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Abstract 

 
We present a computational homogenization approach for linear and nonlinear solid 

mechanics problems, which is fully compatible with conventional finite element code architecture. 

A seamless implementation in ABAQUS is presented including Python script, validation problems 

and a web-link where script files, user-defined subroutines and input files can be accessed. For 

linear problems, we demonstrate how to utilize ABAQUS existing facilities to develop analysis 

attributes required for solving a unit cell problem. For nonlinear problems, a Python script invoked 

by a coarse scale stress update procedure is introduced to carry out the scale bridging. The 

purpose of this paper is twofold: (i) to motivate practitioners to adopt the computational 

homogenization as an integral part of their analysis and design process; and (ii) to encourage 

commercial code vendors to seamlessly integrate the architectures proposed in their legacy 

codes.  
 

1. Introduction 
Composite materials evolved from humble beginnings, such as ancient mud bricks 

reinforced with straw, 7000-year old bitumen covered reed boats, and American Indian 
wood and mud structures to premier man-made building blocks in modern-day society. 
Today, composite materials are used increasingly in high-performance applications that 
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require high specific strength and/or stiffness, low electrical conductivity, transparency to 
radio emissions, resistance to corrosion, etc. According to the E-Composites research 
study [1], the aerospace industry alone is estimated to use $4.6 billion worth of composite 
materials during 2005-2010. During this period, the global end product market for 
composites is projected to reach $27 billion. 

Numerous theories have been developed to predict the behavior of composite 
materials. Starting from the rule of mixtures dating back to the Renaissance era to various 
effective medium models of Eshelby [2], Hashin [3], Mori and Tanaka [4], self-consistent 
approaches of Hill [5] and Christensen [6] among many others to various mathematical 
homogenization methods pioneered by Bensoussan [ 7 ] and Sanchez-Palencia [ 8 ]. 
Computational aspects of homogenization have been an active area of research starting 
with a seminal contribution of Guedes and Kikuchi [9] for linear elasticity problems. 
Over the past decade major contributions have been made to extending the theory of 
computational homogenization to nonlinear regime [10, 11, 12, 13] and to improving 
fidelity and computational efficiency of numerical simulations  [14,15,16,17,18,19, 
20,21, 22, 23,24].  

Today, computational homogenization technologies are rapidly maturing with 
computational efficiency remaining an outstanding issue. Yet, the adoption of these 
technologies by industry is at an embryonic stage. Historically, industry adopts a new 
(computational) technology only after it perceives solid evidence that it can shorten time-
to-market cycle of a product or process. Over the past 15 years, computational 
homogenization technologies have been successfully verified and validated; and while 
industry have abandoned in-house finite element code development efforts and generally 
shied away from “academic” codes, commercial finite element software vendors have 
been slow to providing these capabilities.  The main reason is not in lack of maturity as 
one may expect, but in perceived need for entirely new data structures that cannot be 
accommodated within conventional finite element code architectures. 

 There are two critical issues that have to be addressed in order to integrate 
computational homogenization technologies into conventional finite element code 
architectures: 

1. Analysis attributes: the need to develop and to seamlessly integrate new analysis 
attributes, such as multiple overall strain loadings, periodic boundary conditions, etc. 

2. Scale bridging mechanism: the need to control the fine scale problem from the 
coarse scale analysis, including proper data transfer and manipulation between the scales. 

In this paper, we demonstrate how a two-scale analysis can be seamlessly carried out 
using ABAQUS for both linear and nonlinear solid mechanics problems. For linear 
problems, we demonstrate how to utilize ABAQUS existing facilities to develop analysis 
attributes required for solving a unit cell problem. For nonlinear problems, a Python 



script invoked by a coarse scale stress update procedure is introduced to carry out the 
scale bridging. A web-link is provided for user-defined subroutines, Python script and 
input files for use with ABAQUS code. 

