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Abstract

Finite deformation plasticity formulation based on additive split of rate of deformation and hyperelasticity is
presented. This approach is valid for finite elastic and plastic strains, while rendering the choice and numer-
ical integration of objective stress rates superfluous as the results are automatically objective. For small elas-
tic strains our method reduces to the classical hypoelastic-corotational formulation provided that the Dienes
objective stress rate is employed, while in the absence of inelastic deformation it coincides with the hyper-
elastic formulation. The validity of the model has been examined on four test problems and the numerical
results were found to be in good agreement with either the exact solution or experimental data.

1.0 Introduction

The proper formulation of finite deformation elastoplastic kinematics, elastic response and
the flow rule has been a subject of considerable conjecture. One of the major difficulties
stems from the coupling between elastic and plastic properties. It is well known that ini-
tially elastically isotropic material may become elastically anisotropic due to plastic flow,
which means that Helmholtz free energy density is not only a function of elastic deforma-
tion but has some dependency on the plastic flow. Fortunately, for moderate plastic defor-
mation (up to 30% [12][13]), dislocations and other lattice defects caused by plastic flow,
have a negligible effect on the deformation of crystal lattice which governs elastic con-
stants. This has been realized by many practitioners, who observed that elastic constants
are not appreciably affected by manufacturing processes involving plastic forming, nor has
the elastic deformation a profound influence on the plastic flow.

Finite elastoplastic kinematics is another issue of considerable debate. For example, based
on the energy conservation principle, Nemat-Nasser [26] has shown that the rate of defor-

mation,d , decomposes additively as
d=d+ |Od (1)

for finite elastic €) and plasticf) rate of deformation provided that the strain increments
are defined with respect to the same reference configuration. Green and Naghdi [10], have

argued that an additive decomposition of Lagrangian stain,
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into elastic-plastic components is supported by solid thermodynamic principles. Lee
[20][21] advocated a theory based on multiplicative decomposition of the deformation

gradient,F
F=gFF ®)

where the elastic deformation gradigfft, , is obtained by independently unloading infini-

tesimal volume elements of the body into an intermediate configuration defined by this
collection of unloaded elements. It is important to realize that the three theories are funda-
mentally different, i.e., if one, for example, adopts multiplicative decomposition, then it is
a trivial exercise to show that neither additive decomposition holds, and vice versa. In an

attempt to reconcile these different kinematical assumptigns, [11][31]cAnd [26]
have been interpreted as mixed elasto-plastic deformation tensors.

Other kinematical splits can be found in the literature. Nemat-Nasser advocated an addi-
tive split of the deformation gradients [26], as well as the multiplicative decomposition,
where the order of plastic and elastic deformation gradients in (3) is interchanged [25].
Kim and Oden [19], on the other hand, suggested decomposing the stretch tensor addi-
tively.

Even though there is no consensus with respect to the most favorable finite elastoplastic
kinematics, numerical algorithms developed in the past 15 years have been primarily
focussing on the following two approaches:

Category 1: Multiplicative hyperelastic plasticity

This class of methods is based on multiplicative elasto-plastic kinematics (3), hyperelas-
ticity and the existence of Helmholtz free energy density governed by either elasto-plastic
deformation [7][19][23][25][28][29][34][35][36][39], or elastic deformation only [2][21].

The latter, as well as an additive split of the Helmholtz free energy density [7][8], are com-
putationally attractive as they permit computation of stresses based on the elastic deforma-
tion only.

Category 2: Rate-additive hypoelastic plasticity

This approach hinges on the additive decomposition of the rate of deformation (1),
hypoelasticity, and objective stress rates. Special care is exercised in the integration of rate
constitutive equations to preserve objectivity [4][15][17][27]. Even though these type of
methods are very attractive from the computational point of view [1][3], they are limited to
small elastic strains (but large rotations) for which the hypothesis of hypoelasticity is
valid. Moreover, they suffer from a somewhat adhoc choice of objective stress rates. Nev-
ertheless, theate-additive hypoelastiapproach is appropriate for most of the engineering
materials including metals, where elastic strains remain small and thus differences in the
formulation of elastic response have little or no effect on the computed solution. On the




other hand, for some polymers exhibiting significant elastic and plastic deformation of
comparable magnitude, a different treatment is required.

