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ABSTRACT

The paper presents a Generalized Aggregation Multilevel (GAM) solver, which
automatically constructs nearly optimal auxiliary coarse models based on the information
available in the source grid only. GAM solver is a hybrid solution scheme where
approximation space of each aggregate (group of neighboring elements) is adaptively and
automatically selected depending on the spectral characteristics of individual aggregates.
Adaptive features include automated construction of auxiliary aggregated model by
tracing “stiff” and “soft” elements, adaptive selection of intergrid transfer operators, and
adaptive smoothing.

An obstacle test consisting of nine industry problems, such as ring-strut-ring structure,
casting setup in airfoil, nozzle for turbines, turbine blade and diffuser casing as well as on
poor conditioned shell problems, such as High Speed Civil Transport, automobile body
and canoe, was designed to test the performance of GAM solver. Comparison to the state
of the art direct and iterative (PCG with Incomplete Cholesky preconditioner) is carried
out. Numerical experiments indicate that GAM solver possesses an optimal rate of
convergence by which the CPU time grows linearly with the problem size, and at the same
time, robustness is not compromised, as its performance is almost insensitive to problem
conditioning.

1.0 Introduction
The performance of linear solvers in terms of CPU time for symmetric positive definite

systems can be approximated(i—ﬂﬁB , wihere the number of degrees-of-freedom, and

C, B are solution method dependent parameters. The major advantage of direct solvers is
their robustness, which is manifested by the fact that paran@terd3 are independent

of problem conditioning (except for close to singular systems). Direct solvers are ideal for
solving small up to medium size problems since the con€témt direct methods is sig-
nificantly smaller than for iterative solvers, but becomes prohibitively expensive for large
scale problems since the value of exponent for direct solvers is higher than for iterative
methods. To make direct solvers more efficient various modifications of Gaussian elimina-




tion, which store and compute only the logical nonzeros of the factor matrix [1], have been
developed. Nevertheless, fill-inn cannot be avoided but only minimized and serious con-
sideration of iterative methods for large problems is a virtual reality.

Recent years saw a re-emergence of iterative solvers in finite element structural analysis
due to increasing demand to analyze very large finite element systems. Conjugate Gradi-
ent method with a single level preconditioner, such as SSOR, Modified Incomplete
Cholesky (MIC), Element-by-element (EBE), is considered by many commercial finite
element code developers (ANSYS, COSMOS, ALGOR) as most suitable for commercial
applications. The value of exponefitfor CG type methods with a single level precondi-
tioner typically ranges between 1.17 to 1.33 [2] depending on the preconditioner, while the
value of constant increases with degradation in problem conditioning.

Since the pioneering work of Fedorenko [3], multigrid literature has grown at an aston-
ishing rate. This is not surprising since the multigrid-like methods possess an optimal rate
of convergence among the iterative technigre$, i.e. computational work required to
obtain fixed accuracy is proportional to the number of discrete unknowns. The principal
idea of multigrid consists of capturing the oscillatory response of the system by means of
smoothing, whereas remaining lower frequency response is resolved on the auxiliary
coarse grid. Nevertheless, multigrid methods (or multigrid preconditioners within the CG
method) thus far had only very little impact in computational structural analysis. There
seem to be two basic reasons:

() Commercial software packages must be able to automatically produce a full
sequence of auxiliary discretizations (finite element or boundary element meshes) that are
gradual coarsenings of the source discretization.

(ii) For optimal multigrid convergence smooth solution components relative to a given
discretization must be well approximated by subsequent coarser grids. Conventional or
geometric multigrid method cannot guarantee that a sequence of auxiliary discretizations
will possess this approximation property for general structural mechanics applications.
For example, what is a good coarse discretization for frame structure or a wing structure,
where each panel in the source mesh consists of a single or very few shell element.

These difficulties motivated the developmentAdgebraic Multigrid (AMG) [4] with
the intent of providing a black box algebraic solver based on multigrid principles and
exhibiting multigrid efficiency. While geometric multigrid approach constructs discretiza-
tion sequence using auxiliary courser grids, AMG accomplish the same goal on the basis
of the information available in the source matrix of equations only. By this technique the
coarse level variables selected so as to satisfy certain criteria based on the source grid
matrix. The most basic criterion is typically that each fine level degree-of-freedom should
be strongly connected to some course level variable. However, the fact that algebraic mul-
tigrid uses information available in the source matrix only in constructing auxiliary dis-
cretizations, results in suboptimal rate of convergence.

The aggregation based multilevel solvisra hybrid scheme where some minor extra
information (depending on the type of aggregation scheme) might be used to construct a
hierarchy of coarser problems, but no sequence of coarser discretization is required. The
concept of aggregation has been introduced by Leontief in 1951 [5] in the context input-
output economics, where commodities in large scale systems where aggregated to produce
smaller systems.

