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— : , In analyzing composite structures it is com-
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analysis corresponding to different length
scales: (i) macroscale (structural level), (ii)
mesoscale (laminate level), and (iii) micros-
cale (the level of microconstituents). On the
structural level structural components are
treated discretely, while individual plies are
not recognized, except in determining the
stiffness of the shell. On the laminate level,
individual plies are treated discretely, while
microconstituents are treated collectively as a
homogenized medium. The ply properties can
be determined experimentally, or they can be
predicted from micromechanics. For micro-
mechanical analysis individual phases (ma-
trix, fiber and their interphases) are treated
discretely, while the atomic scale is not recog-
nized. These steps comprise a sequence of
interdependent analyses in the sense that the
output from one level is used as input to the

: : next level, where constitutive laws serve as
Figure 1 bridging mechanisms between the scales. It is
important to note that any level of analysis is
currently performed totally independent of others provided that the required input data is available,
perhaps from the experiment. There is no doubt, that this approach reflects a compromise aimed at
bridging the length scales in excess of six orders of magnitude. The obvious question arises as to the
validity limits of such a step-by-step procedure. Let us examine, if there is a need for a coupled
approach that will consider phenomena simultaneatsgveral different scales? And if the answer
IS positive, is the current status of software and hardware tools mature enough for such coupled mul-
tiscale considerations?

Let us first address the first issue. Figure 1 depicts the shear stress distribution in the axial tension
problem in a (90/04/90)s laminate. Results are shown for one quarter of the plate cross section in the
xy plane. The lines of symmetry are at the bottom and on the right hand side of the cross section. The
uniform tension load is applied normal to the xy plane. The zoomed area of shear stress distribution
in the close vicinity to the free edge is also shown.

Results of the classical step-by-step procedure based on the homogenization theory are compare
to the reference solution where the size of finite elements is of the same order of magnitude as that of
material heterogeneity. It can be seen that a classical step-by-step procedure predicts accurate shesz
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stress distribution except for the close vicinity to the free edge, where it significantly underestimates
maximum stress values, and along the entire interface between the two dissimilar layers. The refer-
ence solution shows oscillatory shear stresses developed along the entire interface, while the solution
based on the classical step-by-step approach shows no such stress concentration. The magnitude ¢
these oscillatory shear stresses is roughly 1/3 of the maximum shear stresses developed at the inter
face, but even so, these interface shear stresses may significantly affect the propagation of the
delamination crack emanating from the free edge.

The coupling between the scales is even more profound in woven or textile composites. A typical
unit cell size for a woven microstructure ranges from 3mm for plane weaves to more than 10mm for
3D woven composites. Thus the unit cell size for textile or woven composites could be of the same
order of magnitude as the small geometrical feature, such holes and cutouts, in the macrostructure.

Recent theoretical and numerical studies conducted at Rensselaer ([2], see also [8]) have shown
that in the areas of high gradients, primarily developed in the boundary layers at free edges and inter-
faces, the classical uncoupled step-by-step procedure may lead to poor predictions of local fields,
since it assumes uniformity of macroscopic fields over the unit cell domain.

The simulation of the evolution of failure processes in heterogeneous media poses an even greater
obstacle to the classical step-by-step approach. Reliable simulations of failure processes in heteroge-
neous media emanating from the smallest scale, such as microvoid nucleation at a particle-matrix in-
terface, and followed by their coalescence and structural failure, require revitalization of classical
bridging mechanisms between various modeling levels.

With the substantial increase in
computing power and advances
in computational technology, it
is now feasible to use more so-
phisticated mathematical models
, and more refined discrete mod-
3. B Enivgy Dasalty 4Dim o els, which would be able to ac-
count for close interaction
between several different scales.
Mo ro-Meso-Micre model Macro-Mesn mods In deVISI_ng such an . O_ptlmal
computational model, it is ap-
i propriate to recall the statement
made by Einstein, The model
used should be the simplest one
possible, but not simplérThe
: approach described in this article
Figure 2 advocates to start fromsimpler
model perhaps based on the
classical step-by-step approach, which may or may not adequately simulate the response, and ther
adaptively refine both the mathematical and numerical models to permit coupled multiscale consid-
erations, whenever and wherever these are needed, ustihiblest possible modisl obtained. We
will refer to such a modeling strategy as thelistic approachto emphasize the coupled interaction
between the modeling levels.
To address the question regarding the maturity of existing hardware and software tools needed
for such holistic considerations, we demonstrate the application of the holistic approach by analyzing
a typical aerospace component as shown in Figure 2.