The primary objectives of the present manuscript are threefold:

() In an attempt to capitalize on the generality ofrthétiplicative-hyperelastic approach
and the computational efficiency of tree-additive-hypoelastiapproach, we present
a hybrid formulation based on the additive split of the rate of deformation and hyper-
elasticity. Such an approach, referred hereafter asrdteeadditive-hyperelastic
approach, remains valid for finite elastic and plastic strains, while rendering the choice
and numerical integration of objective stress rates superfluous as the results are auto-
matically objective.

(i) We show that in the case of small elastic strains the rate-additive-hyperelastic formula-
tion reduces to the hypoelastic-corotational formulation [4][15][18], provided that the
Dienes [5] objective stress rate is employed. Furthermore, our formulation reduces to
the hyperelastic formulation in the absence of inelastic deformation. This suggests that
the magnitude of elastic and plastic deformation (characterized by an appropriate
norm) can be used as an indicator for appropriate model selection.

(i) The validity of the model will be examined for the following four problems: (a) Axial
tension-rigid body rotation of a hyperelastic-plastic bar for which the exact solution
can be easily obtained, (b) the classical simple shear problem [24], which reveals spu-
rious oscillatory shear stress behavior for certain types of objective stress rates, (c) the
torsion problem of the hollow cylinder [32] for which the axial strains have been
observed to be two orders of magnitude smaller than those of shear strains, and (d) the
axisymmetric expansion of an elasto-plastic thick-walled cylinder for which the exact
solution has been reported in [6].

The manuscript is organized as follows. Section 2 examines hyperelasticity and hypoelas-
ticity within the framework of corotational formulation and shows that for infinitesimal
elastic stretches the two theories coincide for a certain choice of corotational frame. Stress
integration schemes and the derivation of the consistent tangent stiffness matrix for the
rate-additive-hyperelastiapproach are presented in Section 3. Numerical examples con-
clude the manuscript.

2.0 Hypoelasticity versus hyperelasticity
As a prelude to the finite deformation plasticity incorporating additive split and hyperelas-

ticity, we start by summarizing the basic hypoelasticity and hyperelasticity equations with
the intent of deriving the relation between the two formulations.

2.1 Hypoelastic corotational formulation

Consider two neighboring particles of the body situated at pblirgadQ in the unde-
formed configuration such that the unit vector, denoteB,as pointing fromQ to H as




shown in Figure 1. The patrticles originally positioned at pdiésmdQ move to the posi-
tionsh andq, respectively, with the corresponding unit vedtofhe rotation between the
two unit vectors can be written as

b=0[B

whered is orthogonal such thatTJT = | ,and represents an identity matrix.

The rate of rotation is given by
b=0B =WCh.
where
w=0om™

Note thatW coincides with the spin tensdp if aligned along one of the principal direc-
tions of the rate of deformation tensor. We now focus on the corotational ffame which

transforms with respect to the undeformed configuratioxas= 0 X + constant A
family of the corotational Cauchy stress tensor, denotertas , can be defined as
O— T
oY =0 [l 4)

The rate ofc” follows from the linearization of (4)

[ _ T T . T "

o =0 bI+0 I+0 bl

=0'ON D M+0 BM+0 WD = 0' B M
or
o =0 mMmT )
whereo s the so called objective stress rate given by
G =06-W—oDWNT

0 . . - . 0
o can be interpreted as a rateaf expressed in the current frameoSince ¢ and
obey transformation rules for second order tensors, they are considered objective stress

rate measures. Note  does not obey transformation rules of second order tensors, and
therefore, it is not objective.




For hypoelastic materials the constitutive equation is given by
g =L:d ©6)
wherelL is the elasticity fourth order tensor @nd is the rate of deformation defined as
d={l}, 1=%
and v represents the velocity field; denotes the spatial velocity gradiengs}and is a
symmetrization operator.