The concept of aggregation has been utilized within the context of the multigrid
method by Bulgakov [6], [7] and Vanek [8]. In [6] aggregates consisting of non-intersect-
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ing groups of neighboring nodes were chosen to have translational degrees of freedom
only, and consequently, the auxiliary coarse model could be constructed without knowl-
edge of nodal coordinates or eigenvalue analysis. On the negative side, convergence was
only guaranteed for scalar problems such as heat conduction. This algorithm has been
improved in [7] by enriching the kinematics of the aggregate with rotational degrees of
freedom (three in 3D, one in 2D) and constructing the prolongation operator on the basis
of nodal coordinates. In general this approach does not guarantee that the coarse model
captures the entire null space of the aggregate, such as in the case of pinned connections in
frames or continuum problems where, for example, elements within an aggregate are con-
nected at a single node. Furthermore, the convergence characteristics of this approach
have been found to be not satisfactory for poor conditioned problems. These drawbacks
motivated development of smoothed aggregation concept [8]. By this technique a tentative
piecewise interpolation field consisting of a null space of individual aggregates is first
defined and then corrected using Jacobi smoother in attempt to reduce the energy of coarse
space basis functions. Our numerical experiments indicate that although smoothed aggre-
gation markedly improves the rate of convergence in well conditioned continuum prob-
lems, computational efficiency in poor conditioned problems such as thin shell is not
improved and in some cases degrades.

In the earlier aggregation schemes [7], [8] a typical coarsening ratio Wasiﬁb%%t

for Laplace operator, whemsd is a number of space dimensions. For well conditioned
problems this is a nearly optimal ratio resulting in methods with remarkably low computa-
tional complexity. Unfortunately, for poor conditioned systems such as thin shells, the
coarse problem fails to adequately capture the lower frequency response of the source
problem. In attempt to develop a solution procedure possessing an optimal rate of conver-
gence where CPU grows linearly with the problem size without compromising on robust-
ness in the sense that the number of iterations is insensitive to problem conditioning, the
present paper presents a generalization of the basic aggregation method by which approxi-
mation space of each aggregate is adaptively and automatically selected depending on the
spectral characteristics of the aggregate.

The paper is organized as follows. Section 2 reviews the basic multigrid concepts.
Mathematical foundation of the Generalized Aggregation Multilevel (GAM) method is
given in Section 3. Adaptive features including automated construction of aggregated
model by tracing “stiff” and “soft” elements, adaptive selection of intergrid transfer opera-
tors, and the Incomplete Cholesky based smoothing procedure with adaptive fill-in are
described in Section 4. In Section 5 we conduct numerical studies on 3D industry prob-
lems, such as ring-strut-ring structure, casting setup in airfoil, nozzle for turbines, turbine
blade and diffuser casing as well as on poor conditioned shell problems, such as High
Speed Civil Transport (HSCT), canoe and automobile body. Comparisons to the state of
the art direct [1] and iterative (PCG with Incomplete Cholesky preconditioner, Power
Solver of ANSYS) are also included in Section 5.

2.0 Multigrid Principles

Consider a linear or linearized system of equations within a Newton-Raphson or
related scheme

Ku = f uOR" fOR" )




whereK iswn symmetric positive definite and sparse matrix.
The following notation is adopted. Auxiliary grid functions are denoted with subscript

0. For exampleu0 denotes the nodal values of the solution in the auxiliary grid, where
Uy O RM m< n. We also denote the prolongation operator from the coarse grid to the
fine grid by Q :

Q:RM_ RN @)

The restriction operatdp from the fine-to-coarse grid is conjugated with the prolon-
gation operator, i.e.:

QT: RN, RM 3)

In this section superscripts are reserved to indicate the iteration coutit. Let  be the
residual vector in thé -th iteration defined by
[ [
r=f-K
. (4)
whereu! - is the current approximation of the solution inithe -th iteration.
The problem of the coarse grid correction for positive definite systems consists of the

minimization of the energy functional on the subsgafé ,Le.
%(K(ui+QuB), ul+Qub) —(f,ul+Qul) 0 min uyOR" (5)
where (.,.) denotes the bilinear form defined by
n
n
(u,v) = Z u.Vv. uviR (6)
1)
j=1

A direct solution of the minimization problem (5) yields a classical two-grid procedure.
Alternatively, one may introduce an additional auxiliary gridu’kef and so forth, leading

to a natural multi-grid sequence. To fix ideas we will consider a two-grid process resulting
from the direct minimization of (5) which yields

T -
Koup = Q (f—Kul) ™

T
whereKy = Q KQ -is the restriction of the matl& . The resulting classical two-grid

algorithm can be viewed as a two-step procedure:
a) Coarse grid correction




rl = f—Ku!

i 1T,

up = Ko Q r! (8)
0f = ul+Quy

wherel! is a partial solution obtained after the coarse grid correction.
b) Smoothing

ui*l = i+ DN —Ki ©
whereD is a preconditioner for smoothing. Any preconditioned iterative procedure which
has good smoothing properties and requires little computational work per iteration step,

can in principle, be used as a smoother in the multigrid process. In particular, various
incomplete factorizations, have been found to possess good smoothing characteristics.

