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Abstract: A novel dispersive model for wave propagation in heterogeneous media is developed. The
method is based on a higher-order mathematical homogenization theory with multiple spatial and temporal
scales. By this approach a fast spatial scale and a series of slow temporal scales are introduced to account for
rapid spatial fluctuations of material properties as well as for the long-term behavior of the homogenized
solution. The problem of secularity arising from the classical multiple spatial scale homogenization theory
for wave propagation problems is resolved, giving rise to uniformly valid dispersive model. The proposed
dispersive model is solved analytically and its solution has be found to be in good agreement with the
numerical solution of the source problem in a heterogeneous medium.

1. Introduction

When a wavelength of a traveling signal in a heterogeneous medium is comparable to
the characteristic length of the microstructure, successive reflection and refraction of the
waves between the interfaces of the material lead to significant dispersion effects (see for
example [1][2][3]). The interest on the subject matter stems from the fact that the phenom-
enon of dispersion cannot be captured by the classical homogenization theory.

The use of multiple-scale expansions as a systematic tool of homogenization for prob-
lems other than elastodynamics can be traced to Sanchez-Palencia [4], Benssousan, Lions
and Papanicoulau [5], and Bakhvalov and Panasenko [6]. The role of higher order terms in
the asymptotic expansion has been investigated in statics by Gambin and Kroner [7], and
Boutin [8]. In elastodynamics, Boutin and Auriault [9] demonstrated that the terms of a
higher order successively introduce effects of polarization, dispersion and attenuation.

For wave propagation in heterogeneous media, a single-frequency time dependence is
typically assumed [10]. Notable exceptions are the recent articles of Fish and Chen
[11][12], which investigated the initial-boundary value problem with rapidly varying coef-
ficients. In [11] it has been shown that while higher-order multiple scale expansion in
space is capable of capturing the dispersion effect when the temporal scale of observation
is small, it introduces secular terms which grow unbounded with time. In [12], a slow tem-
poral scale was introduced to eliminated the secular terms up to the second order and to
capture the long-term behavior of the homogenized solution.

In an attempt to develop a uniformly valid dispersive model up to an arbitrary order, we
extend the theory developed in [12] to fast spatial and a series of slow temporal scales.
The fast spatial scale is designated to account for rapid spatial fluctuations of material
properties and a series of slow temporal scales are aimed at capturing the long-term evolu-
tion of the homogenization solutions. This results in a dispersive uniformly valid model,
solution of which is obtained analyticaland subsequently validated against the numeri-
cal solution of the source problem in a heterogeneous medium.




2. Problem Statement

We consider wave propagation normal to layers of an array of elastic bilammates
periodic arrangement witk  as a characteristic length as shown in Figure 1. The govern-
ing elastodynamics equation of is given by

p(x/€)uy —{E(X/ €)u.} . 0 )
with appropriate boundary and initial conditions
u(x 0) = f(x), uy(x,0) = a(x) 2

whereu(x, t) denotes the displacement figd@x/ €) &fol/ €) the mass density and
elastic modulus, respectively;).,  aqd)., denote the differentiation with respect to

and time respectively; afli<e «1 in (1) denotes a rapid spatial variation of material
properties.

The goal is to establish an effective homogeneous model in which local fluctuations intro-
duced by material heterogeneity do not appear explicitly and the response of a heteroge-
neous medium can be approximated by the response of the effective homogeneous
medium. This is facilitated by the method of multiple scale asymptotic expansion in space
and time.
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Figure 1: A bilaminate with a periodic microstructure

3. Asymptotic Analysis with Multiple Spatial and Temporal Scales

Under the premise that the macro domais A/ (2m) is much larger than the unit cell

domainQ , i.,eQ/L = (wQ)/c = kQ «1 , it is convenient to introduce a microscopic
spatial length variablg [9][16] such that

y = X/¢ @3)

whereA ,w, k and are the macroscopic wavelength, the circular frequency, the wave
number and the phase velocity of the macroscopic wave, respectively. In addition to this
fast spatial variable, we introduce multiple time scales




t, = e*t, (k=0,1,2..,m) @

wheret, is the usual time coordinate afjd k > O are various slow time scales. Since the

response quantitiesando depend oRr, y = x/¢, ty,t;,... andt,, , a multiple-scale
asymptotic expansion is employed to approximate the displacement and stress fields

%Y Tty ot = Y €U (X Yty by, oot ),

i=0

o(X, ¥, ty, ty, .., b)) = z eioi(x, Y oty o ty) (5)

i=-1

Homogenization process consists of inserting the asymptotic expansions (5) into the
governing equation (1), identifying the terms with the equal power of , and then solving
the resulting problems.

