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Abstract

This paper is aimed at developing a nonlocal theory for obtaining numerical approximation to
a boundary value problem describing damage phenomena in a brittle composite material. The
mathematical homogenization method based on double scale asymptotic expansion is general-
ized to account for damage effects in heterogeneous media. A closed form expression relating
local fields to the overall strain and damage is derived. Nonlocal damage theory is developed
by introducing the concept of nonlocal phase fields (stress, strain, free energy density, damage
release rate, etc.) in a manner analogous to that curreattiged in concrete [7], [8], with

the only exception being that the weight functions are taken t& ber@nuous over a single

phase and zero elsewhere. Numerical results of our model were found to be in good agreement
with experimental data of 4-point bend test conducted on composite beam made of Black-
glas’™/Nextel 5-harness satin weave.
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1.0 Introduction

Damage in composite materials occurs through different mechanisms that are complex and
usually involve interaction between microconstituents. During the past two decades, a number
of models have been developed to simulate damage and failure process in composite materi-
als, among which the damage mechanics approach is particularly attractive in the sense that it
provides a viable framework for the description of distributed damage including material stiff-
ness degradation, initiation, growth and coalescence of microcracks and voids. Various dam-
age models for brittle composites can be classified into micromechanical and
macromechanical approaches. In the macromechanical damage approach, composite material
is idealized (or homogenized) as an anisotropic homogeneous medium and damage is intro-
duced via internal variable whose tensorial nature depends on assumptions about crack orien-
tation [15], [28], [29], [42], [35], [43], [31]. The micromechanical damage approach, on the
other hand, treats each microphase as a statistically homogeneous medium. Local damage
variables are defined to represent the state of damage in each phase and phase effective mate-
rial properties are defined thereafter. The overall response is subsequently obtained by homog-
enization [1], [30], [44], [45], [46].

From the mathematical formulation stand point, both approaches can be viewed as a two-step
procedure. The main difference between the two approaches is in the chronological order in




which the homogenization and evolution of damage are carried out. In the macromechanical
approach, homogenization is performed first followed by application of damage mechanics
principles to homogenized anisotropic medium, while in the micromechanical approach,

damage mechanics is applied to each phase followed by homogenization.

The primary objective of the present manuscript is to simultaneously carry out the two steps
(homogenization and evolution of damage) by extending the framework of the classical math-
ematical homogenization theory [3][4][27] to account for damage effects. This is accom-
plished by introducing a double scale asymptotic expansion of damage parameter (or damage
tensor in general). This leads to the derivation of the closed form expression relating local
fields to overall strains and damage (Section 2). The second salient feature of our approach is
in developing a nonlocal theory by introducing the concept of nonlocal phase fields (stress,
strain, free energy density, damage release rate, etc.) in Section 3. Nonlocal phase fields are
defined as weighted averages over each phase in the characteristic volume in a manner analo-
gous to that currently practiced in concrete [7], [8] with the only exception being that the

weight functions are taken to b& &ntinuous over a single phase and zero elsewhere. On the
global (macro) level we limit the finite element size to ensure a valid use of the mathematical
homogenization theory and to limit localization. In Sections 4 and 5 we develop a mathemati-
cal and numerical model for the case of piecewise constant weight function, which is the sim-
plest variant of the model presented in Section 3. The stress update procedure and the
consistent tangent stiffness matrix are then derived. Section 6 compares the results of our
numerical model to the experimental data. We consider a 4-point bend test conducted on the

composite beam made of Blackdi¥¢Nextel 5-harness satin weave and compare our numer-
ical simulations to experiments conducted at Rutgers University [14].

2.0 Mathematical Homogenization for Damaged Composites

In this section we extend the classical mathematical homogenization theory [3] for statistically
homogeneous composite media to account for damage effects. The strain-based continuum
damage theory is adopted for constructing constitutive relations at the level of microconstitu-
ents. Closed form expressions of local strain and stress fields in a multi-phase composite
medium are derived. Attention is restricted to small deformations.

