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Abstract: A dispersive model is developed for wave propagation in periodic heterogeneous media. The
model is based on the higher order mathematical homogenization theory with multiple spatial and temporal
scales. A fast spatial scale and a slow temporal scale are introduced to account for the rapid spatial fluctua-
tions as well as to capture the long-term behavior of the homogenized solution. By this approach the prob-
lem of secularity, which arises in the conventional multiple-scale higher order homogenization of wave
equations with oscillatory coefficients, is successfully resolved. A model initial/boundary value problem is
analytically solved and the results have been found to be in good agreement with a numerical solution of the
source problem in a heterogeneous medium.

1. Introduction

   When a wavelength of a traveling signal in a heterogeneous medium is comparable to the
characteristic length of the microstructure, successive reflection and refraction of the
waves between the interfaces of the material lead to significant dispersion effect (see for
example [1][2][3]). This phenomenon cannot be predicted by the classical homogenization
theory and thus prompting a significant interest in the scientific community in attempt to
develop a dispersive effective medium theory. 

   The use of multiple-scale expansions as a systematic tool of averaging for problems
other than elastodynamics can be traced to Sanchez-Palencia [5], Benssousan, Lions and
Papanicoulau [6], as well as Bakhvalov and Panasenko [7]. The role of higher order terms
in the asymptotic expansion has been investigated in statics by Gambin and Kroner [8],
and Boutin [9]. In elastodynamics, Boutin and Auriault [10] demonstrated that the terms
of a higher order successively introduce effects of polarization, dispersion and attenuation.

   There is a substantial number of articles utilizing multiple-scale homogenization tech-
niques for wave propagation problems in periodic media. Most often, a single-frequency
time dependence is assumed prior to the homogenization [11]. A notable exception is a
recent article of Fish and Chen [12], which investigated the initial/boundary value problem
with rapidly varying coefficients by employing the multiple-scale homogenization tech-
nique. They showed that while higher order terms are capable of capturing dispersion
effects, they introduce secular terms which grow unbounded with time. When the observa-
tion time is small, higher order terms introduce the necessary correction to the leading
order term capable of resolving the dispersion effect. However, as the time window
increases, the higher order terms become close to or larger than the leading order term
owing to the existence of secularity. In this case, the asymptotic expansion breaks down as
it ceases to be valid. To our knowledge, the present manuscript represents a first attempt to
resolve the problem of secularity within the framework of the multiple-scale analysis for
wave propagation in composites.
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   For dynamic problems, described by hyperbolic differential equations, there are at least
four scales involved: (1) the scale of the microstructure, (2) the scale of the macrostruc-
ture, (3) the shortest wavelength of the signal traveling in the media, and (4) the time scale
of observation. The dispersion phenomena become prominent when the time window is
large. Therefore, in order to properly model the dispersion effect, it is desirable to con-
struct uniformly valid asymptotic expansions.

    The primary objective of the current manuscript is to study the problem of secularity
introduced by the higher order multiple-scale approximation of the initial/boundary value
problem in periodic heterogeneous media. We first consider fast spatial-temporal scales in
addition to the usual space-time coordinates. The resulting unit cell problem is shown to
be hyperbolic giving rise to fast time dependence of the solution in the unit cell domain,
while the resulting macroscopic equation is the same as in the classical multiple spatial
scale analysis and thus failing to resolve dispersion effects. The main contribution of the
present paper is given in Section 3.2, where we introduce both fast spatial scale aimed to
account for rapid spatial fluctuations of material properties and a slow temporal scale des-
ignated to capture the long-term behavior of the homogenized solution. The resulting mac-
roscopic equations of motion are solved analytically in Section 4 for an illustrative initial/
boundary value problem.

2. Problem Description

   We consider wave propagation normal to the layers of a periodic elastic bilaminate with

 as the characteristic length (see Figure 1). The governing elastodynamics problem is

stated as

(1)

with appropriate boundary conditions on the domain boundary and initial conditions

,    (2)

where  represents the displacement field;  and  are the mass density

and elastic modulus, respectively;  and  denote differentiation with respect to x

and time, respectively; and  in (1) is used to express a rapid spatial variation of
material properties.