Following the aforementioned procedure and expressing the spatial and temporal deriv-
atives in terms of the fast and slow space-time coordinates

_ -1
Uy = Uy +€ Uy (6)

- 2 4 2m
u, = u’tO +& u’tl +€ u’t2 +...+¢€ u’tm @)

we obtain a series of equations in ascending power of starting_v%/ith

3.10(1) Homogenization

At O(s_z) , we have

{E(Mugyt, =0 (8)
The general solution of (8) is
_ Yoty 1
Uy = ay(X to, ty, ..o, tm)J' @dy+ (X g, ty, ..oy tr) )
Yo

wherea, (X, ty, tq, ..., ) and,(x, t,, t4, ..., t,)) are functions of macro coordinates and

A

multiple temporal scales. To ensure periodicitygf  over the unit cell dahanQ/ e

in the stretched coordinate systgna,; must vanish, implying that the leading-order dis-
placement depends only on the macroscale

Ug = Ug(X to tg, -oos b)) (10)




At orderO(s_l) , the perturbation equation is
{E()(Upx+upy)}t, =0 (11)
Due to linearity of the above equation, the general solution of  is
Ur(% Yot by, o t) = Ug(X to, by, ooy 1) + L(Y)Ug (12)
Substituting (12) into (11) yields

{E((1+Ly)}, =0 (13)

For aQ -periodic functiog(x, y, t, t;, ..., t;) , we define an averaging operator

(g0 |jg(x, ¥t by o t)dy (14)

"

The boundary conditions for the unit cell problem described by (13) are
(a) Periodicityu;(y = 0) = u;(y=Q) , og(y=0) = gp(y = Q)

(b) Continuity:{ul(y= aé)w =0, {oo(y: aé)w =
(c) Normalization: [l (X, Y, o, t4, ..., t)0= Uy(X t5, ty, ..., 1) O O(y)d=0 (@15)
whereO<a <1 is the volume fraction of the unit céll; | is the jump operator; and
o, = E(y)(ui,x+ui+1,y), i =01 ..,nn (16)

Equation (13) together with the boundary conditions (15) define the unit cell boundary
value problem from whiclL(y) can be uniquely determined as

C1-a)(E-E)[ a0 aE-E) [ (1+a)Q
Ll(y)_(l—a)E1+0(E2[y } HoY) = (1—a)El+aEz[y" 2 }‘”’

At O(1) , the perturbation equation is

P(Y)Up 1yt T E(W) (Ugx + Up )} , A E(Y)(Uuy +Up )} =0 (18)

Applying the averaging operator defined in (14) to the above equation and taking into
account periodicity ob; , we get the macroscopic equation of moti@{hx




Polo t.t, ~ Eoloxx = O (19)

where

— — _ _ E1E2
Po = pU=ap; +(1-0a)p,, Ey = [E(Y)(1+L)0= (1-0)E, +aE, (20)

The above macroscopic equation of motion is non-dispersive. In order to capture disper-
sion effects, we next consider higher-order equilibrium equations.