The microstructure of a composite material is assumed to be locally periodic (Y-periodic) with
a period defined by a Statistically Homogeneous Volume Element (SHVE), deno&d by , as
shown in Figure 1. Lex be a macroscopic coordinate vector in macro démain and
y = x/¢ be a microscopic position vector@® . Hege, denotes a very small positive num-
ber compared with the dimension@f , aiyE x/¢ is regarded as a stretched coordinate
vector in the microscopic domain. When a solid is subjected to some load and boundary con-

ditions, the resulting deformation, stresses, and internal variables may vary from point to point
within the SHVE due to the high level of heterogeneity. We assume that all quantities have

two explicit dependencies: one on the macroscopic kevel , and the other one on the level of
microconstituents y=x/¢ . For any Y-periodic response functibn , we have




f(x,y) = f(x,y+ky) inwhich vectory is the basic period of the microstructurekand is
a 3 by 3 diagonal matrix with integer components. Adopting the classical nomenclature, any
Y-periodic functionf can be represented as

fo(x) =f(x, y(x)) (€Y

where superscript  denotes a Y-periodic funcfion . The indirect macroscopic spatial deriva-
tives off¢ can be calculated by the chain rule as

£, (x) = f,(xy)+ %f,yi(x, y) @

where the comma followed by a subscript variable  denotes a partial derivative with respect
to the subscript variable (i.ef.'xi =0df/dx;, ). Summation convention for repeated subscripts is

employed, except for subscripts aynd
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Figure 1: Macroscopic and microscopic structures

The constitutive equation on the microscale is derived from continuum damage theory based
on the thermodynamics of irreversible processes and internal state variable theory. To model

the isotropic damage process, we define a scalar damage parameter  as a function of micro-

scopic and macroscopic position vectors, &.,= w(X, y)

Based on the strain-based continuum damage theory, the free energy density has the form of
W(w' gf) = (1-w°)We(ej 3)

wherew® 0 [0, 1) is the damage parameter. For small deformations, elastic free energy den-
1
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(also known as a damage energy release rate) and dissipative inequality follow from (3)

sity is given as Wy(gf) = Lijklaﬁ-alﬁ, . The constitutive equation, thermodynamic force




_ oW (W', &

i IS = (1—®c)|—ijk|5§| (4)
]
oW(w, €5
Y = RAdCALT W (%) (5)
ow"
Yo =0 (6)

With this brief glimpse into the constitutive theory, we proceed to outlining the strong form of
the governing differential equations on the fine scale - the scale of microconstituents. Further
details on the evolution of damage are given in Section 4.

We assume that micro-constituents possess homogeneous properties and satisfy equilibrium,
constitutive, kinematics and compatibility equations. The corresponding boundary value prob-
lem is governed by the following set of equations:

O, +b =0 in Q @)
of = (1-w)Likeg in Q (8)
aﬁ = uﬁ’xj) in Q 9)
us=1a, on I, (10)

ogn, = tt on T, (11)

wherew® is a scalar damage paramedxr; szﬁnd are components of stress and strain ten-
sors;Ly, represents components of elastic stiffness satisfying conditions of symmetry

Liki = Lk = Lijik = Lwij 12)
and positivity
0 Cy>0, Lijk|EﬁE§, > COEﬁEﬁ- DEfj = Efi (13)
b, is a body force assumed to be independent ai’ ; denotes the components of the dis-

placement vector; the subscript pairs with parentheses denote the symmetric gradients defined
as

UG x) = %(u-c ~+uf (14)




Q denotes the macroscopic domain of interest with bouridafy, ; [and are boundary por-
tions where displacements; and tractiois are prescribed, respectively, such that
rynry=0andl = ,07,;n; denotesthe normal vectorfon .We assume that the inter-
face between the phases is perfectly bonded,[bﬁ.ﬁj] =0 [ast = O at the inter-
face,l’;,, , wheren, is the normal vectorltp,  @nf IS a jump operator.

Clearly, a brute force approach attempting discretization of the entire macro domain with a
grid spacing comparable to that of the microscale features is not computationally feasible.
Thus, a mathematical homogenization method based on the double-scale asymptotic expan-
sion is employed to account for microstructural effects on the macroscopic response without
explicitly representing the details of the microstructure in the global analysis. As a starting

point, we approximate the displacement fieldiS(x) = u;(X, y) , and the damage parame-

ter, w(x) = w(x,y) ,interms of double-scale asymptotic expansior3 s1®

Ui (X, y) = uP(x, y) + qu(x, y) + ... (15)
W(X, y) = 00X, y) + Gl (X, y) + ... (16)
Strain expansions on the composite donfain© can be obtained by substituting (15) into

(9) with consideration of the indirect differentiation rule (2)
g (% y)= —8‘1(x, y) +E (X, ) +cef (X y) + ... (17)

where strain components for various orderg of are given as
& = &y(u°), g = g (ud) +ey(usth), s=01, ... (18)
and
&ij(U%) = UG xy» €yij(US) = UG v (19)
Stresses and strains for different orderg of are related by the constitutive equation (8)

ot = (1-aO)Liji gt (20)

S
of = (1-w O)Lijkied, + Z S~ Wijkef L, s=01... (21)
r=0

The resulting asymptotic expansion of stress is given as




a;; (X, y)~—0‘1(x y) +0R(x,y) + 6o (X, y) +. (22)