Substituting (5) into (6), premultiplying and postmultiplying the result with @nd
yields

o = 07TOL :d) @™

Let d” denote the set of corotational rate of deformation tensors defined as

d? = 0' @M
then the hypoelastic constitutive equation (6) in the corotational frame can be expressed as
o = LO:go @)
whereL" in the component form is given as
Lok = Dailpi0 kO gl abed (®)

It can be seen that the form of the constitutive equations in the corotational frame is identi-
cal to that in small deformation theory. Note that for isotropic materials the constitutive

properties are rotation independent and thds= L

Clearly the constitutive equation (7) in the corotational frame is not unique. First, various
choices of rotationd,] , will ultimately yield different material responses. Secondly, what
is a proper choice df ? Can it be chosen the same as in small deformation theory? These

guestions are addressed in the next section, where the chaice ofL and is made to main-
tain consistency with the notion of hyperelasticity.

2.2 Hyperelastic corotational formulation

The constitutive equation for a hyperelastic solid can be written in the following form
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whereW is the Helmholtz free energy density functidn;  represents the right stretch ten-
sor andu? = UT[U C is the Green deformation tensor wig@re U2 S ; denotes the

second Piola-Kirchhoff stress tensor which is related to the Cauchy stress, , as
S=JF1lLFT (10)

whereF represents the deformation gradientlnd is the Jacobian which is defined as the
determinant oU . In the following we focus on the member of the corotational family of
stresses by selecting the rotation tendor= R from the polar decomposition

F = RU. Thus

oW

oR=RTL[R = 2J WU — U (11)
ou?2
Taking the material time derivative of (11) gives
‘R L oW doW ow -0 _dJ1 _ow
on =2V FE—W+UE—W+UO— U+ 2—UO—J @12
%J U2 dttpu2D ouz Tt - uz - WP

To linearize the right stretch tensor we recall
| = FF1 = RIRT+R U UL [RT

and defining the following corotational measu@®=RT [(d (R wR=RT W [R ,
QR=RTM[R, Q=R[RT, wherew={ I}, is an antisymmetric partlof , the rate of
the right strech tensor can be expressed as:

U = (dR+wR-QR) [ or  dR={UDU }s (13)

The second term in (12) can be written as

dpoWpo_ 02w . du? _ 9w 2w
— = : = (2FTLF) = S (2U MR V) (14
dtlpu2d  gu2gu2 ™ dt  gu29u? ( ) 0U20U2 ( ) (4
Substituting (13), (14) with = Jtr(dR) into (11) yields

GR = LR:dR+{hRER},  eR = dR+ wR—%tr(dR)I (15)

wherewR = wR—QR ;LR andhR in the component form are given as
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R = - v r
Lija (U) = det(u)UipquUkrUIsauganrzs
4 ov
R = ——U. U, —
hlj(U) det(U)U'k JIOUI%I
It should be noted that for small elastic deformatldm; | , the following holds
ov

5o = 0= J=01 h® = o(U-1)

and hence (15) can be approximated as

Y e

‘R
g =4 :
0U29U?2

(16)

Comparing (7) and (16), we conclude that in the case of small elastic deformation (but
arbitrary rotations), the hyperelastic and hypoelastic formulations are identical provided
that

2
LD = 46—qJ and O0=R
ouU29uU?

For more details on the corotational formulation see [4][37][38].

3.0 Finite deformation plasticity based on the additive split of
the rate of deformation and hyperelasticity

3.1 Basic assumptions

In developing finite deformation elasto-plastic equations the primary criteria we shall
adopt are as follows:

i. The finite deformation elasto-plastic rate relations should coincide with hyperelasticity
in the absence of inelastic deformation.

ii. We postulate that the stress in finite deformation plasticity may be derived from Helm-
holtz free energy density [7][8]. Therefore, the corotational Cauchy stress can be writ-
ten as

2 oW
= U U
det(U) ¢~ 9 U2 €

oR (17)




analogous to (11). In other words, we assume that in a finitely deforming elasto-plastic
solid, the objective relations are governed by (15), with the only exception that various

strain and strain rate measures, suchlagR are replaced by their elastic counter-
parts, U, dR whereas rotations are associated with elastic deformation only, i.e.,

W= W R=_R (18)

e

iii. Finally, we will adopt an additive split of the rate of the deformation tensor
d=d+ pd (19)

where the left subscriptsandp denote elastic and plastic deformation, respectively.

