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HOLISTIC APPROACH FOR PROBLEMS
 IN HETEROGENEOUS MEDIA

 Jacob  Fish                                                                     
Rensselaer Polytechnic Institute

In analyzing composite structures it is  com
mon practice  to carry out  distinct levels  o
analysis  corresponding to  different leng
scales: (i) macroscale (structural level), (i
mesoscale (laminate level), and (iii) micro
cale (the level of microconstituents). On th
structural level structural components a
treated discretely, while  individual plies ar
not recognized, except in determining th
stiffness of the shell.  On the laminate  leve
individual plies are treated discretely, whil
microconstituents are treated collectively as
homogenized medium. The ply properties c
be determined experimentally, or they can 
predicted from micromechanics. For  micro
mechanical analysis  individual phases (m
trix, fiber and their interphases)  are treat
discretely, while the atomic scale is not reco
nized. These steps comprise a  sequence
interdependent   analyses in the sense that 
output from  one level  is used as  input to t
next level, where  constitutive laws serve 
bridging mechanisms between the scales. I
important to note that any  level of analysis 

currently performed totally  independent of others provided that  the required input data is ava
perhaps from the experiment. There is no doubt, that this  approach  reflects  a  compromise  a
bridging  the length scales in excess of six orders of magnitude. The obvious  question arises a
validity limits of such a  step-by-step  procedure.  Let us examine, if  there is  a  need for a c
approach that will  consider phenomena simultaneously at several different scales?  And if the answ
is positive,  is the current status of software and hardware tools  mature enough for such  coup
tiscale  considerations?
       Let us  first address the first issue. Figure 1 depicts  the shear  stress distribution in the axia
problem in a  (90/04/90)s laminate.  Results are shown for  one quarter of the plate cross sectio
xy plane. The lines of symmetry are at the bottom and on the right hand side of the cross secti
uniform tension load is applied normal to the xy plane. The zoomed area of  shear stress dist
in the close vicinity to  the free edge is also shown. 
        Results of the  classical step-by-step procedure based on the homogenization theory are   c
to the reference solution where the size of finite elements  is of the same order of magnitude a
material heterogeneity. It can be seen that a classical step-by-step procedure  predicts accur

Figure 1
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stress distribution   except for  the close vicinity to the free edge, where it significantly underest
maximum stress values,  and  along the entire  interface between the two dissimilar layers. Th
ence solution  shows  oscillatory shear stresses developed along the entire interface, while the
based on the classical step-by-step approach  shows no such stress concentration. The mag
these oscillatory shear  stresses  is roughly 1/3 of the maximum shear stresses developed at 
face, but  even so,  these interface shear stresses  may  significantly  affect  the propagatio
delamination crack emanating from the free edge.

The coupling between the scales is even more profound in woven or textile composites. A 
unit cell size for a woven microstructure ranges from 3mm for plane weaves to more than 10m
3D woven composites. Thus the unit cell size for textile or woven composites could be of the
order of magnitude as the small geometrical feature, such holes and cutouts, in the macrostru

Recent theoretical and numerical  studies conducted  at Rensselaer ([2], see also [8])  hav
that in the areas of high gradients, primarily developed in the boundary layers at free edges an
faces, the classical uncoupled  step-by-step procedure may lead to poor predictions of loca
since it  assumes uniformity of macroscopic fields over  the unit cell domain. 

The simulation  of the evolution of failure processes in heterogeneous media poses an even
obstacle  to the classical step-by-step approach.  Reliable simulations of failure processes in h
neous media emanating from the smallest scale, such as  microvoid  nucleation at a particle-m
terface, and  followed by their  coalescence and  structural failure,  require  revitalization of  cl
bridging  mechanisms between various modeling levels.

  With the substantial increase i
computing power and advance
in computational technology, it
is now feasible to use more so
phisticated mathematical model
and more refined discrete mod
els, which would be  able to  ac
count for  close interaction
between several different scale
In devising such an optima
computational model, it is ap-
propriate to recall the statemen
made by Einstein, “The model
used should be the simplest on
possible, but not simpler.” The
approach described in this articl
advocates to start from a simpler
model perhaps based  on th

classical step-by-step approach, which may or may not adequately simulate the response, a
adaptively refine both the mathematical and numerical models to  permit coupled  multiscale c
erations, whenever and wherever these are  needed, until the simplest  possible model is obtained. We
will refer to such a modeling strategy as the  holistic approach to  emphasize the coupled  interactio
between the modeling levels.
        To address  the  question  regarding  the maturity  of  existing hardware and software tools
for such holistic considerations,  we demonstrate  the application of the holistic approach  by an
a  typical aerospace component as shown in Figure 2.