Let U be the exact solution of the source problem, then the error resulting from the
coarse grid correction (8) can be cast into the following form

& = u-il = (1-QK5Q'K)é = (1-CT'K)e 10)

: . : . -1 T . .
wherel is the identith X N matrix arld =~ = QKalQ is a course grid precondi-
tioner. Likewise the influence of smoothing on error reduction is given by:

e+l =y_yi+l = (-plk)d (11)

and from the equations (9), (10) the error vector of the two-grid process with one post-
smoothing iteration can be expressed as:

e *+1 = (1 =D K)(I —C 2 K)el 12)
Further denoting
M =1 -D K
- (13)
T = 1 -QK3lQ 'K

equation (12) withv, post-smoothing and ane  pre-smoothing iteration can be cast into
in the following concise form

. V) V, -
e+tl=M"'TM % (14)
Based on equation (13) it can be easily shown that is a projection operator, i.e.
2
T = T7,and hencdT|,, = 1

Equation (14) represents the sufficiency condition for the convergence of multigrid
method provided that the iterative procedure employed for smoothing is convergent, i.e.




IMIl,, < 1. For recent advances on convergence analysis for multigrid like methods we
refer to [9].

In practice, however, solution incremant’ - u* = pr¥ obtained from the multi-
grid method is used in the determination of the search direction within the conjugate gra-

k

dient method. The inverse of the two-grid preconditioner with= 1 v, = 0 can be
obtained from equation (12)
p-L = pluxct+c (15)
for which the closed form direct expression is given as
T -1
p = [I+(K—D)Q(Q DQ) QTD . 16)

3.0 Generalized Aggregation Multilevel (GAM) Solver

In aggregation scheme the coarse model is directly constructed from the source grid by
decomposing the whole set of nodes into non-intersecting groups to be referred to as
aggregates, and then for each aggregate assigning a reduced number of degrees of free-
dom. By doing so one reduces dimensionality of the source problem, while maintaining
compatibility of the solution. The key issue is how to approximate the solution on each
aggregate so that the coarse model, to be referred to as an aggregated model, will effec-
tively capture the lower frequency response of the source system.

We start by relatingAssertion ) the optimal characteristics of the aggregated mesh
to the intergrid transfer operator properties of individual aggregates and interface regions
between the aggregates.

Assertion 1
The prolongation operatd®:R™ — R" is considered optimal for fiked n if

-
”Q KQ||2 is minimal for all Q satisfyingIIQII2 =1 andankQ= m . Further-

more, among all the block diagonal prolongation operators, where each block corresponds
to the prolongation operator of individual aggregate, the optimal prolongation operator is
such that

O .
maﬁ‘KgHZ, HKSHZDD mln(Qa)
e a 0

Subjected to ||Qa||2 =1 rankQaz m, OalG

17)
where superscripta and e denote the aggregates and interface elements between the

aggregates, respectiveNA ahtt is the total number of aggregates and interface ele-




ments, respectivej;Qa:Rma ~ RM andQe:Rme ~ R" are the prolongation opera-
tors for aggregatea and interface elemente; Kg =(Q) K'Q and

e e~e . : : :
Ko = (Q) K'Q" are the corresponding restricted stiffness matrices.

Note that minimization is carried out with respect to the prolongation operator for the

. e . .
aggregates only, that the prolongation operagbr for each element in the interface

region is uniquely determined fr0|{1Qa}5|A: 1

Proof:
Let @ and/A be &xn matrix of unitary eigenvectors and a diagatal matrix of
eigenvalues of the stiffness matriK , respectively, partitioned[ca% cbl} and

Ny O -
0 ) that||/\0||2<y and) = @y wher®, consistsraf  unitary eigen-
0O A
1

T
vectorsandpP & = |

The spectral norm of stiffness matrix of the auxiliary mqpéb” ) can be bounded
utilizing consistency condition [11]
<ol = lo"xal, = HaTAoaH2<HaH2||Ao||2 @
Furthermore, since ||Q||2 ”Q Q” = HO( CDOCDOO(H2 = ||O(||2 =1
we obtain _
ko), <7 o

which completes the first part of theorem. For the second part we bound the maximum
eigenvalue of the system [10] by the maximum eigenvalue of the subdomain (aggregate or
interface element)

Kol < maxt]kd [, 20

. . e, a . .
Assertion Istates that the quality of aggregated model is governed by the maximum spec-
tral radius of individual subdomains. The next assertion formulates certain minimum

requirements for the (:onstruction@lél aimed at ensuring the lower bound of the minimal

: : " —1
eigenvalue of the two-grid preconditioned system K . It assumes the worse case sce-
nario where smoothing does not affect lower frequency response errors.