3.20(g) Homogenization

u, is determined fron®(1) perturbation equation (18). Substituting (12) and (19) into
(18), yields

{EWuzy} , = {Eg(8(Y) =1) = (E(Y)L) y} Ug xx—{EMV 14} (21)

where

8(y) = p(¥)/Po (22)
We seek for the solution of, in the form of
Us(X, ¥ty by, s ) = Us(X tg ty, oo ) + L(y)Ul,X + M(y)uO’ “x (23)

Substituting (23) into (21) yields
{E(M(L+M )}, = Eo(B(y) 1) (24)

The boundary conditions for the above equation are: periodicity and continwisy of
ando, as well as the normalization conditidvi(y)CJ= 0 . Once the solutith(pf is
obtained it can be easily verified thdi(y) satisfies

(pLO= 0, [E(L+M,)0=0 (25)
Consider thed(e) equilibrium equation:
PYUL 1, —TEMWI(Ug x + Uz )}  —{E(W)(Up x+ Uz )}, = O (26)

Applying the averaging operator to the above equation, and exploiting (25) together with
periodicity ofo, yields

poul,toto - EOUl,XX =0 (27)

3.3 O(sz) Homogenization




Uy is determined from th@(e)  perturbation equation (26). Inserting (12) and (23) into
(26) and making use of the macroscopic equations of motion (19) and (27), gives

{EM)Us b, = {EB(Y)L—E(Y)(L +M ) = (E(Y)M) } Ug et
{Eo(8(Y) 1) = (E(Y)L) y} Uy ix—{E(WU25} (28)
Due to linearity of (28) the general solutionugf  is as follows:
Ug(X Yo to by, o t) = Ug(X to, by, oy t) + L(Y)U  +
M(Y)Uq yxt N(Y)Ug xxx (29)
Substituting (29) into (28) gives

{E(N(M+N)} = ELB(y) —E(Y)(L+M)) (30)

The above equation, together with the periodicity and continuity of cand  as well as

the normalization conditioiN(y)dd= 0 , fully determid§y) . Aftd(y) Is solved for,
we can calculate

_ [a(1—a)](p,—p,)(E;p; — E,p,) EOQZ

M- 12p,E,E, (31)
E(M 4 N 0(1-0)EgQ (E, ~ E)[opy — (1-0)%p,] + Egpg
(M) = 5 = (1-a)E, + aE, ~Po} 32

Consider the equilibrium equation @’(82)
P(Y) (Ug i, + 2Ug e )L E(W)(Up x + Uz )} A E(Y)(Ug x + Uy )} y=0 (33)

Applying the averaging operator to the above equation, and exploiting periodiaity of
and making use of (31) and (32) leads to

1
Pzt 1, ~EoUoxx = s_zEdUO,xxxx_ 2P 1, (34)

where

_ [a(1l- G)]Z(Elpl_ Ezpz)ZEoQ2
1202[(1-0)E, + aE,]°

(35)




E4 characterizes the effect of the microstructure on the macroscopic behavior. It is pro-

portional to the square of the dimension of the unit @ll . Note that for homogeneous
materials (i.e.,,a =0 ora =1 ) and in the case of impedance mat® z,/2;

(z = J/Ep) equal to unityE, vanishes.

3.4 0(83) Homogenization

u, is determined fronO(ez) perturbation equation (33). Substituting (12), (23) and
(29) into (33) and making use of (19), (27) and (34) yields

LEMUg} , = {B(Y)(EgM + Eg/&%) —E(Y)(M +N,) = (E(Y)N) } Ug ot
{EB(Y)L-E((L+M ) = (E(Y)M) } Uy s *
{Eo(8(y) = 1) = (E(Y)L) y} Uz xx—{E(W U3}, (36)
Due to linearity, the general solutionwgf  can be sought in the form
Ug(% s T by, i ) = Ug(X to, tg, oy 1) # L(Y)Ug

M (y)UZ,xx + N(y)Ul,xxx + P(y) uO,xxxx (37)

Substituting (37) into (36) yields
{E(NIN+ P} = 8(Y)(EM + Eq/€) ~E(y)(M+ N,) (38)

The above equation, together with the periodicity and continuity of cand  as well as

the normalization conditionP(y)J= 0 , uniquely determin@gy) . The solution of
P(y) satisfies

[pNO= 0, [E(N+P,)0=0 (39)

The equilibrium equation @(83) IS:
P(Y) (Uz g, * 2Up 1t )JAE(V)(Uz y + Uy )} A E(YW)(Ug + U5 )} = O (40)

Applying the averaging operator to (40), exploiting periodicitgpf ~ and making use of
(39) yields

1
pOUS,tOt0 - EOU3,XX = 8—2Edul,xxxx_ 2poul,totl (41)