3.2 Governing equations

As previously hypothesized the stress in a finitely deforming elasto-plastic solid is derived
from the elastic strain density functige! . Thus the rate of corotational Cauchy stress can

be written, similar to (15), in terms of the elastic strgfioh and the elastic corotational

rate of deformationd®  as follows

. 1
6R = LR(U) : dR+{hR(U) QeR} &R = AR+ RS (AR . (20

Since plastic strains are a nonlinear function of stresses, it is necessary to integrate the
constitutive equations along the prescribed loading path in order to obtain the current
stress state. In this section we present a simple, computationally efficient implicit proce-
dure for the elasto-plastic stress updates. For simplicity of presentation, we adopt an
elasto-plastic material with isotropic elastic properties obeying von Mises yield function
with a linear combination of isotropic and kinematic hardening [15].

Consider the yield function of the following form
p=0o"-Y 1)

in which Y is the yield stress of the material in the uniaxial test which evolves according
to the hardening laws assumed: is the effective stress defined as

/gER:p:ER gR=gR_qgR

aR corresponds to the center of the yield surface in the corotational deviatoric stress
space. Evolution of corotational back stressgs= RT (1 [R , Is assumed to follow the

kinematic hardening rule. For von Mises plastidry, is a projection operator which trans-
forms a symmetric second order tensor from non-deviatoric space to deviatoric space, i.e.,

C_)'R

8



1 1
Pijk = §(5ik5j| +0;0y) —§5ij Oy
For simplicity we adopt the associative flow rule
odR = AP :gR (22)

and the hardening evolution law [15] in the context of isotropic, homogeneous, elasto-
plastic media. A scalar, material dependent paranfieter \Ohefe< 1 is used as a mea-
sure of the proportion of isotropic and kinematic hardening With  as a plastic parameter

determined by the consistency condition. Accordingly, the evolution of a&nd can be
expressed in the following rate forms:

GR = %X(l—B)HP  ER (23)
Y = BH ,dR (24)

where paR is the corotational effective plastic rate of deformation defined as

pdR = /% odR o dR (25)

While 3 = 0 refers to pure isotropic hardenirg,= 1 is merely the widely used Zie-

gler-Prager kinematic hardening rule [33] for metals without isotropic hardeding. is a

hardening parameter defined as the ratio between effective stress rate to effective plastic
rate of deformation.

3.3 Stress update procedure

In a typical load stem+ 1 , the new configuration can be expressed as a sum of the con-
figuration at the previous load step and the displacement incréxuent

n+1 n
X = X +Au

where the left superscript refers to the load step countnwitii being the current step.
Subsequently we omit the left superscript for the current step, such that all variables with-
out the left superscripts refer to the current load step.

Increments of the rate of deformation and spin tensors are integrated using the midpoint
rule to obtain the second order accuracy:




0 gAu O n+1/2 0 dAu
Ad=""Y%dat = 0 Aw = WAt = [——=1] (26)
EBn+1/2XDS EBn+:I./2XD
where
n+1/2X _ l.(nx + n+1x)
2
The rotation incrememdQ ="* %At s also evaluated using the midpoint integration
of R = Q [R which yields
AQ ="Vt = (n+1R_nR) g+ YRt
The corotational increments df aod  are given as
AdR = n+1/2RTDﬁdd1+l/2R @27)
AR = "TVRTqaw-aQ) MY R (28)

Applying the backward Euler scheme to the second equation in (13), we obtain the elastic
increment of the rate of deformation as

AR = %(AeU QuU-t+ U-lmaL) (29)
whereA U = U —2U . Solving (29) fofU  yields

U = 2{u 0 -AdR)1} (30)

Integrating (22) - (24) using the backward Euler scheme gives

odR = 0d%+AAP ;R (31)
aR = naR+@N\P:ER (32)
Y = "Y+BHA R (33)

Further substitutingA dR = AdR—Ade and (31) into (30), yields

U = 2{0 01 -AdR+ 10"+ AAP 1 ER) ) (34)

10



Using backward Euler integration scheme & in (20) yields

where

oR = "oR+ LR(U) : AdR + {hR(U) (DR}

AR = B AR+ AR Str (B R

The process is termed elastic if

~R
— <
o YAA:O 0

(39)

(36)

otherwise the process is plastic, which is the focus of the subsequent derivation.