Inserting the stress expansion (22) into equilibrium equation (7) and making use of equation
(2) yield the following equilibrium equations for various orders:

O(¢2): oqu =0 (23)

O(¢Y): oqlx o y =0 (24)

0(¢%): ofj’x ,J ¥ +b, =0 (25)
O(cd): oﬁx oﬁ‘”yl =0, s=12.. (26)

We consider theO(¢2)  equilibrium equation (23) first. Pre-multiplying iuBy and inte-
grating over® yields
I uooqly de® =0 (27)

and subsequently integrating by parts gives

I ulajtn drg —I (1- w)u(,y)L”Hu(ky) do = (28)

wherel 5 denotes the boundary®f . The boundary integral term in (28) vanishes due to Y-

periodicity onl 5 , and hence, with the positivitqufkI and the assumptian® [0, 1)
(see Section3), we have

Ei(U?) = Uiy =0 O u? = ul(x) 29)
and
ot (x,y) = gj(x,y) =0 (30)
We proceed to theD(¢™1)  equilibrium equation (24). From (18) and (20) follow
{(1- &)L (5><|<|(UO)""gy|<|(l»'1))},yj =0 on © (31)

To solve for (31) up to a constant we introduce the following separation of variables

ut(%, y) = Hiq(D{ggq(u®) + dii(x)} (32)




whereH,,, is a Y-periodic function. We assume tlaig}(x) is macroscopic damage-induced

strain driven by the macroscopic straig = €,,,(u®) . More specifically we can state that if
€, =0, thendi(x) = 0 andw’(x,y) = 0 . Note that vice versa is not true, i.e., if

di(x) = 0 orw?(x,y) = 0, the macroscopic strafy,  may not be necessarily zero. In (32)

bothH,,, anddy] are symmetric with respect to indikes land

Based on the decomposition given in (32), togg1) equilibrium equation takes the fol-
lowing form:

D 0 0 w D H

5(1_(*) )Lkt [(gimn+ Giamn) Exmn(U®) + GyimnAmn(X)] E =0 in © (33)

1Y
where
1
limn = é(amkanl + 0,1 0m1)s Grimn(Y) = Hkyymn(Y) (34)

and 9., is the Kronecker delta, whi®,,,,, is known as a polarization function. It can be

shown that the integrals of the polarization function®in  vanish due to periodicity condi-
tions. Since equation (33) should be valid for arbitrary macroscopic fields, we may first con-

sider the case oﬂl‘(*f(x) =0 (and® =0 )bgyz0 , which yields the following equation
in ©:

{Lija Camn* Heyymn)} , = 0 (35)

Equation (35) together with the Y-periodic boundary conditions is a linear boundary value
problem in® . By exploiting the symmetry with respect to the indexes n) , the weak

form of (35) is solved for 3 right hand side vectors in 2-D and 6 right hand side vectors in 3-D
(see for example [20][27]).

In the absence of damage, the asymptotic expansion of strain (17) can be expressed in terms of
the macroscopic strag);  as follows

€j = A€+ 0O(q) (36)
where Ay, is termed as the elastic strain concentration function defined as

A = liji t Gijg (37

The elastic homogenized stiffnelgqad follows from 10¢c0) equilibrium equation [18]:




-1 _ 1
Lijki = @I@ I—ijmnAmnkI do = @I@Amnijl—mnsfb‘stkl do (38)
where|©| is the volume of a SHVE.

After solving (35) forH,,, , we proceed to fif,,  from (33). Premultiplying ity and
integrating it by parts with consideration of Y-periodic boundary conditions yields

I@ (1- (*)O)GiiStLiiH (AmrExmn(U®) + Gyymndmn(X)) d© = 0 (39)

from where the expression of the macroscopic damaged induced strain can be shown to be

O agln O
dmn(X) :—Dl'e(l—wo)GijstLijleklmn d@% EJO(]-_U)O)GijStLijkIAkImn d@%ﬁmn (40)

Let @ E{w(ﬂ)(y)};‘ be a set oC! continuous functions, then the damage parameter

wP(x, y) is assumed to have the following decomposition
n
W, y) = 3 wD(y)w(x) (41)
n=1

where PM)(y) is a damage distribution function on the microscale. Rewriting (40) in terms
of strain concentration functiofy;,  and manipulating it with (38) and (41) yield

dr(gn(x) = Dklmn(x)émn (42)
where
0 L) IO ) 0
Dklmn(x) = %klst_ Z Bklst(*)(n)(x)% EZ Cstmn"‘)(n)(x)g (43)
n=1 n=1
_ 1, - _
.(JTJ = @('—ijmn—Lijmn) IOLIJ(”)Gstanstqupqm do (44)
1,r = _
I(JT(? = @(Lijm“_l‘iimn) Iew(n)Gstanstququl do (45)
o 1
Liimn = = Liim, dO 46
jmn |@|IO ijmn (46)