3.5 0(84) Homogenization

Us is determined fron®(83) perturbation equation (40). Substituting (12), (23), (29)
and (37) into (40) and making use of (19), (27), (34) and (41) yields

{E(Y)usy} , = {8(Y)(EgN + LE,/€%) —E(y)(N+ Py) = (E(Y)P) y} U xxxx™

{B(Y)(EqM + Eq/€) ~E(Y)(M + N ) = (E(Y)N) } Uy
{EGB(Y)L —E(y)(L + M) = (E(y)M) } Uy o+
{Eo(8(Y) = 1) = (E(Y)L) y} U3 ix—{E(NU4x} (42)
Due to linearity, the general solutionwf can be sought in the form
Us(X Ys tg by, - t) = Us(X, to, ty, oo b)) F L(Y)Uy  +
M(Y)U3 ¢+ N(Y) U3 0x + PODIU 1 0t QUY) U sexxcx (43)
Substituting (43) into (42) gives
{EW(P+Qy}, = B(y)(EoN + LE/€) ~E(Y)(N+P,) (44)

The above equation, together with the periodicity and continuify of ocand as well as

the normalization conditionQ(y)d= 0 , uniquely determin@gy) . Afegty) is
solved for, expressions fapPOand [E(P + Q,y)[]can be derived.

TheO(e4) equilibrium equation is:
P(Y)(Uggr, + 2Uz 11, + 2Uo g, * Yot )L E(Y)(Uy x + U5 )} —

{E(Y)(Us x+Ug )}, =0 (45)

Applying the averaging operator to the above equation and taking into account periodic-
ity of og, gives

2 2 4 6 2 2 2
ou, _oU, EOU, Edu, oy, 0 ug 0 Uy

Po—z —Eo— —2pg —2Pga— —Po—7
ot x> gfaxt  g'ax’ 0toot; 0tedt, ~ot?

(46)

where




o L) (E;p, ~Eppy) E,Q"

2.2 2.2 22
{a"E5[20"p;—(1—a) p5 +
 36005[(1-0)E; +aE,]* S i

60((1—0()p1p2] + 20((1—0()E1E2[30(2pf + 3(1—0()2p§ +
110(1-a)pyp,] —(1—a) Ef[a’p] —2(1—a)p5—60(1—a)pyp,l} (47)

3.6 0(85) Homogenization

Next we determine the value af frc!fr(s4) perturbation equation (45). Substituting

(12), (23), (29), (37) and (43) into (45) and making use of (19), (27), (34), (41) and (46),
yields

{E(Y)Ugy}, = {8(Y)(EqP + MEy/e"—Ey/e") —E(Y)(P+Q,) -
(E(Y)Q) } o xoooact { OV (EgN + LE,/€%) —E(y)(N+P,) -

(EWIP) Uy 0t L O (EqM + E/€%) —E(Y)(M + N, ) -
(E(YIN) } Ug i {EBIL = E(W)(L + M ) = (E(Y)M) ;} Ug iy +
{Eo(8(Y) 1) = (E(Y)L) y} Ugux—{E(MUs} (48)
Due to linearity of (48) the general solutionugf ~ can be sought in the form
U(X Yo tg by, i t) = Ug(X, to, tg, ooy ) + L(Y)Ug  +
MY)U 4 xx NI Uz 0t PV 2 50000 QUYIU 1 sxsexxt ROV Yo sxxxx (49)
Substituting the above expression into (48) yields
{EMQ*Ry)}, = BW)(EP+MEy/ " ~E/e) ~E(M(P+Q)  (50)

The above equation, together with the periodicity and continuify of cand as well as

the normalization conditionfR(y)d= 0 , uniquely determinB§y) . ATR(ry) is
solved for, it can be easily shown that

[pQU= 0, [E(Q+R)I=0 (51)

The equilibrium equation 2@(85) is:




P(Y) (Us g, + 2Ug e, + 22Uy g p, T Ut )T E(YW)(Us y +Ug )} —
{E(W)(ug x+uz )}, =0 (52)

Applying the averaging operator to the above equation, exploiting periodiaty of  and
making use of (51) yields

2 2 4 6 2 2 2
poa_Us_EOa_Us = Ega_US_Ega_Ul_Zpoa U3 _ZpOa Ul _poa_Ul (53)
ot x> gfaxt  g'ax’ 0tg0ty 0tgdt, "ol

3.7 Higher Order Homogenization and Summary of Macroscopic Equations

The homogenization process described in the previous section can be systematically
generalized to an arbitrary order. In this section we summarize various order macroscopic
equations of motion and state the initial and boundary conditions.