 

2. Linear computational homogenization 
 Using mathematical homogenization, a linear elastostatics problem with periodic 
coefficients can be decomposed (see Appendix for details and Remark 2 for 
nomenclature) into uncoupled fine and coarse scale problems: 
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and ib  the average unit cell body force. Summation convention is employed for repeated 
indices. 
 
        b. Fine-scale (unit cell) problem 
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where ( ) / 2klmn mk nl nk mlI δ δ δ δ= + ; Θ   the domain of the unit cell; vert∂Θ  the vertices of the 

unit cell; and ijmnL  the homogenized constitutive tensor components given as  

 
1 mn

ijmn ijL dσ
Θ

= Θ
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where ( )mn
ijσ y  are stress influence functions (i.e., stress induced by an overall unit strain 

c
mnε ) defined as 

 ( )( ), l

mn
ij ijkl klmnk y mnL Iσ χ= +  (4) 



 Finite element discretization of the coarse and fine scale fields, ( )c c c
i iA Au N d= x , 

( )f f
mnk kA mnAN dχ = y , respectively, gives the two-scale matrix equations: 
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           b. Discrete fine-scale problem 
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where the subscript A denotes degrees-of-freedom; superscripts c and f denote coarse and 
fine scale fields;  ( ), j

f f
ijA i x A

B N=  and ( ), j

c c
ijA i x A

B N= are symmetric gradients of the 
corresponding shape functions.  

 In the following, we focus on implementation of the two-scale analysis in a 
commercial package of choice. Examples are given for implementation in ABAQUS. The 
two-scale linear elasticity analysis consists of the following four steps: 

1. Solve a unit cell problem with multiple right hand side (RHS) vectors (Eq. (6)) 
and compute the stress influence functions; 

2. Evaluate the overall constitutive tensor components  ijmnL  by Eq. (3); 

3. Solve the coarse-scale problem; and  

4. Postprocess stresses in critical (or all) unit cells  

We start with Step 1, solution of a unit cell problem subjected to multiple RHS 
vectors (six in 3D due to symmetry of indices mn). In the matrix implementation, ijmnL is 
a 6 6× matrix where ij represents six rows and mn six columns. Each column in ijmnL can 

be extracted by multiplying ijmnL  with a unit overall strain, 1c
mnε = . For implementation 

in a commercial package, it is convenient to select c
mnε  in the form of a unit thermal strain 

as 

 κc
mn mn Tε = ⋅Δ  (7) 

where κmn and 1TΔ =  are appropriately chosen thermal expansion coefficients and a unit 
temperature change. Multiple RHS vectors in Eq. (6) can be imposed by changing the 
thermal expansion coefficient for each loading case as shown in Table I. One way to 
accomplish it, is by submitting six separate jobs with different values of κmn .  



Table I: Thermal expansion coefficients (m,n) corresponding to six loading cases in 3D 

Indices (mn) 11 22 33 23 13 12 

thermal expansion  
coefficient vector κ  

1
0
0
0
0
0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

0
1
0
0
0
0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

0
0
1
0
0
0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

0
0
0
1
0
0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

0
0
0
0
1
0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

0
0
0
0
0
1

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

Many commercial finite element packages, however, allow to defining temperature-
dependent thermal conductivity that would permit a unit cell solution for multiple RHS 
vectors in a single job. In ABAQUS, this can be accomplished via linear perturbation 
step, which unlike the general step has no effect on subsequent steps. Due to 
temperature-dependence, for each step it is necessary to redefine the temperature change 
that would correspond to a different value of thermal conductivity. In ABAQUS, 
temperature-dependent thermal conductivity is defined in the user-defined subroutine 
UEXPAN().  

We now turn to Step 2, an implementation of the overall constitutive tensor  ijmnL  
through the integral in Eq. (3). Perhaps the most elegant implementation is by exploiting 
the relation between stress ijσ , stress influence functions mn

ijσ and overall constitutive 

tensor components ijmnL . Recall that the stress influence functions mn
ijσ  are stresses ijσ  

obtained by subjecting a unit cell to a unit coarse-scale strain 1c
mnε = . In Step 1, we have 

already analyzed a unit cell subjected to six loading cases corresponding to precisely the 
same unit strains. Thus the stress influence functions mn

ijσ are stress outputs obtained for 
the aforementioned six loading cases. In ABAQUS, the model information and the output 
results for various loading cases are stored in ABAQUS output database (job-name.odb), 
which is a neutral binary file. Finally, we use a Python2 script to access stress values at 
every integration point Iy in the unit cell stored in the database to numerically integrate 
Eq. (3)  

 
int

1

1 ( ) ( ) ( )
n

mn
ijmn ij I I I

I
L y J y W yσ

=

= ⋅
Θ ∑  (8) 

where  ( )IJ y  and  ( )IW y  are Jacobian and weight, respectively, at an integration point 
positioned at  Iy . 