Shell (Macro) model




The adaptive strategy starts by employing classidacretization Errorindicators and adap-
tively refining the finite element mesh on the macromechanical (shell) level to ensure accurate Macro-
solutions. SubsequentlyDimensional Reduction Erroi[1], [6], [7]) indicators identify the areas
where the most critical interlaminar behavior takes place, and consequently, a more sophisticated dis-
crete layer model is placed there. Fast iterative solvers based on the multigrid technology with special
inter-scale connection operators [3], [4] are used to solve a coupled two-scale Macro-Meso model.
Once the phenomena of interest on the Macro-Meso levels have been accurately Mswbsdhle
Reduction Error ([2], [8) indicators are used to identify the location of critical microprocesses and
consequently, a micro-mesh is placed there. The three-scale coupled Macro-Meso-Micro model is
again solved using a three-scale multigrid process [3]. Firizibgretization Error indicators and
adaptive refinement strategy are employed simultaneously at three different scales to ensure reliable
multiscale simulations.

The three-scale model described in Figure 2 contains over 1,000,000 degrees-of-freedom. The es-
timated CPU time for solving it with conventional solvers based on skyline storage is over 700 hours
on a single processor SPARCstation 10/51, which essentially makes the model obsolete from the prac-
tical point of view. Using a special purpose multigrid technology for heterogeneous media [3], the
same problem has been solved in less than 16 hours on a single processor SPARCstation 10/51, turniny
it into a practically an overnight job.

The computational challenge of
solving nonlinear heterogeneous
systems is even greater. The solu-
tion of large scale history-depen-
dent nonlinear systems that
provides an accurate resolution of
local fields is not feasible even by
means of the classical uncoupled
step-by-step approach. While for
linear problems a unit cell problem
has to be solved only once, for

Exhaust Nozzle Flap FE Mesh ELCHEULL U nonlinear history dependent sys-
tems it has to be solved at every in-
Figure 3 crement and for each integration

point. Moreover, history data has

to be updated at a number of inte-
gration points equal to the product of integration points at all modeling scales considered. To illustrate
the computational complexity involved we consider elasto-plastic analysis of the two-scale composite
flap problem shown in Figure 3. The macrostructure is discretized with 788 tetrahedral elements (993
unknowns), whereas microstructure is discretized with 98 elements in fiber domain and 253 elements
in the matrix domain. The CPU time on SPARC 10/51 for this problem is approximately 8 hours, as
opposed to 10 seconds if metal plasticity is used instead, which means that 99.7% of CPU time is spent
on constitutive equations. This raises the question whether the observation made by Hill 30 years ear-
lier stating that “... for nonlinear systems the computations needed to establish any constitutive law are
formidable indeed...” is still valid today.

Recently, a novel modeling scheme based on mathematical homogenization theory with eigen-
strains [5] and a rapid postprocessing procedure enabled to solve large scale structural systems in het
erogeneous media at a cost comparable to problems in homogeneous media without significantly
compromising on solution accuracy. This work [5] represents a major breakthrough in the realm,




where modeling schemes are either too simple to provide reliable solutions for difficult problems or
too complex due to the computational complexity involved.

In the next few paragraphs | will briefly summarize essential features of the holistic approach,
including: (i) idealization error estimators aimed at quantifying the quality of numerical and mathe-
matical models in heterogeneous media and steering construction of the multiscale computational
models, (ii) multigrid technology with mechanism-based inter-scale transfer operators aimed at super-
convergent solution of the multiscale computational models, (iii) mathematical homogenization theory
with eigenstrains and rapid postprocessing scheme with variational history recovery, and (iv) system
identification for in-situ characterization of phases and their interfaces. Discussion on limitations of
the present approach and future research directions conclude this note.