The macroscopic equations of motion are:

O(1):  PoUoy,, —EoUoxx = O (19)
O(g): PoUqt,~EoUixx = O (27)
O(e%): PoYzt,t, ~EoU2xx = E_ledUo,xxxx— 2PgUo 1,1, (34)
o(e%): PoYs,t, ~EoUsxx = 8—12Edul,xxxx_ 2pqU1 11, (41)
4 62U4 62U4 EO|<34U2 EQGGUO 62U2 62u0 62u0
O(e"): poa —an7 = ?67 _8467 —Zpom—z%m—poa (46)
s 0Us _0Us EQU, _E_966U1 U, oU, o,
O(e”): po% “Booz T ena Tass ~Pogiar,  “Pogiga, _poatf (53)

0(56) and higher:

2 2 4 6
0 U2m_ a_UZm _ Eia_UZ(m—l)_Ega_UZ(m—Z) +

Po7 0 =
6t§ ax° g?ox’ g*0x°

10



E.,0 U2(m 3) Esza U2(m Dy a1y Es(m-2)0 U

6 GX 88 aXlO 2m 2(m+ 1)
2
O
u 0 u ou
2p0@ A S e A
@toatm 0t,0t,,_, 2582, 2%
@Zu U ou, U
2pg 2 + 2 '|‘...+1-722 E—
@toatm_1 ot, ot _, Zat(m—l)/ZD
@Zu U oy, U U
TN St B et 0. —2pg—n Y (54)
@toatm_2 ot 0t Zat(m—Z)/ZD 0t,0t,
2 4 6
0 U2m+1 0 U2m+1 — _E_da U2m—1 Ega U2m—3+
— - —da’ - i hiid
ot %ox? e ox* g*0x°
2(m+1)
16 U2m 5 E 2a U2m 7 +(—1 m+1—s(m-2) 1
8 5. 10 (-1) 2m 2(m+1)
£® ax° € 0X € 0X
2
Zp@ul oy, | +1au1D
O@toat 6t16tm_1 ZatmE
§2U Xt au, GO
2pp 2+ % 4. 423 O
@toatm_ . otot. 5 Zat(m—l)/ZD
@zu U ou, U Xt
10 Us 0 2m-1
2p S 40 4 4z > 2p (55)
0@toatm_2 ot ot 5 Zat?m_z)/25 09t,0t,

wherem = 3,4, 5 ... ;t (k=0,1,2...,m) Ey; Ey ... Es(m—2) can be evaluated
using higher-order homogenization process.

Subsequently, we consider the following model problem: a domain composed of an
array of bilaminates with fixed boundaryat= 0 and free boundaxy=atl subjected

11



to an initial disturbancd(x) in the displacement field OXfl) , the displacement field is
determined by the equation of motion (19) and the following initial and boundary condi-

tions

ICs: Up(%,0,0,...,0) = f(X) , Up(x0,0,...,0) = q(x) =0 (56)

BCS- UO(O, to, tl’ sy tm) = O y UO’X(|, to, tl’ sy tm) - O (57)

., 1,) is obtained by solving the equation of motion

The calculation oEU, (X, ty, ty, ..
must be such that the global field

(27). The initial and boundary conditions applied tb,
U + €U; meets macroscopic initial conditions and conditions imposed on the bpundar

Ug(x,0,0,...,0) +eU,(x,0,0,...,0) = f(x)

Up(% 0,0, ...,0) +eU,4(x0,0,...,0) = 0

Uo(0, ty, tg, ..., t) +€U4(0, tp, t4, ..., t,) = O
Ug (It tys oos t) # €U (I tg, ty, s t)) = 0
Taking into account (56) and (57), the initial and boundary conditiored fpr become
ICs: €U,(x,0,0,...,0) =0, eUl;t(x, 0,0..,00 =0
BCsU,(0, tg, ty, ..., t) = 0, €Uy (I, to,ty, ..., ty)) = 0

Similarly, the macroscopic fieIdZUZ(x, ty ty, .., t)  is determined from the equation
of motion (34), with the initial and boundary conditions &%Uz such that the global

field uy+eU, + £2U2 should satisfy the macroscopic initial and boundary conditions.