An important aspect of solving a unit cell problem is implementation of periodic 
boundary conditions. In ABAQUS, this can be accomplished via surface-to-surface 
constraints. In this type of a constraint, each node on a slave surface is constrained to 
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have the same motion as a closest point on the master surface. The following rules are 
used to form the master-slave relation. For an element-based master surface, a point on 
the master surface closest to a slave node is calculated and then used to determine the 
master node(s) that will be forming the constraint. For example, in Figure 1, nodes 1, 2 
and 3 are used to constrain node c; nodes 1 and 2 constrain node a; and node 2 constrains 
node b. The element shape functions are used to set up the constraints. It is important to 
note that when master and slave surfaces have different mesh densities, the master 
surface should be chosen as the surface with a coarser mesh. Moreover, the POSITION 
TOLERANCE parameter should be set to be greater than the distance between two 
surfaces (see definition of ABAQUS keyword “*TIE” in online ABAQUS Keywords 
Reference Manual). 

 

 
Figure 1: Master-slave relations for an element-based master surface  

 Finally, the coarse scale analysis is carried out using overall coefficients computed in 
Step 2. For the postprocessing (Step 4), the coarse scale strains obtained in Step 3 are 
used in combination with stress influence functions calculated in Step 1 to compute the 
fine scale stresses in critical (or all) unit cells as 

 mn c
ij ij mnσ σ ε=  (9) 

 For verification, we consider a three-dimensional fibrous unit cell. The phase 
properties of the microstructure are summarized in Table II. The unit cell is discretized 
with 351 tetrahedral elements as shown in Figure 2.  

 
Table II: Material properties for fibrous unit cell 

Materials Young’s Modulus Poisson’s ratio Volume fraction 
Titanium Matrix 68.9 GPa 0.33 0.733 

SiC Fiber 379.2 GPa 0.21 0.267 
 
 



 
 

 Figure 2: Finite element mesh of a fibrous unit cell 
 
Using Python script, the four steps are carried by submitting a single job. The 

visualization module of ABAQUS/CAE (ABAQUS/Viewer) can be used to output von 
Mises’ stress mnσ  and displacement imnχ  influence functions as shown in Figure 3. 
 

 
Figure 3: von Mises’ Stress mnσ and displacement imnχ influence functions corresponding to mn 

components:  (a) 11; (b) 22; (c) 33; (d) 23; (e) 13; (f) 12; 
 
The overall properties of the composite obtained in Step 2 are depicted in Table III. 

For comparison, the overall properties obtained using Self-Consistent Method (SCM) and 
Mori-Tanaka Method (MTM), are also shown in the Table III. 

 

Table III: The coefficients for homogenized stiffness matrix of the fibreous composite  

Indices 11 22 33 23 13 12 

(a)  (b) (c)

(d)  (e) (f)



140.3 
(136.6/134.2) 

57.3 
(61.8/61.4) 

57.7 
(57.8/57.3) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.1 
(0.0/0.0) 

 140.0 
(136.6/134.2)

57.6 
(57.8/57.3) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.1 
(0.0/0.0) 

  185.6 
(185.7/185.6)

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

   39.5 
(40.1/38.2)

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

 SYM.   39.4 
(40.1/38.2) 

0.0 
(0.0/0.0) 

FEM Results 
(GPa) 

 (SCM/MTM) 

     36.5 
(37.4/36.4)

 

For the coarse scale analysis in Step 3, we consider a cantilever beam subjected to a 
uniform distributed load along the top edge. For comparison, a reference solution is 
obtained using a single scale finite element analysis on a fine mesh. Deformed meshes 
and von Mises’ stresses at a critical unit cell (left bottom corner) are shown in Figure 4. 
The stresses in a unit cell are obtained by postprocessing in Step 4. 