Assertion 2:
Consider the two-level method with = 1 v, = 0  and smoothing affecting only

high frequency modes of error. Then the lower frequency response of the two-level system

characterized by the lower bound of Rayleigh quotierp(x) = (XTKX)/(XTPX)

is governed by the lowest eigenvalue among all the aggregates provided that the prolonga-
tion operator of each aggregate is spanned by the space, which at a minimum contains the
null space of that aggregate.

Proof:

a a : :
Let@ andA~ ben_ eigenvectors and eigenvalues of the aggr@gate . Nodal solu-

a

. a . o L
tion U on each aggregate can be expressed as a linear combination of its eigenvectors

a a~a
u = ¢@u (21)
whereas global solution vector, denoteduas= (pu can be assembled from its aggre-
Ag O N |
gates. Let[(ao (le an be the partitions@f and , respectively, such that
0 A
1

||)\0||2 <. Then the system of equations can be transformed into hierarchical form:

Koo Koa| [Uo| _ |f
“00 “o1/ Yo - (To 22)

uq

K10 K11 fq

where

~ A

- T T T .
U, = @ u, fi = ®, fi Kij = @ quj I, = 0,1 (23)

Similarly, any smoothing precondition&  can be transformed into hierarchical form

D as follows

~

T
Dij = (pi D(pJ (24)

LetQ = @ then the prolongation operal@r defined in hierarchical basis is given

R T
Q=["q-= H (25)




Substituting equations (22)-(25) into (16) yields the two grid preconditicl?her
(vi =1 v, = 0)defined in the hierarchical basis

DOO DOl (26)

If we further assume that smoothing affects higher frequency response only in the
sense that

A _1 ~ A
DOO UO =0 DUO (27)
then the resulting two-level preconditioner can be cast into the block Gauss-Seidel form:
- |Kgp O
P=1_ 00 ~ (28)
K10 D11

To estimate the lower bound of Rayleigh quotient of the two-level preconditioned sys-
tem we utilize again the theorem that bounds the lower eigenvalue of the system (aggre-

gated model) by minimum eigenvalue of any subdonhain  consisting of either aggregates
a or interface element8

. i, Al . A
min{p (x)} < rr)lgn{ P(x)} (29)
I, X

It remains to examine under which condition Rayleigh quotient on each aggregate or
interface element is bounded from below. For the two-grid preconditioner given in (28) the
Rayleigh quotient for each aggregate or interface element is given as

NI S NI PN RPN B 1% BN
i ~i._ (Xg) KooXg*2(Xg) KopXq+(Xq) Ki1Xy

p(x) — (30)
LI RPN TN T I RPN B B I BN
(XO) KOO X0+ (XO) KOl X1+ (Xl) Dll Xl
Let N(IZE)O) be the null space d;(:)O defined as
~j i Tai K .
N(Koo)={ (Xp) Kogkg = O Oxo O SPAN@,)} (31)

o N
Then the Rayleigh quotient is bounded from belpsl/\(xl) >0 Ko contains all the

~i ~i ~i
rigid body modes of K, i.e.N(Kpp)= N(K') . This condition can be easily satis-
fied if the prolongation operator for each aggregate is spanned by the space containing the

~e
rigid body modes of that aggregate. In addition, for all interface eleméth@s(c): [ ,




~e
where K is the interface element stiffness matrix constrained along the boundary

between interface elements and aggregates. Loosely speaking, each interface element
should be connected to aggregates at a number of degrees of freedom greater or equal then

~e [
the dimension of the null space of that eleméhlmDN(K ) N

So far we have proposed how to assess the quahty of intergrid transfer operators
(Assertion Y and what are the properties that it should maintagsértion 2. In the sub-
sequent proposition we describe a heuristic approach, which on the bases of the two asser-
tions, attempts to construct a nearly optimal aggregated model.

Proposition 1:

For given { ma}yg 1 a nearly optimal aggregation model can be constructed if (i)

prolongation operatoQa:Rma -~ R"M on aggrega@e  is spannethgys N, eigen-

vectors corresponding tom, lowest eigenvalues on aggregate , Where
. Oo~a - .
>dimgN( K) 0, and (i) in forming the aggregated model soft elements deter-
[ M

mined by the Gerschgorin upper bound of their maximal eigen\mi]m%Z‘ Iﬁ‘% are
I A

placed at the interface, whet€®= [kﬁ]

Discussion:
, , . a N
We first show that for flxedma the prolongation operat€ds that minimizes
a . . . o . a .
HKOHZ is obtained as a linear comblnatlonm(tjl lowest eigenvectdfs of . This fact
directly follows from equation (19) in the context of individual aggregates
a a al a O
HKOH <Y 0Q% %|Q || rankQ = m, [ (32)
2 a 0
a . : . . : a
wherey  is the maximum eigenvalue of eigenvectors spanning the sgace of . Further-

. a T
more, if we selecty <y [la , then the spectral norm of individual aggregates does not
exceed user prescribed toleraryce

The spectral radius of the restricted interface element stiffness ﬂ(zgrlx is given as
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el e

kg, = k@ k*al,< 1o

|| Ke” 2 (33)

SinceQe is a diagonal block € it can be easily shown|Lbe|2 < ||Q||2 =1

and thus using Gerschgorin theorem for the maximal eigenvaldie of  follows that

e el
K <mefs 4

where K= [kﬁ] .