In conjunction with (32) and (42), the asymptotic expansion of strain field (17) can be finally
cast as




€;(%Y) = Ajjmn(MEmn(X) + Gjji; (V) Dymn(X)€mn(X) + O(C) (47)

where Giji (y) can be interpreted as a damage strain influence function. Note that the

asymptotic expansion of the strain field is given as a sum of mechanical fields induced by the
macroscopic strain via elastic strain concentration function and thermodynamical fields gov-

erned by damage-induced straidg(X) = Dy n(X)€mn(X)  , through the damage strain
influence function.

Finally, we integrate theO(¢%)  equilibrium equation (25) o@r . ]‘h@,} ydO term

vanishes due to periodicity and we obtain:

0 dol = i 0
EIOL[ 0j; d@ +b, =0 in (48)

Substituting the constitutive relation (20) and the asymptotic expansion of the strain field (47)
into (48) yields the macroscopic equilibrium equation

q@u- (1-w )L|Jk| (Aklmn mnt lemn n) deaxj + bi =0 (49)

If we define the macroscopic stress as

0 = @I@GO do (50)

then the equilibrium equations (48) and (49) can be recast into more familiar form:
5ij,xj +b, =0 and (Lijmnémn)’xj +b, =0 (51)

whereL;,, is an instantaneous secant stiffness given as

o (,o(ﬂ)
Lijmn - %‘iﬂd _I Y I—ust’A‘stkIdeDE(IkImn+Dklmn)
n=

[ " w(n) -
_%—ijkl I WL d@DEDklmn

n—l (52)
3.0 Nonlocal Damage Model for Multi-phase Materials
Accumulation of damage leads to strain softening and loss of ellipticity. The local approach,

stating that in the absence of thermal effects, stresses in a material at a point are completely
determined by the deformation and the deformation history at that point, may result in a phys-




ically unacceptable localization of the deformation [6]. The principal fault of the local
approach, as indicated in [5][6][8], is that the energy dissipation at failure is incorrectly pre-
dicted to be zero and the corresponding finite element solution converges to this spurious solu-
tion as the mesh is refined. To remedy the situation, a number of approaches have been
devised to limit strain localization and to circumvent mesh sensitivity associated with strain
softening [16]. One of these approaches is based on the nonlocal damage theory [5], [8], the
essence of which is to smear solution variables causing strain softening over the characteristic
volume of the material. For other forms of localization limiters including introduction of
higher order gradients, artificial (or real) viscosity and elements with embedded localization
zones we refer to [5], [10]-[13], [21]-[26], [40].

Following [6] and [8], the nonlocal damage parameigx) is defined as:
_ 1
W(x) = = 0(y)w’(x,y) d® (53)
\OC\.[OC

whered(y) is a weight functiol®. is the characteristic volume,Jand is the characteristic
length, defined (for example) as a radius of the largest inscribed spt@ge in . The character-
istic length |~ is related to the size of the material inhomogeneity [8], whigreas - the radius

of the largest inscribed sphere@ - primarily depends on the distribution and interaction of
inclusions and discrete deffects [9], [39]. Several guidelines for determining the value of char-
acteristic length have been provided in [7] and [4@].  , as indicated in [8], is usually smaller

than |, in particular for random microstructures. In the present manuscript, we define the

Representative Volume Element (RVE) as the maximum between the statistically homoge-
neous volume element, for which the local periodicity assumption is valid, and the character-
istic volume. Schematically, this can be expressed as

leve = max b, 1o} (54)

wherelg, ¢ denotes the radius of the largest inscribed sphe®g i

We further assume that the microscopic damage distribution funaidn(y) introduced in
(41) is a piecewise function, i.e., it is continuous within the domain of microphase,

©(M) 0 e, O O, but vanishes elsewhere, i.e.

(n) if v om
gy = 2o iTyDet (55)
0o otherwise

WhereilO(ﬂ) =0 andO@M oM =0Ofor A#2n, n=1,2,...,n ;n isthe product

of the number of different microphases and the number of characteristic volumes in RVE;

wM(y) is a distribution function; g(M)(y) is &  continuous function @M ; and

10



w(M(x) is a macroscopically variable amplitude. Figure 2 illustrate two possibilities for
construction of RVE in a two-phase medium: one for random microstructure where RVE typi-
cally coincides with SHVE, and the other one for periodic microstructure, wpere |, and

are of the same order of magnitude.