Subtracting (32) from (35) we arrive at the following result

in which

It should be noted thad

g=&R-Q:f=0

Q=Hoi +2(13B)HA)\PE_1

= "eR+ LR A dR+ (hRD eRY,

be solved using Newton’s method as

where

and

1
AER(k+1) - AER(k)_E 01 _Q : (%Qg g

AER(K

of _ of 0  of 0AdR oA dR
dER U T 9ER  andR’ oA dR " OER

of oL phR U
— = — AR+ — [\ eR[
9,0 ~ 90U B0 ¢ g

ai; = —2AM U (1 =AdR)2 P 1 —AdR) 1)}

in (37) is a functioné®f  &dd . Qkke

(37)

(38)

(39)

is fdiihd,

(40)

(41)

(42)

(43)

11
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of oA dR oA dR
= LR+ {hROI OI = -1 0l P_ = AAP 44

The value ofAN is obtained by satisfying the consistency condition which assures that at
the end of the current load stept+ 1, the stress state lies on the yield surface. To this end
(37) and (33) are substituted into the yield function (3R, Y) = 0 , Which produces a
nonlinear equation foAA . A standard Newton’s method is applied to solve\for

-1
ANK+D) = ANK) — [9@ [ (45)
COAN
where the right superscript in parenthesis represents the iteration count. It can be shown
that the derivativéd@/AN required in (45) can be written as

dp _ 3 9ER 2

99 _ _° ¢R.
BN - ogRe P iaan3PHY (46)
in which
aERz 2(1 B)HEID| a_-aLU_A)\ of pDD QPER
ETN) o BU 9eR “ongdR [H

The converged value @A is then substituted into (37) from w&fére can be computed.
Once AN andgR are knownlJ  can be calculated using (34). Corotational stress and
internal variables are found from (31) to (33) and (35). Stress and back stress are then cal-
culated fromo = RDRIRT andr = RRRT

Remark: An alternative stress update procedure can be employed. After obtaining the
expression fotU in (34), the corotational Cauchy stress directly follows from (17). Con-

sequently, plastic paramet&ni is calculated using the Newton method. Analogous to
(39), we have

2 aeqJ n_R

T AT Kt NV

Numerical experiments indicate that the two procedures are comparable in terms of com-
putational complexity and accuracy.

12



3.4 Consistent linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mation of the tangent stiffness matrix consistent with the integration procedure is essential
to maintain the quadratic rate of convergence if one is to adopt the Newton method for the
solution of the global nonlinear system of equations [30].

Derivation of the consistent tangent is obtained from the linearization of the incremental
constitutive equation

aR = "6+ LR(U) : AdR + {hR(U) [D 68}, (47)

Taking the material time derivative of (47), (32) and (33) yields:

. R R

G® ggLU 0: A dR+ LR : AR+ 5“% U MR+hRALRT )
B\
GR = W(XP L ER+ ANP : ER) (49)
Y = BH%@ A+A7‘§R p:¢R0 (50)
where

AR = AdR-AP : ER—ANP : ER (51)
AR = AedR+A(bR—%tr(AedR)l (52)
U = 2{ U I —AdR)L AR 1 —AdR)1}, = T : AR (53)

andTV in (53) is defined as
R\-1 R,-1
TleI U|r(6rk Aedrk) (6|J -A d|j) + Ujr(ark_Aedrk) (6Ii _Aedli)

Details of the linearization oAdR  anflR  consistent with the integration procedures

described in the previous section are given in the Appendix. The expressiavm for and
A®" can be symbolically expressed as

AdR = Td ;| AR = Tw: | (54)

whereTd andr® are fourth order tensors derived in the Appendix ((88) and (89)).