    The goal is to establish an effective homogeneous model in which the local fluctuations
due to the heterogeneities do not appear explicitly and the response of the original hetero-
geneous material can be approximated by the response of the effective homogeneous
medium. This is facilitated by the method of multiple-scale asymptotic expansion.

Ω

ρ x ε⁄( )u tt; E x ε⁄( )u x;[ ] x;– 0=

u x 0,( ) f x( )= u t; x 0,( ) g x( )=

u x t,( ) ρ x ε⁄( ) E x ε⁄( )
( ) x; ( ) t;

0 ε 1«<
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3. Asymptotic Analysis with Multiple Spatial and Temporal Scales

   Under the premise that the composite macro reference length  (  the mac-

roscopic wavelength) [10][17] is much larger than the unit cell dimension , i.e.

, where  and c are the circular frequency, wave number
and phase velocity of the macroscopic wave, respectively, it is convenient to introduce a
microscopic spatial length variable y such that

(3)

   In addition to the fast spatial variable, we will consider various time scales

(4)

where m is an integer. Since the response quantities u and  depend on x, , t, and

, a two-scale asymptotic expansion is employed

 ,    (5)

   The homogenization process consists of inserting the asymptotic expansions (5) into the
governing equation (1), identifying the terms with the equal power of , and then solving
the resulting problems.

   Following the aforementioned procedure and replacing the spatial derivative  by

 and the time derivative  by , we obtain a series of

equations in ascending power of  starting with . 

3.1 Fast Spatial-Temporal Scales

   This case corresponds to . The two time scales are related by

Figure 1: A bilaminate with periodic microstructure
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∑= σ x y t ξ, , ,( ) ε iσi x y t ξ, , ,( )
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(6)

   At , we get

(7)

   from where it can be easily shown that  is independent of y and  and thus

(8)

    For  equation we get

(9)

   Owing to linearity of the above equation, the solution of  can be sought in the form 

 (10)

   Substituting (10) into (9) yields

(11)

   Consider the unit cell in Figure 1. The cell domain consists of subdomains  and

, occupied by materials tagged by superscripts 1 and 2, respectively, such that

 ,      (12)

where  is the volume fraction of the unit cell;  is the unit cell domain in the

stretched coordinate system y, such that . Since material properties are piece-
wise constant over the unit cell, equation (11) can be written as

          ,      (13)

where 

,      (14)

   The boundary conditions for the unit cell problem described by (13) are:

                 (a) Periodicity:         ,                          

(b) Continuity:        ,                                    (15)

ξ t ε⁄ η= =

O ε 2–( )

ρ y( )u0 ηη, E y( )u0 y,[ ] y,– 0=

u0 η

u0 U0 x t,( )=

O ε 1–( )

ρ y( )u1 ηη, E y( ) u0 x, u1 y,+( )[ ] y,– 0=

u1

u1 x y t η, , ,( ) U1 x t,( ) M y η,( )u0 x,+=

ρ y( )M ηη, E y( ) 1 M y,+( )[ ]–
y, 0=

A
1( )

A
2( )

A
1( )

y[= 0 y αΩ̂ ]< < A
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Mj ηη, cj
2
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where  is the jump operator and 

,       (16)

   Substituting (10) into (15) gives

,    (17)

,    (18)

   For simplicity, initial conditions are taken as

,      (19)

   We solve the unit cell problem defined by equations (13) and (17)-(19) using the method
of Laplace transform. Taking the Laplace transform of (13) with respect to  and using
the initial conditions (19) yields

,      (20)

where  is the Laplace transform of . The general solution of (20) is

,    (21)

where , ,  and  are constants to be determined by the boundary conditions. Tak-

ing the Laplace transform of the boundary conditions (17) and (18), and substituting (21)
into the transformed boundary conditions yields

                                       

                 

                   

 

(22)

[ ]
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   Solving (22) for constants , ,  and , and substituting the result into (21)

yields

,      (23)

where

        (24)

         (25)

,     ,     (26)

,     ,     (27)

(28)

,     (29)

(30)

    can be obtained by taking the inverse Laplace transform of (23), i.e. 