\
(a)N Characteristic

Volumes

Figure 2: Selection of the Representative Volume Element

We further define the weight function in (53) as

o (y) = uMy(y) (56)

where the constani(n)  is determined by the orthogonality condition
B0 N (y)g(y) do = & AN =12..n 57
‘@C‘J-ch (y)g (y) )\r] ’ !r] 3 &y oy ( )
and 5An is Kronecker delta. Substituting (41) and (55)-(57) into (53) yields
a0 = L1 (g ()Y (x) do = @ (x) 8)
1Oc[Jec

which provides the motivation for the specific choice of the weight function. It can be seen
that w(M) has a meaning of the nonlocal phase damage parameter.

The average strains in each subdomain in RVE are obtained by integrating (4®(®ver
_ 1 _ _ _
eV = gl 90 = ARIE * GIH Dimimn* O(C) (59)

where

11



m _ _1
AVl = = A.. dO
ijkl |@(ﬂ)|f@(n) ijkl d (60)

(n _ 1 .
Gljk| |@(ﬂ)|f@(n)G'Jk| do (61)

To construct the nonlocal constitutive relation between the phase averages we define the local
average stress i®(M)  as:

(n) = _1 0 do 2
i |@(n)|I@<n)0” d (62)

By combining (21), (41), (55), (59)-(61) we get

oV = (lgmn=@WNER I LIS (63)
where
N{hn = (ALY, + C_;Ig?p)quqst) AN+ Gr(r?r?ijDijst)_l (64)
Ai(jrll? = mjem)g(n)p‘ijkl do (65)
Gi(m = ﬁf@m)gm)G”k' do (66)

The constitutive equation (63) has a nonlocal character in the sense that it represents the rela-
tion between phase averages. The response characteristics between the phases are not smeared
as the damage evolution law and thermomechanical properties of phases might be consider-
ably different, in particular when damage occurs in a single phase.

For the isotropic strain-based damage model adopted in this paper, the phase free energy den-
sity corresponding to the nonlocal constitutive equation (63) is given as

)e(n) (67)

kImn. n<ij

_1
w(n)(w(n), gi(Jn)) = é(|klmn_(,o(n)N(lr]) )Li(jrﬂ(?gr(g
and the corresponding nonlocal phase damage energy release rate can be expressed as

L emedm (68)

12



4.0 Nonlocal Piecewise Constant Damage Model for Two-Phase
Materials

As a special case we consider a composite material consisting of two phases, matrix and rein-

forcement, denoted bP(™  an@®  such tigat= (M 0 o) . Supersampts  f and
represent matrix and reinforcement phases, respectively. For simplicity, we assume that dam-

age occurs in the matrix phase only, i) =0 . The volume fractions for matrix and rein-

forcement are denoted ag™ avid , respectively, suctvifbt v = 1 . The overall
elastic properties are given as in [17]

Lijg = VML A +vOLO A (69)

ijmin ijmn

To further simplify the matters, we define the microscopic damage distribution function
P (y) (41) as a piecewise constant function

(11 if yJ o)
(n) =0 (70)
V) o otherwise

The corresponding weight function becomes piecewise constant function with
um = [@m]/|e¢ . A piecewise constant approximation of damage distribution has been
also considered in [32].

Since damage in the reinforcement phase is neglected, the average strains in the matrix and
reinforcement can be written as:

) = A+ GIIDI Ema* O, = m,f &
where
gt
(m _
Dklmn - Elklpq_B(krIT;))qw(m)E ng)mnw(m) (72)
M = L (Cimn=Lim) ™[ G LeoGoay dO 73
ijkl ~ ‘@(n)‘ Imn=EImng ) g stmn-stpq~pakl (73)
(n) _ -1
Cil = ‘ ()\(L”mn Fimr) @(n)Gstanstpq(Iqul+qukl) d® (74)

The corresponding nonlocal phase stresses (63) are given as

Gi(jﬂ) = (1- oo(”))L( a )+O(C) n=m,f (75)

13



and the overall stresses defined in (50) reduce to
aij = V(m)o'i(Jm) + V(f)o'i(Jf) (76)

The nonlocal energy release rate and the energy dissipation inequality in (67) and (68) become

(m = 1
Y = SLiee( &
YMe{™ > 0 (78)
The nonlocal isotropic damage state variatf&” is assumed to be a monotonically increas-
ing function of nonlocal phase deformation history paramete? [15][26][28][29][42],

which characterizes the ultimate deformation experienced throughout the loading history. In
general, the evolution of matrix damage at time can be expressed as

wM(x, t) = f(k(M(x, 1)) (79)