Figure 2
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   The adaptive strategy starts by employing classical   Discretization Error indicators and adap-
tively  refining the  finite element mesh on the macromechanical (shell) level to ensure accurate 
solutions. Subsequently,  Dimensional Reduction Error  ([1], [6], [7]) indicators  identify  the areas
where the most critical interlaminar behavior takes place, and consequently, a  more sophistica
crete layer model is placed  there. Fast iterative solvers  based on the multigrid technology with
inter-scale connection operators  [3], [4] are  used to solve a coupled  two-scale Macro-Meso
Once the phenomena of interest on the Macro-Meso levels  have been accurately resolved, Microscale
Reduction Error  ([2], [8) indicators are used to identify the  location of  critical microprocesses 
consequently, a  micro-mesh is placed  there.   The three-scale coupled  Macro-Meso-Micro m
again solved using a three-scale  multigrid process [3].  Finally, Discretization Error  indicators and
adaptive refinement strategy are  employed simultaneously  at  three different scales   to ensure
multiscale simulations.

The three-scale model described in Figure 2 contains over 1,000,000 degrees-of-freedom.
timated CPU time for solving it with conventional solvers based on skyline storage is over 700
on a single processor SPARCstation 10/51, which essentially makes the model obsolete from t
tical point of view. Using a special purpose multigrid technology for heterogeneous media [3
same problem has been solved in less than 16 hours on a single processor SPARCstation 10/5
it into a practically an overnight job.

The computational challenge o
solving nonlinear heterogeneou
systems is even greater. The sol
tion of large scale history-depen
dent nonlinear systems tha
provides an accurate resolution o
local fields is not feasible even b
means of the classical uncouple
step-by-step approach. While fo
linear problems a unit cell problem
has to be solved only once, fo
nonlinear history dependent sys
tems it has to be solved at every in
crement and for each integratio
point. Moreover, history data ha
to be updated at a number of inte

gration points equal to the product of integration points at all modeling scales considered. To ill
the computational complexity involved we consider elasto-plastic analysis of the two-scale com
flap problem shown in Figure 3. The macrostructure is discretized with 788 tetrahedral elemen
unknowns), whereas microstructure is discretized with 98 elements in fiber domain and 253 el
in the matrix domain. The CPU time on SPARC 10/51 for this problem is approximately 8 hou
opposed to 10 seconds if metal plasticity is used instead, which means that 99.7% of CPU time
on constitutive equations. This raises the question whether the observation made by Hill 30 ye
lier stating that “... for nonlinear systems the computations needed to establish any constitutive
formidable indeed...” is still valid today. 

Recently, a novel modeling scheme based on mathematical homogenization theory with
strains [5] and a rapid postprocessing procedure enabled to solve large scale structural system
erogeneous media at a cost comparable to problems in homogeneous media without sign
compromising on solution accuracy. This work [5] represents a major breakthrough in the 

Figure 3
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where modeling schemes are either too simple to provide reliable solutions for difficult proble
too complex due to the computational complexity involved.

In the next few paragraphs I will briefly summarize   essential features of the holistic app
including: (i) idealization error estimators aimed at quantifying the quality of numerical and m
matical models in heterogeneous media and steering construction of the multiscale compu
models, (ii) multigrid technology with mechanism-based inter-scale transfer operators aimed at
convergent solution of the multiscale computational models, (iii) mathematical homogenization 
with eigenstrains and rapid postprocessing scheme with variational history recovery, and (iv) 
identification for in-situ characterization of phases and their interfaces. Discussion on limitatio
the present approach and future research directions conclude this note.

Idealization  error estimators 
Idealization error estimators for laminated composite shell structures  are aimed to quant

sources of modeling errors and to  address the following issues:
i. What are the regions within the problem domain where the macromechanical description

model), which is the most inexpensive modeling capability,  is insufficient, i.e., where the shell 
introduces unacceptable errors with respect to a more comprehensive ply-by-ply (mesomech
model. Dimensional Reduction  error (DRE) estimators should be able to  identify not  only the p
location within the plane of the shell, but  also the layers within the laminate  where the use of
mechanical description may result  in unacceptable errors of interlaminar stresses.