13



In the case of deviatoric plasticity
tr(AdR) = tr(AdR) since tr(a,dR) = 0 (55)

and thus (52) can be simplified as

ALR = AdR+Te | where T8, =T® - %6”— L (56)
Substituting equations (51) - (56) into (48) yields
R= A:AdR+A: (57)

where

[HLR ohR ohR O
1Pq R p R4+ 1P R
mnkl eU Aedpq+ 0 U Aeepj 0 U Aeeplg

_ 1
Ajjia =L + 5(0; hig + 9 h{) + T
1 R hR
Aljk| - 2 mnkl(amh]m + Ejn Im)
Subtracting (49) from (57) yields
R= (A:TA+A) 1 +A : (AER+ANER) (58)

where

Ks%-@lmgzp

Therefore,E'R can be written explicitly as
ER =TI 1+ ATE ER (59)
in which
Ti=(1 01 —AMNA) " (A:TI+A)  Té=(1 01 —ANA)

In order to eliminaté.  from (48), we substitute (50) and (59) into the linearized form of
the consistency condition (21)

3 .
(pETRER:P:ER—Y:
o)

which yields

14



_ [ 4BHY?

—1
] 4PAY” _R.p-TE¢-zRY
= 57 6ANBH ERP:T 'ED (60)

AN=c&R:P:T |
Substituting (54), (59) and (60) into (51) yields
AR = T4 1| (61)
where
TH=Td_ANP: T'—c{ER:P:(1 O + ANTE)} O (T":P:ER)
The consistent linearization o  is obtained by substituting (61) into (57)
GR=D:l where D=A:TS+A (62)

Finally, substituting (62) an®R = G:|1 int¢ = RGNRT-R[R' [6-0 [RRT
yields

o=D:l (63)
whereD is the consistent stiffness tangent operator defined as

Dijki = RimDPmnkiRjy = RiGrimki@nj = OimGmnkiRin (64)

4.0 Numerical examples

In this section we present numerical examples to study the accuracy of the proposed for-
mulation. TheB -bar approach [14][16] is employed to handle the isochoric nature of plas-
tic flow. In the following examples, the isotropic elastic strain energy density fung#on

is chosen as

= (e mm_3)(e nn 3)'+'H(eur2nn_6mn)(e mn~— n)
whereA andu are Lame constants.

4.1 Rotating-stretching shaft

In this first example, we compare the classical hypoelastic based plasticity approach to the
proposed formulation for the rotating-stretching shaft problem [27]. We consider an iso-
tropic shaft subjected to a motion whose deformation gradient is given by

15



cosOt —sinbt 0] |1 +yt 0 O
F = RU = |sindt cosot 0 1 t>0 (65)
0 O 1] 0 O

The motion defined by (65) gives rise to a triaxial stress state where the principal axis is
aligned with the rotating, -axis. We chooBe= 1 and 1 , SO that=atl , the

shaft is aligned with the globad, -axis, and the corresponding axial component of the
Lagrangian strain reaches the valugsR

Three materials with Young’s modulus corresponding to soft, medium and stiff behavior
were selected to study the differences between the hypoelastic and hyperelastic formula-

tions. The following materials properties were chosen: Young’s mogkjus =500, 3000,
20000; Poison ratigvy) =0.% =1008; ={; =1.

It can be easily shown that prior to yielding the corotational Cauchy stress as obtained
with the two models is given as

_ E
and

— E t(2+1){ (1=V)(L +1)2—V}

Ohyper = ST VY (1=2v) a+1) 67

The two corotational effective stresses are plotted versus the axial component of
Lagrangian strain (Figure 2) for the three materials considered. For the stiffest material

(E=20000) the maximum elastic stretgly,,  reaches the value of 1.114 and no significant

differences between the two formulations is observed. However, in the case of E=3000,
the axial strain corresponding to the onset of yielding in the hypoelastic approach is 2.6
times higher than that in the present hyperelastic approach. For softer materials the differ-
ence between the two approaches becomes even more profound.