  Figure 4: Comparison of the homogenization and the reference solutions 

(a) reference solution (b) homogenization solution 



For convenience, all input files, user-defined subroutines and Python script for the 
above example can be can be found in http://www.rpi.edu/~fishj/***. 

 

3. Nonlinear computational homogenization  
 The two-scale algorithm presented in Section 2 can be generalized to account for 
material and geometric nonlinearities as long as the periodicity assumption remains intact. 
The governing equations directly follow from Eq. (10) and the integral of Eq. (10) in 
Appendix. The resulting two-scale problem summarized below is two-way coupled: 
 
       a. Coarse scale problem 
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        b. Fine-scale (unit cell) problem 
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where ijσ  is Cauchy stress. Note that in the fine scale problem in Eq. (11) we do not 
specify the form of kinematical and constitutive relations, i.e. any kinematical and 
constitutive equations available in a commercial code of choice or specified in a user-
defined subroutine can be utilized for this purpose.  
 
The link between the two scales is established by the overall Cauchy stress ijσ  as 

 
1

ij ijdσ σ
Θ

= Θ
Θ ∫  (12) 

 Following the same discretization scheme as for linear problems yields an algebraic 
system of nonlinear equations: 
 
           a. Discrete coarse-scale problem 
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           b. Discrete fine-scale problem 
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c
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i f
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+
+ are fine and coarse scale residuals, respectively;   
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the coarse and fine scale strain increments, respectively, typically computed with respect 
to the derivative of the respective  coordinates at the mid-step [25, 26]; 
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are corresponding vorticities; 1 1
1 1

i c c i c
n k iA n Au N d+ +
+ +Δ = Δ  and 1 1

1 1
i f f i f
n k kA n Au N d+ +
+ +Δ = Δ where 

1
1

i c
n
+
+ Δd and 1

1
i f
n
+
+ Δd denote incremental displacements computed from the previously 

converged solution (step n) at the fine and coarse scales, respectively; 1
1

i f
n ijAB+
+  and 

1
1

i c
n ijAB+
+ are symmetric derivatives of the shape functions with respect to the coordinates at 

the mid-step in the fine and coarse scale, respectively;  the  left subscript denotes the load 
increment (with n and n+1 denoting the previous and current increments, respectively);  
the left superscript denotes the iteration count in the coarse scale problem (with i and i+1 
denoting the previous and current iterations, respectively); quantities without the left 
superscript, such as  1

c
n+ Δd , denote converged values at the load step n+1.  Fine scale 

problem is solved using Newton’s method, but only converged quantities for the fine 
scale problem are shown in Eq. (14); intermediate quantities obtained in the Newton 
process on the fine scale are not shown.  The unit cells coordinates are updated 

1 1 1 1( , , , )f f c c f
n n n n n+ + + +Δ Δ Δx x dε ω (for large deformation analysis only) once the Newton 
process on the coarse scale converged. No summation convention is employed for left 
superscripts and subscripts.  

In the following, we describe a two-scale nonlinear algorithm fully compatible with 
commercial code architecture. The discrete coarse scale problem (13) is solved 
incrementally using Newton’s method. To solve for the unknown coarse scale 
displacement increment, 1

1
i c
n
+
+ Δd , the coarse scale problem is informed with the overall 



Cauchy stress 1
1

i
n ijσ++ and the overall instantaneous constitutive tensor 1

1
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n ijmnL+
+ .These two 

quantities are extracted from the corresponding fine scale fields as 
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where ( )1 1 1
1 1 1, ,i i c i c

n kl n n nσ+ + +
+ + +Δ Δσ ε ω  and ( )1 1 1

1 1 1, ,i mn i c i c
n ij n n nσ+ + +
+ + +Δ Δσ ε ω denote Cauchy stress 

and  the instantaneous Cauchy stress influence functions, respectively. It is important to 
note that these quantities correspond to converged (equilibrated) unit cell solution, which 
may or may not represent the converged coarse scale solution. 
 In ABAQUS, the coarse scale analysis is controlled by a user-defined subroutine 
UMAT(). At each integration point, increment n+1 and iteration i+1, ABAQUS calls 
UMAT() routine to carry out the following operations: 
 
 1. Write ( )1 1

1 1,i c i c
n n
+ +
+ +Δ Δε ω to an external data file; 

 2. Write current coarse scale element number, integration point number, increment 
and iteration numbers into an external file; 
 3. Invoke Python script to prepare and submit the corresponding unit cell job and to 
calculate the overall quantities 1

1
i

n ijσ++ and 1
1

i
n ijmnL+
+ ; and 

 4. Read 1
1

i
n ijσ++ and 1

1
i

n ijmnL+
+  from an external data file. 