With this in mind, we obtain the initial and boundary conditions for different order equa-
tions of motion:
f(X) Up4(%, 0,0, ...,0) = q(x) =0

ICsiy(x, 0, G, ..., 0)

0, Uy(x0,0..,0=0 (i=123..) (8
t)=0 (i=012..) (59

U.(x 0,0, ...,0)

BCs: Ui(0,tg, ty, ..., t) = 0, Uj (It tg, ...
From the above equations of motion and the initial-boundary conditions, we can readily

deduce that

12



Use (Xt tg, ..t ) =0, (m=0,1,2...) (60)

4. Solution of Macroscopic Equations
We start with the zero-order equation of motion (19), the solution of which can be sought
by means of separation of variables in the form

Ug(X, T Ty, oos t) = X(X)T(tg, tg, -oos t) (61)

Substituting the above equation into (19) and dividing by the product yields

2
10T 2X"! 2
=—— =C— = -\ (62)
T2 X
oty

whereA is the separation constant and

c = ./Ey/Po (63)

The resulting differential equations and corresponding solutions are

2 2
x +hx =0, 2Tipr=0 (64)
C oty
X(x) = Alsin)%(+A2cos%X (65)
T(ty, ty, ..., t) = D(ty, t, ..., t)Sin(Aty) + F(ty, ty, ..., t) COS(ALy) (66)
whereA; andA, are constants of integratio(ty, t,, ..., t,)  afdt,, t,, ..., t.) are
undetermined functions.
Substituting (61), (65) and (66) into (59) gives
A, =0, Alcos%l =0 (67)
The second equation in (67) yields
A, = (2n—1)g—lc, (n=123..) 68)

Due to linearity of the differential equation, the total solution consists of the sum of indi-
vidual solutions. Hence, we may write

13



Uo(X, to, ty, ..o, z sm [D (ty, to, .., t)SIN(A L) +
n=1
(69)

Fo(ty ty, ., 1) COS(A )]
which can be shown to satisfy the boundary conditions. Inserting (69) into the second
order macroscopic equation of motion (34) yields

02U 0 U E
_22 > 2 = Z sm——— —d EﬁED + 2\, "3 }SIH(A tg) +
ot £”po t
(70)

£2 00 OcO
The right-hand-side in (70) is also a solution to the corresponding homogeneous equa-

tion, and therefore, it generates secular terms. In order to eliminate secular terms and to
...,t,) , the source term must vanish, i.e.

aD
{ a horfp 0= 2N ”}cos()\nto)}
1

avoid unbounded resonanceld(x, t,, t;,

Ed Eﬁ‘DD 27\ =0 dEﬁ‘DF APy 71
at ’ el not, (71)
e Po 1 g2 Po 1
Let
L
“n = 2cpyUc (72)
Then (71) can be written as
oF oD
2Y"'n 2Y%~n
— 4+ = [ =
3 31, w,D,=0, ¢ 3t w,F, =0 (73)

Differentiating the first equation in (73) and inserting the second equation into the result-
ing equation leads to

OF,
£— "+ F =0 (74)
ot

Likewise, differentiating the second equation in (73) and inserting the first equation into

the resulting equation yields

14




2
0D
e "+wD, = 0 (75)
ot

The general solutions to (74) and (75) are

w,ty0 [to,t,0
Dn(tl’ t2, ey tm) = Gn(tz, t3, ey tm) SlnD_2D+ Jn(tz, t3, ey tm) COSD_ZD (76)
Ue™ O Ue” O
_ o,t,0 [to,t,0]
Fo(tyt o ty) = Kot ts, .oy tm)sm51—5—5+ S, (to tg, ..., tm)cos%—z—g (77)
€ €

where G (ty, tg, ..., t,) I (o tg oo t) K (t g, .o, ) andS(t,, ty, ..., t) are
undetermined functions.