4.2 Simple shear problem

Consider the classical shear problem depicted in Figure 3. The deformation gradient is
chosen as

1t0
F=1010 t=0

001

16



Only elastic behavior is considered. Material constants considered are: E=(@pP00, =
0.3. The corotational effective stress as obtained with the corotational hypoelastic
approach employing Jaumann and Dienes rates are compared to the present approach in
Figure 4. It can be seen that for small deformation onhky,0.4 , the three approaches
produce similar elastic stretches

1 04
U = (0.4 1.16
0O 0 1
The two hypoelastic models have a similar behavior up<td.5 , at which point the Jau-

mann formulation results in a well known oscillatory response.

4.3 Torsion of thick-walled cylinder

The geometry of the cylinder was chosen as: length = 2, inner radius = 1, outer radius = 2.
Material parameters considered were: E = 21000, 0.3, #21, =A000, =1.

All the degree of freedoms at one end were fixed, whereas at the other end appropriate dis-
placements were prescribed to simulate free-end torsion. The finite element mesh contain-
ing 1200 8-node brick elements is shown in Figure 5. The axial strain versus the shear
deformation is depicted in Figure 6. It can be seen that the maximum extension is just
0.3% while the tube is rotated by 90 degrees. This agrees well with experimental observa-
tions indicating that the axial length changes during the free-end torsion of hollow cylin-
ders of FCC and BCC metals at room temperature are usually small for finite rotation [22].

4.4 Axisymmetric expansion of thick-walled cylinder

Axisymmetric expansion of a thick-walled cylinder is one of the most popular benchmark
for validating finite plasticity formulations (see for example [28]). The configuration of
the cylinder is shown in Figure 7. We consider a cylinder with inner radius of 10 and outer
radius of 20 units. This problem is solved using 20 4-node bi-linear axisymmetric ele-
ments. The material parameters considered are: E = 19050, =49.454, H=0.53 =0,

= 1. These values were chosen so as to replicate rigid-plastic behavior and to allow com-
parison with the exact solution obtained in [6]. In Figure 8 we show the relationship
between the inner radius and internal pressure, and in Figure 9 we shoyy the profile
versus position relative to the inner radius. It can be seen that numerical results are in good
agreement with the exact solution.

5.0 Discussion

Finite deformation plasticity model based on the postulate that the corotational Cauchy
stress can be derived from the Helmholtz free energy density as

17



R - 1 U oW U
det(U) ¢ 9 U2 ¢

(68)

has been developed. Equation (68) is similar to the constitutive model originally proposed
by Lee [20] with only exception thatRdef( U) is replaced®y anél Sy . The

major difference, however, is in kinematical assumption: the model of Lee employs the
multiplicative decomposition [20] whereas in the present manuscript the additive split of
the rate of deformation and the absence of plastic spin are postulated.

The model has been validated on four test problems as the numerical results were found to
be in good agreement with either the exact solution or experimental data. From a numeri-
cal standpoint, the proposed formulation has several advantages. On one hand it employs
plasticity formulation similar to that for small deformation theory, but on the hand, the use
of hyperelastic constitutive modednders the choice and numerical integration of objec-
tive stress rates entirely superfluous as the results are automatically objective. Even though
we have derived an explicit expression for the tangent moduli consistent with the update
strategy, the high computational cost associated with the consistent tangent evaluation
might not be justified. In particular, this might be the case when multilevel methods are
employed as linear solvers within the Newton method [9]. Thus in a general purpose
implementation an approximation of the consistent tangent moduli or the use of quasi-
Newton method might be a better choice.
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Appendixes

A. Linearization of n+l 2R and n+ 1R

To evaluateAd® andw® appearing in equations (51) and (52) consistent with the inte-

gration scheme employed we first focus on the consistent linearizatiohofR and
n+ln
Since the consistent tangent operator is calculated at the end of loadlstep, , our first
task consists of expressirqa Y 2F'{ a’hhlé in terms of the velocity gradiant &t
For a typical time , the velocity gradient may be written as

Y = Fdrt = ROR"+'ROU DUt ORT (69)
Pre-multiplying (69) withR" and post-multiplying it Wit gives

R dF = 'RTORCU+ U (70)

t-
The relation betweeR  and  can be obtained by subtracting the transpose of (70) from
the above equation

R=G:I1 (71)
where'G is a fourth order tensor with the components given as
t _,t t t t -1,t t t t
GijkI - (er Ujs_ Ris Ujr) (er I:Is_ Rks I:Ir) (72)

n+1 -
Hence, R may be written as

n+1 - 1 1
n+ N+ 73)