We now turn to the fine scale problem. It is important to note that for every coarse 
scale solution ( )1 1

1 1,i c i c
n n
+ +
+ +Δ Δε ω , the discrete unit cell problems (14) are solved using 

Newton’s method. Once (independent) Newton’ processes for all unit cell problems (14) 
converged, the Cauchy stresses and the Cauchy stress influence functions are computed 
to evaluate the overall Cauchy stress (15) and the overall instantaneous constitutive 
tensor (16). From the implementation point of view, one needs to address the following 
two issues: (i) solution of the unit cell problems; and (ii) evaluation of the stress influence 
functions. 

We start with the first issue. A unit cell geometry (or geometries), finite element mesh, 
boundary conditions and material models are defined in the input file. One may use 
commercial code library of materials or define a new material using user-defined 
facilities. For the unit cell analysis in ABAQUS, this step should be defined as a general 
step.  

Unit cell analyzes are carried out incrementally from the converged unit cell solutions 
(displacements and stresses), which are stored in the restart file (unit-cell-name.stt). In 
ABAQUS, this is accomplished using ABAQUS keyword “*RESTART, WRITE”. Two 
sets of restart files are prepared for each unit cell. One that stores the information from 
the previous converged stress n ijσ ; the second contains the information from the last 
iteration, which may or may not represent the converged solution for the next increment. 
Changing the increment number serves as an indication for the first restart file to be 



overwritten by the second one. For continuation of analyzes in ABAQUS, a keyword 
“*RESTART, READ” is used. 

The coarse scale strain increment, 1
1

i c
n mnε+
+ Δ , is imposed in the form of thermal strains 

 1
1 κi c

n mn mn Tε+
+ Δ = ⋅Δ  (17) 

where the thermal expansion coefficient and temperature change are chosen as 
1
1κ i c

mn n mnε+
+= Δ  and 1TΔ = . In ABAQUS, UEXPAN() is used to define the thermal 

conductivity.  
 Depending on material model, stress updates can be carried out in two steps. In step 
one, stresses are updated by subjecting a unit cell to thermal strains, κmn T⋅Δ , where 

1
1κ i c
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+= Δ . This step may include both material and rotational stress updates and it 

utilizes algorithms available in the commercial package of choice. In step two, a unit cell 
is subjected to a constant rotational increment 1

1
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+ ΔR  computed from the incremental 

vorticity  1
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+ Δω  using well-established procedures [25, 26, 27]. 

 We now focus on the second issue, an evaluation of the instantaneous Cauchy stress 
influence functions 1

1
i mn

n ijσ++ . The stress influence functions are evaluated only once the 

converged (on the fine scale) unit cell solution is obtained. Let  1
1 ( )i

n ijmnL+
+ y  and  1

1 ( )i f
n ijAB+
+ y  

be components of the instantaneous material properties and symmetric gradient of the 
shape functions, respectively, both computed for the converged unit cell solution. The 
influence functions are then obtained by solving a linearized unit cell problem 
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i f i f vert
n mnB n mnB

B L B d d B L d on

d periodic on d on

+ + + + + +
+ + + + + +Θ Θ

+ +
+ +

Θ ⋅ Δ = − Θ Θ

Δ ∂Θ Δ = ∂Θ

∫ ∫  (18) 

for six RHS vectors. This step is similar to Step 1 in linear homogenization discussed in 
Section 2.   It is important to emphasize, however, that Eq. (18)  is a linear perturbation 
step with fixed 1

1
i

n ijmnL+
+ (see Remark below). The unit cell displacements 1

1
i f
n mnBd+
+ Δ obtained 

and the influence functions 

 ( )1 1 1 1
1 1 1 1ˆi mn i i f i f

n ij n ijkl n mnB n klB klmnL B d Iσ+ + + +
+ + + += Δ +  (19) 

have no influence on the unit cell solutions in subsequent increments and/or iterations of 
the coarse scale problem.  