4.0 Adaptive features

This section describes three features of adaptivity built into the Generalized Multilevel
Aggregation procedure. Some of the notation in this section differs from that introduced in
the previous sections.

First we present the algorithm for automated construction of aggregates on the ele-
ment-by-element basis as opposed to node-by-node procedure employed in [7,8]. In accor-
dance with this approach it is necessary to determine the rigid-body modes and other low-
frequency modes based on the aggregate stiffness matrices. We present two versions of the
aggregate formation algorithm: the basic version which utilizes a topological information
only, and the adaptive version which in addition to the topological information utilizes ele-
mental stiffness matrices in the process of the aggregated model construction.

The second adaptive feature is related to the selection of paragmeter , which plays a
central role in constructing the prolongation operator. This parameter has a direct effect on
the restriction of the stiffness matrix, the sparsity pattern of resulting auxiliary stiffness
matrix as well as on effectiveness of the auxiliary model to capture the lower frequency
response.

Finally, we employ Modified Incomplete Cholesky Factorization for pre- and post-
smoothing. The number of fill-ins as well as diagonal-scaling needed to preserve the posi-
tive definiteness of the system and to provide the fastest rate of convergence of the itera-
tive process are also determined adaptively.

4.1 Aggregation algorithm

Prior to describing the technical details of the aggregation algorithm we introduce the
concept of “stiff” and “soft” elements which is utilized in the process of aggregate forma-
tion.

The element is considered “stiff” if the spectral radius of its stiffness matrix is rela-
tively large compared to other elements and vice versa. Following Proposition 1, we will
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attempt wherever possible to place “soft” elements at the interface between the aggregates,
and “stiff” elements within the aggregates. This approach is a counterpart of the idea of
“weak” and “strong” nodal connectivity employed in [8] in the context of node-by-node
aggregation.

The approximation for the maximum eigenvalue can be easily estimated using Ger-
schgorin theorem in the context of the element stiffness matrices:

e
mgx)\gsﬁe B® = m_aXEZ‘kijE (35)
|
]

In the remaining of this subsection we focus on the aggregation algorithm.

Consider the finite element mesh containiMg elementd\jpd nodeG.(lLgt
be the set of nodes belonging to the eIenEnt

c() = {N:N oE") (36)
The goal of the aggregation algorithm described below is to construct al‘slg\t of aggre-
gates denoted as
0. [l
A= 0A,i D[4 NAID @)
[ [

satisfying the following conditions:
(). Element-by-element aggregation

A =E, i OM0
[ [ (38)

[
ME L1, NE] - set the of element numbers corresponding
to the aggregate

(i). Disjoint covering elements belonging to different aggregates can not be neighbors.

Two eIementsEI anHEJ are considered to be neighbors if

C(i)n C())#0O (39)

(iii). Full nodal coveringeach node belongs to some aggregate:
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- 0
c(i =ENJ,'D 1, Nyl (40)
{i:Ii%A} (M 0 1ol N]D

(iv). Marking the ‘slave’ nodes and nodes with essential boundary conditions as separate
aggregateseach node containing either essential boundary condition and/or ‘slave’
degree(s)-of-freedom, which depends on so called ‘master’ degree(s)-of-freedom, is con-
sidered as an aggregate. Denote the set of such noﬂtf@@s

Step 1. Setup.

1.1. For each nodé\IJ,j = [1,N,] selectthe elements containing this node:
B(j) = {E:N'OE" (41)

1.2. For each eIemerEI, I = [1,Ng] select the set of neighboring eleriéhfs) :

that are the elements containing common nodes:

NE(i) = {E“E*OB(j),j OC(i)}\E' @2)

Step 2. Start-up aggregation.

2.1. Define the set of elemer$A  available for aggregation. These are all the elements
which do NOT contain nodes with essential boundary conditions or the ‘slave’ nodes:

o 0
NA = [1, Ne]\EB(j), N O NNBE (43)

2.2. Find the “peripheral” elemebt” , that is the element with minimal number of neigh-
bors:

s = argmin NE )| (44)
I LONA
where|X| is a number of elements in theXet . EIerEéSnt is a starting element for the

aggregation algorithm.
2.3. Setup:
-the current aggregate counte~ 1

- the set of interface elemenbdl = [1, N.JJ\NA | i.e. the elements between
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different aggregates.

Step 3. Formation of the current aggregate.

Basicaggregation version:

aggregateﬁxI contains the elem&st alhdt’s available neighbors:

A' = ESO(NE(S n NA) (45)
Adaptiveaggregation version:

[ . S . . . , .
aggregateA  contains the elemént thabeof it's available neighbors which satisfy
the relative stiffness condition:

A = E°S0{E ONE( n NA B 2 ugS @6)

WhereBJ s a Gerschgorin upper bound on the stiffness matrix maximal eigenvalue of the

eIementEj , angl is a coarsening parameter.