One such approach  [1] is based on approximation of the dimensional reduction error  as 
combination of Co functions in the auxiliary mesomechanical  finite element  mesh which can accu
rately represent  the kinematics of individual plies. For other approaches see [6] and [7].
     ii.  Enriching the fundamental kinematics  of the equivalent single-layer (macro)  model with 
crete-layer (meso) model  in the vicinity of the most critical layers enables to  model various 
modes on the lamina level such as delamination.  Unfortunately, in many cases the mechan
causes failure is at a much smaller scale - the scale of microconstituents. A common compu
rationale today is to investigate various  microprocesses that may lead to a progressive failure 
sidering a  unit cell or a representative volume problem. The mechanisms  that allow us to do
the classical assumptions of  periodicity and uniformity of macroscopic fields. However, in the
of high stress concentration, which are  of  critical interest to the analyst, periodicity assumptio
not valid, and thus the application of conventional homogenization techniques in the “hot spots
lead to poor predictions of  local fields.

The adequacy (or lack of it)  of the homogenization theory can be assessed  on the bas
uniform validity of n-scale asymptotic expansion [2], which serves as a basis of the mathemati
mogenization theory. The  asymptotic expansion is considered to be uniformly valid if the terms
asymptotic sequence are rapidly decreasing.  Thus, the quality of the homogenization can be 
on the basis of the relative magnitude of the first term neglected by the classical theory  comp
those taken into account. An alternative approach has been developed  in [8].

A closed form expression of idealization error estimators associated with the Microscale R
tion [2] shows  that there are four major factors affecting the  homogenization errors: (i)  The s
the unit cell, (ii) the Dundars mismatch parameter between the phases, (iii) the volume  fractio
the strain gradients on the macro-scale.
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Mathematical homogenization theory with eigenstrains and rapid postprocessing scheme wit
variational history recovery 

In reference [5]  the classical mathematical h
mogenization theory for heterogeneous mediu
has been generalized to account for eigenstra
Starting from the double scale asymptotic expa
sion for  displacements and eigenstrains  a clo
form expression relating arbitrary eigenstrains 
the mechanical fields in the phases has been 
rived.  Subsequently, the overall structural r
sponse is computed using  averaging scheme
which phase concentration factors are compu
in the average sense for each phase, i.e. his
data is updated only at two/three  points (fiber a
matrix/ interphase) in the microstructure, one f
each phase. Macroscopic history data is stored

the data base and then subjected  in the postprocessing stage onto the unit cell in the critical
identified by microscale reduction error indicators. 

For the flap problem considered in Figure 3 the CPU time for the averaging scheme with
tional micro-history recovery is only 30 seconds on SPARC 10/51 as opposed to 8 hours usin
sical mathematical homogenization theory. Figure 4  shows that the maximum error  in  the 
stress in the unit cell located in the critical region is only 3% in comparison to the classical math
ical homogenization theory. 

Fast iterative solvers for a heterogeneous medium 
The  multigrid technology with
special inter-scale connection
operators has been found to po
sess superconvergent characte
istics for the periodic
heterogeneous  medium [3], [4]
The V-cycle with  a  minimum
number of levels  equal to the
number of scales considere
(Figure 5)  starts by performing
several  smoothing iterations o
the micro-scale in the regions
identified by MRE indicators.
Consequently, the  higher fre
quency modes of  error are
damped out immediately. The
remaining part of the solution er
ror is smooth, and hence, can b
effectively eliminated  on the

auxiliary coarse mesh. It has been found [3], [4]  that the finite element mesh on the meso-sc
level)  serves as a perfect  mechanism for capturing the lower frequency response on the micr
Therefore, the   residual  in the finite element mesh on the micro-scale is restricted to the mes

Figure 4

Figure 5
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while  the smooth part of the solution is captured in the finite element mesh on the meso-sca
oscillatory part of the solution on the meso-scale is again damped out by a smoothing procedu
lower frequency response on  the meso-scale is resolved on the macro-mesh (shell level).  The 
solution on the meso-scale is obtained by prolongating  the solution  from the macro-mesh bac
finite element mesh on the meso-scale and by adding  the oscillatory part of the solution  pre
captured on the meso-scale.  Likewise, the solution on the micro-scale is obtained by prolonga
smooth part of the solution from the meso-scale and  by adding the oscillatory  part that has b
tained by smoothing.  This process is repeated until satisfactory accuracy is obtained.