The stress influence functions computed in Eq. (19) are free of coarse scale 
incremental rotation  1

1
i c
n
+
+ ΔR . One may proceed to defining the corotational overall 

constitutive tensor 1
1

ˆi
n ijmnL+
+  , which is free of the coarse scale incremental rotation 

( )1 1 1 1 1 1
1 1 1 1 1 1

1ˆ ˆ , , 0, ,i i mn i c i c i f i f
n ijmn n ij n n n n nL dσ+ + + + + +
+ + + + + +Θ

= Δ Δ = Δ Δ Θ
Θ ∫ σ ε ω ε ω  

followed by an appropriate rotation of 1
1

ˆi
n ijmnL+
+ to the global coordinate system.  

 



 The flowchart illustrating the key implementation steps including the reference to the 
source files (available online at http://www.rpi.edu/~fishj/***) and ABAQUS commands 
at each step are depicted in Figure 5. 
 
Remark 1: For user-defined inelastic material models, the instantaneous material 
properties 1

1
i

n ijmnL+
+ are automatically stored in ABAQUS database, and therfore Eq. (19) 

can be computed as a linear perturbation step.  For inelastic material models within 
ABAQUS library the instantaneous material properties 1

1
i

n ijmnL+
+  are not accessible to the 

user, and therefore, a linear perturbation step cannot be performed unless the converged 
step corresponds to elastic process (see [26] for definition of elastic and inelastic 
processes). In this case one has to carry out six general perturbation steps instead. A 
general perturbation step is defined with an infinitesimal increment of coarse scale strain 
and large convergence tolerance so that only a single iteration on the fine scale is carried 
out. 



 

Coarse Scale Analysis 

Command: abaqus job=global user=uglobalMAT.for int 

Input File: global.inp  

Stress Update Procedure 

Command invoke the Python script:  
CALL SYSTEM ("abaqus cae noGUI=UCP.py") 

User-defined Subroutine UMAT(): uglobalMAT.for  

Quantities write out: ( )1 1
1 1,i c i c

n n
+ +
+ +Δ Δε ω  

Quantities read in: 1
1

i
n ijσ++ and 1

1
i

n ijmnL+
+  

Two Scale Bridging 

Python Script: UCP.py  

Command execute fine scale analysis:  
os.system( "".join( [ "abaqus job=",localname, " 

input=",inplocalname, " oldjob=", oldlocalname, " int" ] ) ) 

Preparation for fine scale analysis: 
Determine the restarting point; 

1
1 �i c

n mn mn Tε+
+ Δ = ⋅Δ

Calculation of the overall quantites: 
1 1 0
1 1

1 1
1 1

1

1

i i
n ij n ij

i i mn
n ijmn n ij

d

L d

σ σ

σ

+ +
+ +Θ

+ +
+ +Θ

= Θ
Θ

= Θ
Θ

∫

∫

Fine Scale Analysis 

Input Files: local*.inp  

User-defined Subroutine UEXPAN(): ulocalsubs.for  

One general step for ( )1 1 1
1 1 1, ,i i c i c

n kl n n nσ+ + +
+ + +Δ Δσ ε ω  

Six perturbation steps for ( )1 1 1
1 1 1, ,i mn i c i c

n ij n n nσ+ + +
+ + +Δ Δσ ε ω  

 



Figure 5: Program architecture for the two-scale analysis using ABAQUS 
 

 For verification, we consider several examples. The first two consider a coarse scale 
domain in the shape of a block discretized with a single brick element subjected to 
transverse tension. On the fine scale, we consider a fibrous unit cell introduced in Section 
2 obeying perfect plasticity for the matrix phase ( 24Y MPaσ = ) and linear elasticity for 
the fiber phase.  
 The overall response of the composite is obtained using computational framework 
presented in this section. The overall stress-strain curve along the loading directions is 
shown in Figure 6 (the reference solution is obtained using a single scale analysis with a 
fine mesh). The relevant files for this example can be downloaded from 
http://www.rpi.edu/~fishj/***. 
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Figure 6: xx xxσ ε−  relation for the transverse tension problem with matrix obeying plasticity model 