Step 4. Update the sets of the interface and available elements.

4.1. Update the set of the interface elements:

NI = NIO{(EXONE(), E 0AY n (EXO A @

4.2. Update the set of the available elements:

NA = NA{(EXONE(j), E' 0 A) O A} @9)

Step 5. Find the new starting element.

5.1. Form the set of “frontal” elemenksR , that are available elements neighboring to the
interface elements:

FR = {(ESTNE(j), E' ONI) n NA} (@9)

5.2. Basioversion: selecarbitrary new starting element belonging kdR

14



E°OFR (50)

Adaptiveversion: select thstiffest new starting element froh R

S = argm ax(BJ) (51)
i:E'0FR

Step 6. Stopping criteria.

If FR = [ then stop; elsé = 1 +1 and repei¢ps 3-6

Remark 1. For simplicity we only presented the aggregation algorithm for lower order
elements. In the case of higher order elements the “full nodal covering” requirement may
not be satisfied at the completion of the algorithm described above. There will be a signif-
icant number of nodes belonging to the elements in the interface region giving rise to
very large auxiliary coarse model. To further reduce the size of the auxiliary model the
same aggregation algorithm is recursively applied for the interface elements only until all
the nodes would be covered by some aggregate. This procedure also provides a “cleaning”
phase to ensure that all nodes in the source grid are included within one of the aggregates.

Remark 2. A similar scheme can be applied for the p-type discretization with only excep-
tion that the aggregates may contain only a single element in order to reduce the aggregate
size. Higher order modes in the interface region are treated as indicated in the Remark 1.

Remark 3. The aggregation algorithm described in this section deals with multi-point
constrains in the conventional way since the elements containing the “slave” nodes form a
separate aggregate. Each multi-point constrain can be represented as follows:

Xg = Txm (52)

WhereXS, Xy, are the ‘slave’ and ‘master’ degrees-of-freedom, respectively; is atrans-
formation matrix representin% the multi-point constrain (MPC) data. In accordance with
(52) the vectorx = (Xg, X,,)  can be expressed as:

_|T
X = me (53)

Given the decomposition of the element stiffness mdt(rg for elements containing the
‘slave’ degrees-of-freedom
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K,.=| & ¢ (54)

the modified element stiffness matrlk,  corresponding to master degrees-of-freedom
only is given by:

~

T, S m T,SM mm
Ke = TKT+K, T+T Ke +Kg (55)

4.2 Adaptive construction of prolongation operator

One of the key issue in the proposed aggregation procedure is a selection of parameter
Y. All the eigenvectors of the eigenvalue problem on each aggregate corresponding to the
eigenvalues?\as Yy are included within the diagonal block of the global prolongation
operator. In order to make this parameter dimensionless the eigenvalue problem on each

aggregate is formulated in the following manner:

Ka(pa _ )\aDa(pa (56)
where Da is a diagonal oKa . Typically 6-50 modes are needed to sAt?sSfy

requirement. Lanczos algorithm with partial orthogonalization [13] was adopted.

The value of the parametyr determines effectiveness of coarse grid correction. In the
limtasy — mgx )\a auxiliary problem captures the response of the source system for
all frequencies and therefore the two-level procedure converges in a single iteration even
without smoothing. On the negative side, for large valueg of , eigenvalue analysis on
each aggregate becomes prohibitively expensive and the auxiliary matrix becomes both
large and dense. At the other extreme in the limit as O the prolongation operator con-
tains the rigid body modes of all the aggregates only, and thus auxiliary problem becomes

inefficient for ill-posed problems.

4.3 Adaptive smoothing

Selection of smoothing procedure is another important issue as the cost of smoothing
is a major expense in multi-level procedures. Comprehensive studies conducted in [12]
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revealed that one of the most efficient smoothing schemes is based on Modified Incom-
plete Cholesky factorization (MIC). We employed two versions of MIC, with and without
additional fill-ins using “by value” as the fill-in strategy. By this technique one compares
the values of the terms in the incomplete factor and chooses the largest ones to be included
[14]. One of the most important parameters in both versions is the diagonal-scaling param-
eter 0 which insures positive definiteness of the incomplete factor. The valle of s
determined adaptively. Its optimal value depends on the number of fill-ins. For larger num-
ber of fill-ins the optimal value of the diagonal-scaling decreases. The optimal number of
fill-ins is determined experimentally, whereas the value of the diagonal-scaling parameter
is determined adaptively by incrementally increasing it until all positive pivots are
obtained.