Idealization error estimators

Idealization error estimators for laminated composite shell structures are aimed to quantify two
sources of modeling errors and to address the following issues:

i. What are the regions within the problem domain where the macromechanical description (shell
model), which is the most inexpensive modeling capability, is insufficient, i.e., where the shell model
introduces unacceptable errors with respect to a more comprehensive ply-by-ply (mesomechanical)
model. Dimensional Reduction error (DRE) estimators should be able to identify not only the precise
location within the plane of the shell, but also the layers within the laminate where the use of meso-
mechanical description may result in unacceptable errors of interlaminar stresses.

One such approach [1] is based on approximation of the dimensional reduction error as a linear
combination of Co functions in the auxilianyesomechanicafinite element mesh which can accu-
rately represent the kinematics of individual plies. For other approaches see [6] and [7].

ii. Enriching the fundamental kinematics of the equivalent single-layer (macro) model with a dis-
crete-layer (meso) model in the vicinity of the most critical layers enables to model various failure
modes on the lamina level such as delamination. Unfortunately, in many cases the mechanism that
causes failure is at a much smaller scale - the scale of microconstituents. A common computational
rationale today is to investigate various microprocesses that may lead to a progressive failure by con-
sidering a unit cell or a representative volume problem. The mechanisms that allow us to do so are
the classical assumptions of periodicity and uniformity of macroscopic fields. However, in the areas
of high stress concentration, which are of critical interest to the analyst, periodicity assumptions are
not valid, and thus the application of conventional homogenization techniques in the “hot spots” may
lead to poor predictions of local fields.

The adequacy (or lack of it) of the homogenization theory can be assessed on the basis of the
uniform validity of n-scale asymptotic expansion [2], which serves as a basis of the mathematical ho-
mogenization theory. The asymptotic expansion is considered to be uniformly valid if the terms in the
asymptotic sequence are rapidly decreasing. Thus, the quality of the homogenization can be assesse
on the basis of the relative magnitude of the first term neglected by the classical theory compared to
those taken into account. An alternative approach has been developed in [8].

A closed form expression of idealization error estimators associated with the Microscale Reduc-
tion [2] shows that there are four major factors affecting the homogenization errors: (i) The size of
the unit cell, (ii) the Dundars mismatch parameter between the phases, (iii) the volume fraction, (iv)
the strain gradients on the macro-scale.



Mathematical homogenization theory with eigenstrains and rapid postprocessing scheme with

variational history recovery

Figure 4
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In reference [5] the classical mathematical ho-
mogenization theory for heterogeneous medium
has been generalized to account for eigenstrains.
Starting from the double scale asymptotic expan-
sion for displacements and eigenstrains a close
form expression relating arbitrary eigenstrains to
the mechanical fields in the phases has been de-
rived. Subsequently, the overall structural re-
sponse is computed using averaging scheme by
which phase concentration factors are computed
in the average sense for each phase, i.e. history
data is updated only at two/three points (fiber and
matrix/ interphase) in the microstructure, one for
each phase. Macroscopic history data is stored in

the data base and then subjected in the postprocessing stage onto the unit cell in the critical location
identified by microscale reduction error indicators.

For the flap problem considered in Figure 3 the CPU time for the averaging scheme with varia-
tional micro-history recovery is only 30 seconds on SPARC 10/51 as opposed to 8 hours using clas-
sical mathematical homogenization theory. Figure 4 shows that the maximum error in the micro-
stress in the unit cell located in the critical region is only 3% in comparison to the classical mathemat-

ical homogenization theory.

Fast iterative solvers for a heterogeneous medium

The multigrid technology with

Three-scale multigrid cycle special inter-scale connection
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damped out immediately. The
remaining part of the solution er-
ror is smooth, and hence, can be
effectively eliminated on the

auxiliary coarse mesh. It has been found [3], [4] that the finite element mesh on the meso-scale (ply
level) serves as a perfect mechanism for capturing the lower frequency response on the micro-scale.
Therefore, the residual in the finite element mesh on the micro-scale is restricted to the meso-scale,



while the smooth part of the solution is captured in the finite element mesh on the meso-scale. The

oscillatory part of the solution on the meso-scale is again damped out by a smoothing procedure. The
lower frequency response on the meso-scale is resolved on the macro-mesh (shell level). The resulting
solution on the meso-scale is obtained by prolongating the solution from the macro-mesh back to the
finite element mesh on the meso-scale and by adding the oscillatory part of the solution previously

captured on the meso-scale. Likewise, the solution on the micro-scale is obtained by prolongating the
smooth part of the solution from the meso-scale and by adding the oscillatory part that has been ob-
tained by smoothing. This process is repeated until satisfactory accuracy is obtained.