 
 It is important to note that the algorithms presented here are independent of material 
model considered. For the second example, we keep the same geometry, mesh and 
boundary conditions, but model the matrix phase using continuum damage mechanics 
model with arctangent form of damage evolution law [27]. The resulting overall stress-
strain curve is shown in Figure 7. 
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Figure 7: xx xxσ ε−  relation for the transverse tension problem with matrix obeying damage model 

 
 For the final example, we simulate crack propagation in a rectangular plate made of a 
woven composite microstructure [ 28 ]. A quarter of the plate is considered due to 
symmetry. A uniformly distributed tensile load is applied along the top edge. Continuum 
damage model considered in the previous example is employed. The value of damage 
parameter ( 1 fully crackedω = ) governs crack formation. Crack propagation obtained 
with the two-scale homogenization and the reference solution obtained with a single 
finite element mesh containing over one half million of elements are depicted in Figures 
9 and 8, respectively. Figure 10 compares the crack length obtained by the two methods. 
The two-scale homogenization performs fairly well considering the fact that solution 
periodicity in the vicinity of the crack does not exist. 
 

 
 

Figure 8: Crack propagation using single scale finite element analysis (reference solution) 
 



  
Figure 9: Crack propagation in the coarse scale model 
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 Figure 10: Crack length versus time 

4. Summary and future research direction 
 We have demonstrated that computational homogenization is fully compatible with 
conventional finite element code architecture. Once all the input files, user-defined 
subroutines and Python script are in place, the two-scale analysis can be executed with a 
single “push button.” We hope that the manuscript will motivate practitioners to adopt the 
computational homogenization as an integral part of the analysis and design process. We 
also hope that commercial code vendors will seamlessly integrate the architectures 
proposed in their legacy codes.  
 The issue of computational cost of the two-scale nonlinear analysis has not been 
addressed in the present manuscript. As one may expect, the cost is very high indeed. Let 

cellsN be the number of Gauss points in the coarse scale, n be the number of load 
increments in the coarse scale, coarseI and fineI  be the average number of iterations in the 
coarse and fine scales respectively. Then the total number of linear solves of the fine 
scale problem is cells coarse fineN n I I⋅ ⋅ ⋅ , certainly a formidable computational cost if the 
number of unit cells and degrees-of-freedom in a unit cell is substantial. 

     (b) Overall stress component yyσ             (a) Overall damage parameter 



 We believe that it is a combination of two remedies that will eventually reduce the 
computational cost to a manageable size. The first is utilization of parallel computing 
since unit cell computations are fully parallelizable. The second is coarse-graining or 
model reduction. Some (but not all) noteworthy efforts in this direction have been 
mentioned in the introduction of this paper [11-22].  In our upcoming manuscript [29], 
we will demonstrate how one specific model reduction approach can be seamlessly 
integrated into commercial finite element code architecture. 
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Appendix: Mathematical homogenization for linear elasticity 
 
The strong form of the boundary value problem for linear elastostatics is given by 

 , 0
jij x ib onζ ζσ + = Ω  (1) 

 ij ijkl klL onζ ζ ζ ζσ ε= Ω  (2) 

 ( , ) , ,( ) / 2
l l kkl k x k x l xu u u onζ ζ ζ ζ ζε ≡ = + Ω  (3) 

 i i uu u onζ = Γ  (4) 

 ij j i tn t onζσ = Γ  (5) 

Eqs. (1)-(5) are equilibrium equations, constitutive relations, kinematical relations, 
displacement boundary conditions and traction boundary conditions. The superscript 
ζ denotes Y-periodicity of the corresponding function f , i.e. ( ) ( ), ,f k f+ =Yx y x y , 
where Y is the characteristic size of the fine scale (unit cell), and k is a non-zero integer.  