21



. . n+1/2- . .
In order to derive the expression for R , we use the following relation between

n+1/ n+1
2Iand I

n+1/2 n n+1 n+1
O (]
n+1/2| = an+1/2v = n+al/2 Dg_‘[%x-'-z XED: %r”ll ?1+1/);
R UMY 0 "t
n+1/2 - . . n+1
Thus, R can be written in terms of as
n+1/2 - +1—
R= G:"Y (74)
where
1 an+1
n+1— _ 1in+1/2
ikl = 5 Gikm F77— (75)
0 X

B. Linearization of Ad and Aw

We start by taking the material time derivative of the gradient of the displacement incre-

ment with respect to the position vector at the mid-step (see equation (26)):

n+1

doodu o_ 0" v a™ . oau_dO 9" O
— = 0 + O=0 0 (76)
dt[bn+l/2XD " an+1/2X " dtﬂ)n+l/2XD

The second term in the right hand side of (76) can be written as

dd % O 9"x dEbn+1/2xD a"x
—0 = L H|E (77)
d'[mn+1/2xD an+1/2X dtD anX 0 6n+1/2X
Combining (76) and (77) gives
n+1 n+1/2 0 n
dg dAu O_ 90 v dAu DgEb XHn 9 X 78)

dtDan+1/2XD 6n+1/2X an+1/2X dt[ " O an+1/2x

Equation (78) can be further simplified by exploiting the following relation
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n+1/2

d x%_ 0 dn+1/2 O - d %ggnx+n+lx55=}an+lv
dt o™ O o x[E 0 aanth U2 Oy 2 57y
which after substitution into (78) yields
d 0Au 1 0au " o
dtDa””/z D a n+1/2XD PUREEN (79)
Equation (79) can be recast into the following form:
n n+1
dpg 0Au [ _ 00X 0 X
5= Ml where My = (80)
dtDan+1/2xD 1] 6n+1/2xkan+l/2 _

by utilizing the following equality

1 0Au _ 0 m+r2 1

2 5N+ 2 _an+1/2XD 2 0~ n+1/2

The final expressions fakd amslv ~ can be obtained by substituting (80) into the defini-

tion of Ad andAw :

: a_ - v 1

Ad E—Dm% =M:I where Mijki = Z(Miﬂd + Mjikl) (81)
- o _ - o1

AW:—DWE =M:I where Mijikl = Q(Mijkl ~Miii) (82)

C. Linearization of AdR and AwR

+1/2

After consistently Iineariziné‘ R n+1R Ad amiw  in the Appendixes A and B,

we now proceed with the linearization®fR  ah@dR
Consider equations (27), (28) and

AdR - n+1/2R-|- mdﬂHl/ZR
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n+1/2

AR = RT{Aaw-AQ) YR

AO = (n+1R_nR) d1+1/2RT

Taking the material time derivative of the above equations yields

: : /21|
AdR = n+1/2RT Ad ﬂ+1/2R+ 2Iih+1/2RT Ad Dn+ RO
. : : 1/2-
AR = "V RTaw-a0) I YR+ 28 Y RT aw—n0) O
- 1- 1/2 -
AQ = n+ Rd1+1/2R-|-_+_(n+1R_nR)Dn+ RT
Combining (73), (74), (82) and (85) results in the following relation
A—-AQ = M : |
where
v 9 1/2 1 =
Mijkl = MijkI—Gimk|n+ R‘-m—(n+ Rim—nRim)Gjmm
Substituting (74), (81), (82) and (86) into (83), (84) yields
AdR = Td | AGR = T |
where
Ti?kl — n+1/2RriMrSkln+1/2RSj+Adrs(n+1/2Rriésjkl+n+1/2RSj6rikl)

+1/25 1, +1/2 +1/245 ~ +1/25 ~
T8y = " R Mrsk" T R+ A" R Gsjia + " R Griki)

N
RO

(83)

(84)

(85)

(86)

(87)

(88)

(89)
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FIGURE 1. Definition of deformation gradient
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