The derivation of the inter-scale transfer operators is based on the asymptotic solution expansion.
For unit cells of a finite size the regularization function was introduced in [3] to obtain a well-posed
inter-scale transfer operators, termed as homogenization based operators. For nonlinear systems the
inter-scale transfer operators vary both in time and space.

The rate of convergence of the multigrid process has been studied in [3]. It has been found that
if the stiffness of a fiber is significantly higher than that of a matrix, then the multigrid method con-
verges in a single iteration. This behavior of the multigrid method for heterogeneous media together
with itslinear dependence on the number of degrees-of-freedom, makes it possible to solve large scale
coupled global-local problems with the same amount of computational effort, or faster, than would
be required to solve the corresponding uncoupled problem using direct solvers.

A different iterative approach dealing with highly nonperiodic heterogeneous media has been re-
cently developed in [11].

The inverse problem - indirect calibration of constitutive equations for the interface

An essential characteristics of the holistic approach is the need for calibration of constitutive equa-
tions of the phases to the observed macro-measurements.

The set of nonlinear functions representing the evolution of damage laws can be parametrized in
the space of inelastic deformation, such as effective plastic strain/work or the inelastic portion of the
crack opening/sliding displacements. These parameters are viewed as control variables within the
identification problem.

The inverse problem is solved incrementally. At each new load increment, a new set of control
variables is introduced corresponding to the increased value of inelastic deformation. The previously
determined control variables are not updated. Thus, each new load increment (or time step) contains
only a limited number of control variables.

The inverse problem for estimating the control variables within a single load increment is for-
mulated on the basis of the regularized least squares principle. In general, the inverse problem is ill
posed due to the lack of balance between the amount of observed information and the unknown data.
A Tikhonov regularization procedure can be employed by which a stabilization term is added to ob-
tain a well-posed mathematical formulation.

For parameter identification in homogeneous viscoplastic materials see [9].

Future research directions

The holistic approachfor problems in heterogeneous media is still at its embryonic stage of de-
velopment, limited to idealized scenarios, such as microstructure periodicity, perfect interfaces, and
guasi-static loading conditions. Further research is essential to promote this methodology from the sta-
tus of “interesting and having potential’ to a practical analysis and design tool.

Other issues that have not been addressed in this article, and which undoubtedly have a tremen-
dous impact in the area of modeling and simulation of heterogeneous materials and structures, are sum-



marized below:

i. Stochastic nature of data

So far only deterministic aspect of the holistic approach has been considered. The deterministic ap-
proach utilizes mean values associated with microstructural characteristics, fabrication and environ-
mental effects. The uncertainties in input data pose a tremendous challenge not only because we have
to deal with numerical methods for stochastic differential equations [12], but more importantly, be-
cause the probability fields especially the correlations are usually unknown.

ii. Atomic and electronic scale models

In the past we had a significant success in coupling phenomena at three different scales spanning the
length scales in excess of six orders of magnitude. The grand challenge is to extend the present frame:
work to account for atomic and electronic scales. Not only that there is a need for extending the range
of length scales from 6 to 10-15 orders of magnitude, even more challenging is to couple models gov-
erned by continuum mechanics principles with models obeying molecular dynamics laws [10]. For ex-
ample, how does the electronic scale phenomenon described only by the atomic numbers affects the
motion of atoms, and how does it translates into the formation of crystallographic defects needed for
continuum models. What are the regions in the problem domain where simultaneous consideration of
particle and continuum models is required? See [10] and [14] for discussion on some of these issues.
In [14] an uncoupled atomistic-continuum approach has been developed, where continuum mechanics
based constitutive model was built directly from the atomistics. A fully coupled atomistic-continuum
model, coupling the two scales via non-local transition region was discussed in [14].

iii. Multiple time scales

The difficulty of estimating the average behavior at the larger length scales from the essential physics
at smaller scales is compounded in time dependent problems. For example, in turbulence, a time aver-
age or statistical approach is often employed to account for time fluctuations at very small continuum-
based spatial level, whereas atomistic scale relaxation and vibration phenomena require consideration
at even smaller time scales [13].
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