Solutions (76) and (77) must satisfy (73). Inserting (76) and (77) into (73) gives

J, =K, G,=S5, (78)

n n

Substituting (76), (77) and (78) into (69) yields

C A Doty O
Ug(X, tg Ty, -oos ty) = z sin—— K (to, tg, ...,tm)smg—z—)\ntog+
n=1 &
[to,t, O
Sj(tz, t3, - tm) COSE—S—Z— _)\ntog (79)

Since the source term @‘(82) macroscopic equation of motion has been set to zero and
considering the initial and boundary conditions described in Section 3.7, we deduce

Inserting (79) and (80) into the fourth order macroscopic equation of motion (46) yields

2 2 00
ou ou A X E 6 0 Ctopt g
—24—c2—24 = z sin—”—ﬁ%[—ggﬁ‘% +wﬂKn—2)\na—Sn}sinB—rl2—l—)\nt0D+
at, ax - g LPo—C ] De O

1 [E Eﬁnmﬁ 2} oK, AN 0
=| + W, |§,+ 2\ 5~ |COs——5- — A, t00 (81)

15



Again, the right-hand-side term in the above equation is the solution of the correspond-
ing homogeneous equation and thus will generate secular terms. In order to eliminate sec-

ularity arising fromU, , we set

0 oK
[_QET\_” } K_—2\ _S” =0, [_gﬁ\_nD +w }Sn+2)‘nwn =0 (82)
2

4 potct not, 4 potcO
Let
E 6 0 E2 5
Vn = 1[_&Eﬁm +l‘*’ﬂ = seo ot —- o0 (83)
2potc 2 2cpo0 ¥ ac?poHcH

Equation (82) can be written as

2S, oK
4 _ 4¥"\n _
at2 ynKn = 0, € a—tz + ynSn =0 (84)

The general solutions to the above equations are

y,t,0 t,0]
Koty ta, s t) = Vo (ta t, ...,tm)sungz—fg+ W, (t, ty, ...,tm)cos%nfg (85)

 Oyt,0 t,0]
S, (tyta ot ) = W (tg, 1, ...,tm)S|néL”42E—Vn(t3, ty, ...,tm)coséL”fS (86)
€ €

Substituting (85) and (86) into (79) gives

D

V(s ty, oo ty) 005%2 ——)\ tom} (87)

0

Since the source term @‘(84) macroscopic equation of motion vanishes and consider-
ing the initial and boundary conditions prescribed in Section 3.7, we conclude that

The above procedure can be systematically extended to higher order equations, which
yields
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AKX t t t, Y.t
Ug(X, tgy tys ooy by z sm-——[A S|nE.31m—"2-M+...+m+Bﬂ§+Yn—2+

2 8 6 2
O gm £ £ £
n=1

Wpty g(m—th_m +...+ Pants , Banls , Yalz Ol _» to)]  (89)
g2 n n e’ "

2m 8 6 4
U e € € €

whereA, andB,, are constants of integration and

By = Xl] [25;%) E%Hs o (90
Bon = i[ZE_;z E]%Elo + @By, + %Vﬂ (91)
Ban = %[2;3 Eﬁcﬂ + WPy + vnﬁln} (92)
B(m—Z)n = )%H[EJSZE_.f) Oc EZ(W ) + (.OnB(m—g)n + VnB(m—4)n +
BuoBin-sn* BaoBm-on* - * 3Bz 0] (3

wheref3,, (i=1,2 ...,(m=2)) andis an integer.