5.0 Numerical examples

An obstacle test as shown in Figures 1 and 2 comprised of the following industry and
model problems was designed to (i) determine the optimal values of computational param-
eters and to (ii) compare GAM solver with existing state-of-the-art solvers:

Diffuser Casing with Gates for Casting: 10 node tetrahedral elements; 131,529 d.o.f.s.
Turbine Blade with Platform: 10 node tetrahedral elements; 207,840 d.o.f.s.

Nozzle for Turbines: 10 node tetrahedral elements; 131,565 d.o.f.s.

Casting Setup for Casting in Airfoil: 10 node tetrahedral elements; 158,166 d.o.f.s.
Concentric Ring-Strut-Ring Structure: 4 node tetrahedral elements; 102,642 d.o.f.s.
High Speed Civil Transport (HSCT): MIN3 [15] shell elements; 88,422 d.o.f.s.
Automobile Body: 3 node DKT+DMT shell [16], 2 node beam elements; 265,128 d.o.f.s.
Automobile Body: MIN3 [15] shell and 2 node beam elements; 265,128 d.o.f.s.

Concrete canoe: 8 node ANS [17] shell elements; 132,486 d.o.f.s.

5.1 Parametric study

In this section we present the results of numerical investigation of the following com-
putation parameters: limiting eigenvalue paramater  for selection of the modes to be
included in the prolongation operator; number of fill-ins and diagonal scaling parameter
a for Modified Incomplete Cholesky factorization; and coarsening computation parame-
ter i .
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5.1.1 Prolongation parameters

In order to determine optimal value ¢f in terms of the CPU time we have carried out
extensive computational experiments for wide range of industrial problems, including
well-posed and ill-posed cases. Surprisingly, it has been found that the optimal walue of
is independent of the problem condition and slightly differs for different problems. For
example, it can be seen that for poorly conditioned HSCT problem (Figure 3) significant
reduction of the number of iterations was observed/as increasedOi@620 to
0.0040. Optimal value ofy , which minimizes the CPU time for this problem was equal
to 0.0035 independently of quality of MIC smoother (number of fill-ins and diagonal
scaling parameter). On the other hand, for the Diffuser Casing (Figure 4), Automobile
Body (Figure 6), Concentric Ring-Strut-Ring Structure and Joint of Two Cylinders prob-
lems the CPU time was practically independeny of . However, for the Nozzle for Turbine
problem (Figure 5) significant reduction of the number of iterations was observed for rela-
tively large values ofy ranging fro@.0075 @.010C and the optimal valuy of
which minimizes the CPU time for this problem, was equd).©9100 . Based on these
results we have built iry = 0.0050 for further numerical studies and comparisons,
which provides a reasonably good performance for all problems considered.

5.1.2 Smoothing parameters

The efficiency of MIC based smoothing procedure highly depends on the two compu-
tational parameters: the number of fill-ins and the diagonal-scaling. Typically, increasing
the number of fill-ins allows to decrease the value of the diagonal-scaling parameter. It can
be seen (Figure 3 and Figure 7) that for the HSCT, Diffuser Casing, Concentric Ring-
Strut-Ring Structure problems the optimal value of fill-ins is equal-+o6 , With minimal
value of diagonal-scaling parameteér  which ensures positive pivots. For the HSCT prob-
lem the effect of number of fill-ins and the valde  presented in Figure 3 indicated that
the optimal computational performance is obtained with 4-6 fill-ins. For the Nozzle for
Turbines (Figure 5) and Joint of Two Cylinders problems it was observed that the number
of fill-ins has no effect on the effectiveness of the iterative process. We did not consider
number of fill-ins greater then 8 due to increased in-core memory requirements.

Based on the computational experiment the following strategy has been developed
for determination of nearly optimal values@f and number of fill-ins:

e MIC with number of fill-ins is equal to 6
« Initial diagonal-scaling parameter = 0.01

+ Increasingd by the increment &0 = 0.0025 if non-positive pivot is encoun-

tered in the process of incomplete factorization, or if the two-level iteration procedure
diverges.
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5.1.3 Aggregation parameters

Numerical experiments in obstacle test indicated that the value of the coarsening
parametell had very little effect on the convergence of the iteration procedures. The only
problem where considerable improvement was observed was a 2-D problem for randomly
distributed short fibers in matrix material, where fiber/matrix stiffness ratio was equal to
100. The problem was modeled using quadrilateral finite elements. For this problem con-
verge solution was achieved in 23 iterations using basic aggregation algorithm, while
using adaptive version of aggregation procedure with optimal yhlge 1.68 the con-
vergence was achieved in 18 iterations. In subsequent studies we employed the basic ver-
sion of aggregation procedure.

5.2 Comparison with other solvers and discussion

First we present the comparison of GAM solver with traditional Skyline Direct solver.
Figure 9 shows the rate of convergence in term of CPU time versus problem size for the
Diffuser Casing with Gates for Casting problem. It can be seen that in contrast to other
solvers considered the CPU time grows linearly with problem size for GAM solver. Even
for relatively small problem with 35,000 d.o.f.s. GAM outperforms traditional Skyline
solver by factor of 27. For the problem with 70,000 d.o.f.s. GAM solver outperforms
Sparse Direct solver by factor of 9 and PCG with Modified Incomplete Cholesky precon-
ditioner by factor of 12.