The derivation of the inter-scale transfer operators is based on the asymptotic solution exp
For unit cells of a finite size the regularization function was introduced  in [3] to  obtain a well-p
inter-scale transfer operators, termed as homogenization based operators. For nonlinear sys
inter-scale transfer  operators  vary both in time and space. 

 The rate of convergence of the multigrid process has been studied in [3]. It has been  fou
if the stiffness of a fiber is significantly higher than that of a matrix,  then the multigrid method 
verges  in a single iteration.   This behavior  of the multigrid method for heterogeneous media  to
with its linear dependence on the number of degrees-of-freedom, makes it possible  to solve larg
coupled global-local problems with  the same amount of computational effort, or faster,  than 
be required to solve the corresponding  uncoupled problem  using  direct  solvers.

A different iterative approach dealing with highly nonperiodic heterogeneous media has be
cently developed in [11]. 

The inverse problem - indirect calibration of constitutive equations for the interface
An essential characteristics of the holistic approach is the need for calibration of constitutive

tions of the phases  to the observed  macro-measurements.  
The  set of nonlinear functions representing the evolution of damage laws  can be paramet

the space of inelastic deformation, such as effective plastic strain/work or  the inelastic portion
crack opening/sliding displacements. These parameters are viewed as  control variables wi
identification problem. 

 The inverse problem is solved incrementally.  At  each new load increment, a new set of 
variables is introduced corresponding to the increased value of inelastic deformation. The pre
determined control variables are not updated. Thus,  each new load increment (or time step) c
only a limited number of control variables. 

The inverse problem for  estimating the control variables within  a single load increment  
mulated on the basis of the regularized least squares principle. In general,  the inverse proble
posed due to the lack of balance between the amount of observed information   and the unkno
A Tikhonov  regularization procedure can be employed  by which a stabilization term  is added
tain a  well-posed mathematical formulation. 

For parameter identification in homogeneous viscoplastic materials see [9].

Future research directions
The holistic approach for problems in heterogeneous media is still at its embryonic stage o

velopment, limited to idealized scenarios, such as microstructure periodicity, perfect interface
quasi-static loading conditions. Further research is essential to promote this methodology from 
tus of “interesting and having potential” to a practical analysis and design tool. 

Other issues that have not been addressed in this article, and which undoubtedly have a
dous impact in the area of modeling and simulation of heterogeneous materials and structures, 
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marized below:

i. Stochastic nature of data
So far only deterministic aspect of the holistic approach has been considered. The determini
proach utilizes mean values associated with  microstructural characteristics, fabrication and e
mental effects. The uncertainties in input data pose a tremendous  challenge  not only because
to deal with numerical methods for stochastic differential equations [12], but more importantl
cause the probability fields especially the correlations are usually unknown.

ii. Atomic and electronic scale models
In the past we had a significant success in  coupling phenomena at  three  different scales span
length scales in excess of six orders of magnitude. The grand challenge is to extend the presen
work  to account for atomic and electronic scales. Not only that there is a need for extending th
of length scales from 6 to 10-15 orders of magnitude, even more challenging is to couple mode
erned by continuum mechanics principles with models obeying molecular dynamics laws [10]. F
ample, how does the electronic scale phenomenon described only by the atomic numbers aff
motion of atoms, and how does it translates into the formation of crystallographic defects nee
continuum models. What are the regions in the problem domain where simultaneous consider
particle and continuum models is required? See [10] and [14] for discussion on some of these
In [14] an uncoupled atomistic-continuum approach has been developed, where continuum me
based constitutive model was built directly from the atomistics. A fully coupled atomistic-contin
model,  coupling the two scales  via non-local transition region was discussed in [14].

iii.  Multiple time scales
The difficulty of estimating the average behavior at the larger length scales from the essential 
at smaller scales is compounded in time dependent problems. For example, in turbulence, a tim
age or statistical approach is often employed to account for time fluctuations at very small conti
based spatial level, whereas atomistic scale relaxation and vibration phenomena require consi
at even smaller time scales [13]. 
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