A two-scale asymptotic expansion is employed to approximate the displacement field 

 0 1 2 2( ) ( , ) ( , )i i i iu u u uζ ζ ζ= + + +x, y x y x y  (6) 

where ( )iu x, y  are Y-periodic functions, for 0,1,2,...= . 
Using the chain rule of the differentiation ( ) 1

, , ,,
i i ix x yf f fζ −= +x y , and kinematical 

relations Eq. (3), the asymptotic expansion of the strain field is given as  

 1 1 0 0 1 1( ) ( , ) ( , )kl kl kl kl
ζε ζ ε ζ ε ζ ε− −= + + +x, y x y x y  (7) 

where, 



( ) ( )

1 0

0 0 1
, ,

1 1 2

; 0,1, 2,...
l l

kl kly

kl klx kly klx klyk x k y

kl klx kly

and u u for

ε ε

ε ε ε ε ε

ε ε ε

−⎧ =
⎪⎪ = + = = =⎨
⎪

= +⎪⎩

 

 The asymptotic expansion of the stress field is  

 1 1 0 0 1 1( ) ( , ) ( , )ij ij ij ij
ζσ ζ σ ζ σ ζ σ− −= + + +x, y x y x y  (8) 

where for linear elastic problems ij ijkl klLσ ε= , for 1,0,1,...= − . 
Inserting the asymptotic expansion of the stress field Eq.(8) into the equilibrium Eq.(1) 

and identifying terms with equal powers of ζ  gives various order equilibrium equations  

 ( )2 1
, 0

jij yζ σ− −Ο → =  (9) 

 ( )1 0 1
, , 0

j jij y ij xζ σ σ− −Ο → + =  (10) 

 ( )0 1 0
, , 0

j jij y ij x ibζ σ σΟ → + + =  (11) 

( )2ζ −Ο  equilibrium (Eq. (9)) is considered first. Premultiplying it by 0
iu , integrating 

over the unit cell domain Θ and subsequently integrating by parts gives 

 ( ) ( )
0 1 0 0

,,

0,

0
lj

i ij j ijkl k yi y

periodicity

u n d u L u dσ −

∂Θ Θ

=

Γ − Θ =∫ ∫  (12) 

The first term in Eq. (12) vanishes due to periodicity. Moreover, assuming that ijklL  is 
a positive definite yields 

 ( ) ( )0 0 0
,

0
j

i ii y
u u u= ⇒ = x  (13) 

The ( )1ζ −Ο  equilibrium, Eq.(10), can be written as  

 ( )0 1

,
0

j
ijkl klx kly y

L ε ε⎡ ⎤+ =⎣ ⎦  (14) 

where we exploited ( )0 0 1 0i i iju u σ −= ⇒ =x . 
Introducing the decomposition of the second term in the asymptotic expansion of 

displacement field 

 1 0( , ) ( ) ( )i imn mnxu χ ε=x y y x   (15) 

and taking into account arbitrariness of the coarse scale strain field 0 ( )mnxε x , the strong 
form of the unit cell problem for the influence function ( )imnχ y   on  Θ   is given by 

 ( )( , ) ,
0

l
j

ijkl k y mn klmn y
L I onχ⎡ ⎤+ = Θ⎣ ⎦  (16) 

 ( ) ( )imn imn onχ χ= + ∂ΘYy y  (17) 



 ( ) 0 vert
imn onχ = ∂Θy  (18) 

where ( ) / 2klmn mk nl nk mlI δ δ δ δ= + ; vert∂Θ  are the vertices of the unit cell. Eq.(18) is often 

replaced by the normalization condition 0imndχ
Θ

Θ =∫ .  

Finally, substituting constitutive relations for 0
ijσ  into equilibrium Eq.(11) yields 

 ( )( )1 0
, ,, 0

j jlij y ijkl klmn mnx x ik y mnL I bσ χ ε+ + + =  (19) 

Integrating Eq.(19) over the unit cell domain and accounting for the periodicity of 1
ijσ  

yields 

 0
, 0

jijmn mnx x iL bε + =  (20) 

where 

( )( ),
1

1

lijmn ijkl klmnk y mn

i i

L L I d

b b d

χ
Θ

Θ

= + Θ
Θ

= Θ
Θ

∫

∫
 

Remark 2: In Sections 2 and 3 we adopted the following nomenclature 
0 0 0 1, , ,c c f

ij ij mn mnx i i i iu u u uσ σ ε ε≡ ≡ = =  

which is more transparent to readers that are not familiar with nomenclature of the 
mathematical homogenization. 
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