63)

Similarly to (59), the analytical solution of (61) can be found for   and . In this
case,  order smooth stress field is given by

(64)

Thus the total  stress field obtained by adding the contributions from equations (62) and (64)
coincides  with the reference solutions given in (54) and (55).

To this end we consider a more general viscoplastic material model where all the nonlinearities are
taken into account. The geometry of the one-dimensional bar is shown in Figure 2. The loading is

assumed to be in the form of prescribed displacement . The amplitude of the

loading is taken as  and the radial frequency  so that . We

select material properties as , , , , , and

. Numerical solution for source problem (59) is obtained by using a very fine time increment
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for the entire loading history. The comparison between the  smooth homogenization solution

and the reference solution is given in Figure 3. It can be seen that  captures well the non-oscilla-

tory long-term behavior. In Figure 4, we show the   oscillatory stress field for two load cycles,

one at the early stage of the loading at  and second, at the end of the loading .
Good agreement with the reference solution can be observed.

Figure 3.  global solution in comparison  with  reference solutions for                                                                    
the one-dimensional viscoplastic model

Figure 4.     homogenized solution in comparison  with  reference solutions for                                                                    
the one-dimensional viscoplastic model
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4.0  Numerical Examples in 3D

4.1  Four-point bending of viscoelastic beam

We first consider a four-point bending problem with a configuration shown in Figure 5. The beam is
made of isotropic viscoelastic material of Maxwell type. The material properties are selected as

,  and , where  is Young’s modulus,  denotes Poisson’s
ratio, and  is viscosity. The load applied to the cross heads is in the form of prescribed displacement 

(65)

where  is the amplitude and  is the radial frequency. The load period is given by .
According to (2),  defines the ratio between the loading period  and the intrinsic time scale  for
the Maxwell viscoelastic model, where  can be estimated by [15]:

(66)

where  represents the norm of . Thus, the intrinsic time scale in this example is estimated
as  and the load frequency is chosen as , i.e. 5 cycles per hour, so that

. The load amplitude  is chosen as . 

Numerical results for the maximum tensile strain component, , at the bottom surface in the mid
span, as well as it’s  temporal average, , are shown in Figure 6. As in the one-dimensional
case,  provides a good approximation of the non-oscillatory portion of the long-term solution.
Similar observations can be made for the stress field shown in Figure 7. In Figure 8 and Figure 9, we
show the total strains and stresses recovered by postprocessing in the two time windows. It can be seen
that the leading order homogenized solution agrees well with the reference solution.
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Figure 5.  Configuration and FE mesh for the four-point bending problem

Figure 6. Reference solution versus  global solution for the maximum strain 
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Figure 7. Reference solution versus  global solution for the maximum stress 

Figure 8.  Reference solutions versus  homogenized solution for the maximum strain
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Figure 9.  Reference solutions versus  homogenized solution for the maximum stress

4.2  The nozzle flap problem for the power-law viscoplastic model

The finite element mesh of the half of the nozzle flap (due to symmetry) is shown in Figure 10. The
flap is subjected to an aerodynamic force which is simulated by a superposition of the uniform con-
stant pressure and a sinusoidal loading with an amplitude equal to 10% of the value of the constant
pressure and the load period of one cycle per minute, i.e.,  . The loading is applied on
the flat surface. We assume that the pin eyes are rigid and not allowed to rotate so that all degrees of
freedom on the pin eye surfaces are fixed. The nozzle flap is made of type 316 stainless steel which
exhibits a viscoplastic behavior in room temperature. Material constants in the power-law viscoplastic
model are obtained by fitting the creep test data provided in [3]. Material properties are summarized
below:

Type 316 stainless steel: , , , , ,
, and 

Figure 10. FE mesh for the nozzle flap
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Numerical results reveal that the maximum stress and strain components (in direction 2) occur on the
inner surface of the pin eye A. Figure 11 and  Figure 12 depict the history of maximum stresses and
strains as obtained with the reference solution (using very small time increment step) and the 
temporal homogenization (with postprocessing) solutions. In Figure 13, the  response fields at
the end of loading, including displacement, stress and strain fields, are compared with the correspond-
ing reference solutions. In all the cases considered the  response fields agree well with the refer-
ence solution. 

Figure 11. Reference solution  versus  global homogenized solution  at the pin eye A

Figure 12. Reference solution  versus  homogenized solution  at the pin eye A
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Figure 13. Reference solution versus  homogenized solution for the nozzle flap problem
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5.0   Concluding Remark

The asymptotic temporal homogenization formulation for viscoelastic and viscoplastic models has
been developed to resolve multiple temporal scales. The scaling parameter is defined as the ratio
between the material intrinsic time and the frequency of load period. It is shown that a long-term
response can be obtained by solving the temporally averaged leading order homogenized initial-
boundary value problem along with the smooth portion of the external loading. The leading order
oscillatory behavior, which represents the deviation from the smooth solutions, is obtained by solving
a linear initial-boundary value problems for one period of load cycle. The global and local initial-
boundary value problems for the linear Maxwell viscoelastic model are decoupled, whereas for the vis-
coplastic model, local analysis has to be performed at each global time increment. In both cases, large
time increments can be used for the global problem with smooth loading, while the integration of the
local initial-boundary value problem requires a significantly smaller time step, but only locally in a
single load period. The present temporal homogenization approach has been found to be in good agree-
ment with the reference solution as long as the scaling parameter remains small.

In our future work the present temporal homogenization scheme will be extended to fatigue of homo-
geneous solids. If successful, the methodology will be then generalized to fatigue analysis of heteroge-
neous solids, which are characterized by multiple temporal and spatial scales.
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