The nonlocal phase deformation history parame¢&P) is determined by the evolution of

nonlocal phase damage equivalent strain, denoté_h‘@y , as follows

k(M(x,t) = max ™ (x, 1)|(t < t), k(M} (80)

where the threshold value for damage initiation in the mat«ﬁ?‘,) , represents the extreme

value of the equivalent strain prior to the initiation of damage. Equation (80) can be also
expressed by the Kuhn-Tucker relations

kM=0, §M_kM<o gMEM_kM)=0 (81)

In the present manuscript the nonlocal phase damage equivalent sﬁ?g?n, , iIs defined as
square root of the nonlocal phase damage energy release rate [42]

§(M = M = /%Li(er?I) e"el” 82)

Since Li(jfl) is a positive definite fourth order tensor, it follows th&f > 0 . Consequently,

the nonlocal phase energy dissipation inequality (78), together with the definition of damage
evolution (79), yield

(m)
M= gmIAK (X 1) Ka X 1) >0 (83)

()
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Combining this inequality with Kuhn-Tucker relations, we arrive at the following two conclu-
sions: 1) the damage evolution lavi(k(M(x,t)) is an increasing function of
(m)
kM O™, k{™M]  since %’;—tn >0 , wherek(™ s the ultimate equivalent
K
strains at rupture; and 2) the damage evolution condition can be expressed as

if 9(M_k(M =0, kM>0 O damage process’™ >0 (84)

if 3™ _kM<o orif 3M-_xkM=0,kM=0 O elastic processe™ =0 (85)

In accordance with the above thermodynamic considerations, it is possible to construct an
appropriate damage evolution law. An extensive review of a variety of damage evolution law

has been reported in [26]. In the present manuscript we propose an arctangent form of evolu-
tion law to ensure regularity of the tangent stiffness matrices in almost completely damaged
state

(m)

atan%} % — BE+ atan(p)

o™ (a, B, w™, kM, k(M) = ™ — 0 =0 (86)
5+ atar(p)

where a, 3 are material parameters; anéi“) denotes the threshold of the strain history
parameter beyond which the damage will develop very quickly. For simplicity, we set

Ki(m) = 0. From (86), it can be seen thap™ O [0, 1) ensures (29) to be the necessary

and sufficient conditions for (28). Furthermore, this evolution law accounts for initial microc-
racks which are often present in ceramic composites.

5.0 Computational issues

In this section, we describe computational aspects of the nonlocal piecewise constant damage
model for two-phase materials developed in Section 4.0. Due to the nonlinear character of the
problem an incremental analysis is employed. Prior to nonlinear analysis elastic strain concen-

tration factors, Ay, (y) , are computed using (35), (37) by either finite element method or if

possible by analytically solving an inclusion problem. Subsequently, nonlocal phase elastic

strain concentration factorAi(jrB n(= m, f )and damage strain concentration f&-ﬁrs

are precomputed using (60) and (61), respectively.

The stress update (integration) problem can be stated as follows:

Given: displacement vectqu,, ; overall stra&y,, ; strain history parama‘fgp ; damage

parameter,w™ : and displacement incremiaf, calculated from the finite element analy-

15



sis of the macro problem. Here left subscript denotes the increment stap.at€., is the

variable in the current increment, whereas is a converged variable from the previous
increment. For simplicity, we will omit the left subscript for the current increment, i.e.,
U =Ftead

Find: displacement vectar, =, Uy ; Overall stra@p, ; nonlocal phase streﬁﬁ# and
ar(f])n; nonlocal strain history parametm‘m) : nonlocal phase damage parani&ter ; over-
all stresso,,, and nonlocal phase stressg® fid

The stress update procedure consists of the following steps:

i.) Calculate macroscopic strain incremem{¢,, = Au,, ) , and then update macroscopic

strains through€,,, = Emn+ A, .
ii.) Compute the damage equivalent str&if defined by (82) in ternesBf € and

iii.) Check the damage evolution conditions (84) and (85). Notexti4t is defined by (80)

and kK™ s integrated asak™ = k(M _ k(M

If damage process, i.e3™ > k™ thenk(™ = §M and update forw(™

Sinced™ s governed by the current average strains in the matrix phase, which in turn
depend on the current damage parameter, it follows that the damage evolution law (86) is a

nonlinear function ofw(™ . Using Newton’s method, we construct an iterative process for
the damage parameter:

(m) =1
k+1,(m) — k. y(m)_ 0P 07 p(m)
W W™ -t ) ‘kw(m) 87)
The derivative in (87) can be evaluated by (71), (82), (86) as
k(M 5 (M)
0™ _ 0 "M
S LT (88)

(12 + atan(PB)) EE(K&”‘))Z +(a§™_ BKgm))ZE

where
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os™ 1

(M) ~(M) (M) -
Som — Eti(jm)l‘ijkl GistRstmrEmn (89)
with
-2
R = (stpq— Bt ™) Chamn (90)
Otherwise for elastic process)™ = (™
vi.) Update the nonlocal strainsl((r,n) aaﬂ) using (71) and update the nonlocal strain his-
tory parameterx(™ in (80).
v.) Update macroscopic stresseg defined by (76) and calculate nonlocal phase stresses

o{™ andaf’ using (75).

To this end we focus on the computation of a consistent tangent stiffness matrix needed for the
Newton method on the macro level. We start by substituting (71) into (75) and then taking the

material derivative of the incremental form of (75) in the matrix domaimie.m

o{™ = P{M &+ Qi & ™ (91)

where
Plin = (1-™)LINAGR, + GO ©2)
QM = (1-w™)L{K GHoR I~ LU (AN + GEDD ) (93)

In order to obtain™ | we take the material derivative of damage evolution law (86),

o™ = 0, and make use of (75), (82), and (88), which yields
@™ = —-gMmae(m (94)
where
O = vefp (95)

andy is a scalar given as
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-1
y = B~ (D(m))(T[/2+atar(B))[(K(m)) + (a9 _pr(m)® 2 a9 Mg (m)%
0 0

a Kém)

23(M (96)

Substituting (94) into (91) and manipulating the indices, we get the following relation
between the rate of overall strain and nonlocal phase stresses in the matrix domain

G(m) = 0 |(Jm)némn O7)
where
O |Jrr?1n - (6|k6 + Di(Jm) Igm)tast) F)klmn (98)

By using Sherman-Morrison formula (98) reduces to

O ogm
TR L . (99
O 1+ D I(jm)QIjSt stD

A similar result relating the rate of the nonlocal reinforcement stress and the overall strain
rate, can be obtained by substituting (71) into (75) and then taking the material derivative of
(75) in the reinforcement domain:

G(f) =0 |(J]21némn (100)
where
fy _— f
O |(Jr21n - Pﬁ%n Ql(st)t‘c'stD (m)D Ign)n (101)
and
fy _ f f
Pin = L (Al * L&D (102)
f f f
QI(jS)t = Ll(JIzIG(kI)mnREnnRst (103)

Finally, the overall consistent tangent stiffness is constructed by substituting (97) and (100)
into the rate form of the overall stress-strain relation (76)

Oij = Uijmn€mn (104)

0. = yimQ i(Jlr;];)n +vH[O ﬁf% N (105)

ijmn
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6.0 Numerical Examples

6.1 Qualitative Examples for Two-phase Fibrous Composites Under Uniaxial Loading

The first numerical example is aimed at qualitative study of the behavior of the proposed non-
local piecewise constant damage model for two-phase materials. We consider a macro domain
in the shape of a block discretized with a single brick element and a periodic fibrous micro-
structure as shown in Figure 3. The block is subjected to the state of constant macro-strain
field in the axial (parallel to the fibers) and transverse (normal to the fibers) directions. The
axial direction is aligned along the Z axis whereas the two transverse directions coincide with
the X and Y axes. The phase properties of microconstituents are as follows:

Matrix: Volume fraction =0.733 ; Young's modulus69GPz ; Poisson’s rati0.33
Fiber: Volume fraction =0.267 ; Young’s modulus3¥9GP: ; Poisson’s ratibh24

The parameters of the damage evolution law are chosea as8.2 [ = 10.2 and
K(()m) = 0.05. The corresponding damage evolution law is depicted in Figure 4.

Figure 3: Finite Element Mesh of the RVE for Fibrous Microstructure

The uniaxial stress-strain curves for the axial and transverse tension problems are illustrated in
Figures 4 and 6, respectively. Figure 5 shows a rapid loss of stiffness as the damage in the
matrix phase accumulates and in the limit as the matrix material is completely damaged the
axial loading capacity of composite is provided by the fiber only. Our numerical model is in

good agreement with the limit solution which givedim 055 = vD E(f)€33 . Results of the
o™ - 1.0

transverse tension problem are shown in Figure 6. It can be seen that when the matrix is totally

damaged, it fails to transfer the load into the fiber and consequently, the entire load carrying

capacity of the fiborous composite is lost in the transverse direction(,l)i'r.\e. 0,,=0 . In
o™ 1.0

both figures, we also demonstrate the evolution of the damage parameter in the matrix phase.