In the second set of problems GAM is compared with “smoothed aggregation” technic
introduced in [8]. We have observed that for a 2-D model elasticity problem on a square
domain this approach gives an improvement in terms of number of iterations (16 instead
of 23). However for ill-posed shell problem (HSCT) the number of iteration becomes
almost twice larger (154) in comparison with the basic GAM version. Furthermore,
smoothing of the approximation field on each aggregate creates denser prolongation oper-
ator, which in turn increases CPU time of restriction and yields denser auxiliary matrix.

Table 1 contains split up CPU times including aggregation, restriction of stiffness
matrix, factorization of auxiliary matrix, incomplete factorization of source matrix, and
iterative procedure of GAM solver for all obstacle test problems. Finally, Table 2 and
Table 3 compare GAM Solver in terms of the CPU and memory requirements with the
Sparse Direct Solver [1] and PCG Solver with Modified Incomplete Cholesky precondi-
tioner. Computations were carried out on SUN SPARC 10/51 Workstation.

So far only in-core solution methods have been considered. Clearly an ultimate solu-
tion engine should have an out-of-core capabilities, since it is not usually possible to keep
the entire stiffness matrix in RAM. An out-of-core version of GAM is currently being
investigated.
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Figures and Tables Captions

Figure 1: Obstacle test 3D problems.
Figure 2: Obstacle test shell problems.

Figure 3: GAM solver performance in terms of (a) iteration count, and (b) CPU seconds as
a function of limiting eigenvalue parametgr and number of fill-ins for HSCT problem
with MIN3 elements.

Figure 4: GAM solver performance in terms of (a) iteration count, and (b) CPU seconds as
a function of limiting eigenvalue parametgr and number of fill-ins for Diffuser Casing
problem with 10-node Tets.

Figure 5: GAM solver performance in terms of (a) iteration count, and (b) CPU seconds as
a function of limiting eigenvalue parametger and number of fill-ins for Nozzle for Tur-
bines problem.

Figure 6: GAM solver performance in terms of (a) iteration count, and (b) CPU seconds as
a function of limiting eigenvalue parameter and number of fill-ins for Automobile Body
problem with DKT+DMT elements.

Figure 7: GAM solver performance in terms of iteration count and CPU seconds as a func-
tion of number of fill-ins (limiting eigenvalue parameter= 0.00625 ) for (a) Diffuser
Casing problem with 10-node Tets, and (b) Ring-Strut-Ring problem with 4-node Tets.

Table 1: GAM solver breakdown times in seconds.

Table 2: Comparisons of GAM, PCG(MIC) and Sparse [1] solvers in terms of CPU sec-
onds and iteration count.

Table 3: Comparisons of GAM, PCG(MIC) and Sparse [1] solvers in terms of memory
(MB).
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FIGURE 4
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FIGURE 5
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FIGURE 6
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FIGURE 7
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TABLE 1

Incom-
plete Number
Problem Solver Aggrega- | Restric- Factori- factori- Iteration of
title (total) tion tion zation zation process | iterations
Diffuser 1021 162 110 126 93 530 22
Casing
Turbine 2378 294 280 861 190 753 19
Blade
Concen- 346 97 19 17 29 184 18
tric
Structure
Nozzle 1288 165 166 137 103 717 34
for Tur-
bine
Casting 1493 197 150 169 114 863 30
Setup
HSCT 1255 85 117 341 34 678 56
(MIN3)
Automo- 2778 266 209 258 217 1828 48
bile(DKT
+DMT)
Automo- 3146 324 390 622 230 1580 42
bile
(MIN3)
Canoe 1126 110 110 48 98 760 32

27




TABLE 2

Sparse PCG ( MIC) GAM
Problem
title CPU(s) CPU(s) # of iterations CPU(s) # of iterations
Diffuser 8692 12276 1531 1021 22
Casing
Turbine Blade| out of memory 9862 757 2378 19
Concentric 687 3881 1083 346 18
Structure
Nozzle for 7271 8290 1056 1288 34
Turbine
Casting Setup 3150 33879 3755 1493 30
HSCT (MIN3) 994 24685 7278 1255 56
Automobile 2678 76003 5939 2788 48
(DKT+DMT)
Automobile 2678 83877 6594 3146 42
(MIN3)
Canoe 1351 8106 1254 1126 32
TABLE 3
Problem title Sparse PCG (MIC) GAM
Diffuser 995 141 172
Casing
Turbine Blade >1500 255 311
Concentric 337 51 79
Structure
Nozzle for 996 138 169
Turbine
Casting Setup 1012 149 199
HSCT (MIN3) 207 71 99
Automobile 512 205 255
(DKT+DMT)
Automobile 512 205 265
(MIN3)
Canoe 395 61 88
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