Insertingt, = % (k=0,1,2...,m) into (89) and using the initial conditions (58)
we can determind,, arfg|, as

|
A =0, B, = 2{ f(x) sin{20=L)TXgy (94)
1Jy 2l
and thus a uniformly valid dispersive solution, denoted hetg as , is given as
ApX Lo, t t t
Ug(X, oy ty, oo t) =5 Bpsin=~ cos{)\ to— 5= + yn42 8123 +
D¢ ¢ €

n=1
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t t O
BZn 4+ 4 Bgm—Z)n mD (95)
88 E:2m 0

For function evaluation, we inseft = %t (k=0,1,2...,m) ,which yields
- _AX
Ug(x, t) = z anm—c—cos{ [An— (@0 + Vo +B1n *Bon * oo +Bmog)n) It} (96)
n=1
5. Numerical Results

To assess the accuracy of the proposed formulation, we construct a reference solution by
utilizing a very fine finite element mesh to discretize the problem domain. We consider the
following initial disturbance in displacements:

£(X) = foaglx— (% =) [X— (% + )] L—H[x— (% + 3)]} O

[1-H(Xy—0-X)]

wherea, = 1/3* andH(x) is the Heaviside step functién; x,, and are the magni-

tude, the location of the maximum value and the half width of the initial pulse. Substitut-
ing the initial disturbancd(x) into (94) and integrating analytically, we get

X+ 0
B, =2 | foolX — (% = ) [x - (g + 8)) sint 20 =Ly
Xg—0
2
- 258 %o 5§12|2—((2n—1)e'm)2]sin(zn_1)T[X°sin(2”‘1)"5—
5'[(2n—1)m] 2 2l

(2n-1)1mX;  (2n—-1)1d 0
CoSs 0
2l 2l g

6(2n—1)dtd sin

The material properties considered &g:= 120 GPa,E, = 6 GPa,p,; = 8000 Kg/
m, p, = 3000 Kg/n?, and volume fractiorn = 0.5 . The dimension of the macro-
domain and that of the unit cell are setlas 40 mand Q = 0.2 m, respectively. The
homogenized material properties are calculateBas 11.43 GPa p, = 5500 Kg/m3

andEy = 1.76x 1d N. In this caseE,/E, = 20 and the ratio of the impedance of the

18



two material constituents is= 7.30 . The initial pulse is centered at the midpoint of the
domain, i.ex, = 20 m, with the magnitudeé, = 1.0 m.
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Figure 2: Displacements at= 30m  for the initial half pulse widtk 0.8m

Evolution of displacements of the po{mt = 30 m)is plotted in figures 2-4 for three
cases corresponding ® = 0.8 m, d = 0.5 mand & = 0.3 m, respectively In other

words, the ratios betweehe pulse width and the unit cell dimensidd/ Q are 8, 5 and
3, respectively. Each of the figures 2-4 depicts four graphs corresponding to the finite ele-
ment solution of the source problem, the analytical nondispersive solyfant) , the
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dispersive solutioruy(x, t) up to the second order and the dispersive solution up to the
fourth order.
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Figure 3: Displacements &at= 30m  for the initial half pulse widltk 0.5m

The phenomenon of dispersion can be clearly observed in Figures 2-4. Figure 2 corre-
sponds to rather low frequency case, where the pulse almost maintains its initial shape
except for some minor wiggles at the wavefront. In this case, the leading-order homogeni-
zation can give a reasonable approximation to the response of a heterogeneous medium.
However, when the pulse width of the initial disturbance is comparable to the dimension
of the unit cell and the observation time is large, which are the cases shown in Figures 3
and 4, the wave becomes strongly dispersive and the leading-order homogenization errs

badly. It can be readily observed that the dispersive solutj¢r, t) provides a good
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approximation to the response of the heterogeneous media even as the initial pulse width
is only 3 times of the unit cell dimension.
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Figure 4: Displacements at= 30m  for the initial half pulse widtk 0.3m

6. Concluding Remarks

Mathematical homogenization theory with multiple spatial and temporal scales have
been investigated. This work is motivated by our recent studies [11][12] which suggested
that in absence of multiple time scaling, higher order mathematical homogenization
method gives rise to secular terms which grow unbounded with time. In attempt to
develop a uniformly valid dispersive model up to an arbitrary order we extend the theory
developed in [12] to fast spatial scale and a series of slow temporal scales.

In our future work we will focus on the following two issues: (i) generalization to the
multidimensional case, and (ii) a finite element implementation.
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