Referring back to the damage evolution curve shown in Figure 4, it can be seen that the sud-

den drop in load carrying capacity in both axial and transverse directions occurs when the

damage parameter reached” = 0.1 beyond which the damage parameter grows sharply.
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6.2 4-Point Bending Problem for Woven Composite

We next consider a 4-point bending problem carried out on a composite beam made of Black-
glas’M/Nextel 5-harness satin weave as shown in Figure 7. The fabric designs used 600 denier
bundles of NextéM 312 fibers, spaced at 46 threads per inch, and surrounded by Black-
glas™ matrix material. The bundle is assumed to be linear elastic throughout the analysis.
The average transversely isotropic elastic properties were computed by the Mori-Tanaka
method. We will refer to this material system as AF10. The micrograph in Figure 7 was pro-
duced at Northrop-Grumman [14]. In this set of humerical examples, the nonlocal piecewise
constant damage model is employed and we assumigthat 1, = I . The phase proper-

ties of RVE are summarized below:

Blackglas™ Matrix: volume fraction =0.548 ; Young's modulus 9.653GPa ;
Poisson’s ratio ©.244 .

Nextel™ 312 Fiber: volume fraction 8.452 ; Young's modulus151.7GPa ;
Poisson’s ratio .26 .

The microstructure of RVE is discretized with 6857 elements totaling 10608 degrees of free-
dom as shown in Figure 8. The issues of the automatic extraction, construction and linking of
the geometry and attributes, automatic construction of matched meshes have been described in
[47]. The configuration of the composite beam is shown in Figure 9 where the loading direc-
tion (normal to the plane of the weave) is aligned along the Y axis. The finite element model
of the beam (macrostructure) is composed of 1856 brick elements totaling 7227 degrees of
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freedom. Figure 10 depicts the damage evolution law for Blackflasatrix witha = 7.1,

B =10.1and K(()m) = 0.22, which are calibrated to the tensile and shear test data.

Comparison between tensile test data and the numerical simulation for the uniaxial tension is
shown in Figure 11. It can be seen that the ultimate experimental stress/strain values in the

uniaxial tension test are, = 150+ 7MPa  and, = 25x10°+ 0.3<10° , while the

numerical simulation gives,, = 152MPa a}, = 3.2x10°

Numerical simulation results as well as the test data for 4-point bending problem are shown in
Figures 12 and 13. Experiments have been conducted on five identical beams and the scattered
experimental data of force versus the displacement at the point of load application in the beam
are shown by the gray area in Figure 12. It can be seen that the numerical simulation results
are in good agreement with the experimental data in terms of predicting the overall behavior
(Figure 12) and the dominant failure mode. Both numerical simulation and experimental data
predict that the dominant failure mode is tension/compression (so-called bending induced fail-
ure). Figure 13 illustrates the distribution of the damage parameter in the composite beam at
the peak load (Point A in Figure 12).

To this end we note that since bundles have been modeled as linear elastic spurious increase
in load carrying capacity of the weave in the in-plane tension/compression eventually takes
place. Remedies are discussed | Section 7

S | ;

Figure 7: Blackglas M/Nextel 5-harness Satin Weave
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Figure 8: Microstructure of AF10 Woven Composites

6.4

)\

%,
e

oo AN
N
AN
AT
AN
ANRRSAN
ORI
WNNAN
QUOXANONN
N AN
0%5»000 AN
AR
SN

Figure 9: Configuration and FE Mesh of 4-Point Bending Problem
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7.0 Summary and future research directions

A nonlocal damage theory for brittle composite materials based on double scale asymptotic
expansion of damage has been developed. A closed form expression relating local fields to
the overall strains and damage has been derived. The concept of nonlocal phase fields (stress,
strain, free energy density, damage release rate, etc.) has been introduced via weighting func-
tions defined over the microphase. Numerical results revealed an excellent performance of the
method.

The present work by no means represents a complete account of all theoretical and numerical
issues related to damage in composites and we apologize if some important works have been
omitted. We note that the assumptions of periodicity and uniformity of macroscopic fields,
which are embedded in our formulation, may yield inaccurate solutions in the vicinity of
boundary layers. The remedies to this phenomenon range from changing the RVE size [2] to
carrying out an iterative global-local analysis [37], [38], [33], [24], [25]. Moreover, various
failure modes other than matrix cracking, such as damage at the interface and in the bundle
domain, coupled plasticity-damage effects, different responses in tension and compression
have not been accounted for in the present manuscript. These are just few of the issues that
will be investigated in our future work.
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