,    (31)

   In order to evaluate the above integrals, we first find the singular points of the integrands.
Using the hyperbolic identity

(32)

    can be written as

(33)

where
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  e
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  2
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, (34)

,       (35)

   Therefore, the singular points of the integrands in (31) are the high-order pole at 

and the simple poles obtained from  and  (excluding ). The

roots  and ,  are symmetrically located.

   In order to evaluate the residues of the integrands at , we expand both numerators
and denominators of the integrands into Laurent series [18][19] and apply the binomial
theorem to the denominators assuming the value of s is very small. The residues are then
the coefficients of  in the Laurent expansions. The residues of the integrands at

 are given as

 (36)

(37)

   The residues at simple poles are evaluated as

       (38)

       (39)

   In the above two equations, we have exploited the fact that  and  

are roots of  and , respectively.

   Based on the theory of residues, the integrals in (31) can be evaluated as

     (40)
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 
 
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   which can be further expressed as

   

        (41)

    

          (42)

where

               

(43)

       

(44)

           

(45)

          

(46)

   From the solutions of (41) and (42) it can be observed that  consists of two
parts. The first part is fast time independent whereas the second part is fast time depen-
dent. 

   Finally, for  equation, we get:
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∞
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∞
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2λ y αΩ–( )

αΩ̂
-----------------------------sin+sin

W2 λ( ) 2λ( ) 1–cos[ ]
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----------------------------sin

2µλ y αΩ–( )
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(47)

   For a -periodic function , we define an averaging operator

(48)

   Applying the averaging operator to (47) and making use of the solution for , we arrive

at

(49)

   We assume that fast time average

(50)

exists and is finite. Following Francfort [14], we suppose that

 (51)

exists and is finite, where  is the Laplace transform of  with respect to the fast time .

Taking the Laplace transform of (49) with respect to  and performing the averaging in

the fast time, we get the macroscopic equation of motion at :

(52)

where

,      (53)

   We conclude that the macroscopic equation of motion at  is non-dispersive. Pro-
ceeding with the derivation of the higher-order terms reveals that the fast time dependence

of the displacement field introduces secular terms at  and higher.

3.2 Fast Spatial and Slow Temporal Scales

   In this section we introduce a fast spatial scale to account for the rapid spatial fluctua-
tions of material properties and a slow temporal scale to capture the long-term behavior of
the homogenized solution. We set , i.e.

(54)

ρ y( ) u0 tt, 2u1 tη, u2 ηη,+ +( ) E y( ) u0 x, u1 y,+( )[ ] x,– E y( ) u1 x, u2 y,+( )[ ] y,– 0=

Ω̂ g g x y t ξ, , ,( )=

g〈 〉 1

Ω̂
------- g x y t ξ, , ,( ) yd

Ω̂

∫=

u1

ρ y( )〈 〉u0 tt, ρ y( )u2 ηη,〈 〉 E y( ) 1 M y,+( )〈 〉u0 xx,–+ 0=

1
T
--- ui

0

T

∫
T ∞→
lim x y t η, , ,( )dη

sui
s 0→
lim

ui ui η

η
O 1( )

ρ0u0 tt, E0u0 xx,– 0=

ρ0 ρ〈 〉 αρ1 1 α–( )ρ2+= = E0

E1E2

1 α–( )E1 αE2+
----------------------------------------=

O 1( )

O ε2( )

m 2=

ξ ε2
t τ= =
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   At , we have

(55)

   The general solution to the above equation is

(56)

where  and  are integration constants. Due to periodicity of 

 vanishes, implying that the leading-order displacement depends only on the

macroscale, i.e.

(57)

   At the next order , the perturbation equation is

(58)

   Due to linearity, the general solution of  becomes

(59)

   Substituting (59) into (58) yields

(60)

   Equation (60) together with the periodicity and continuity conditions of  and  over

the unit cell domain as well as the normalization condition  define the

the unit cell boundary value problem from which  can be uniquely determined

,   (61)

   It is interesting to note that  is the same as the fast time independent part of 
in the previous section.

   At , the perturbation equation is

(62)

   Applying the averaging operator defined in (48) to the above equation and taking into
account periodicity of , we get the non-dispersive macroscopic equation of motion

O ε 2–( )

E y( )u0 y,[ ] y, 0=

u0 a1 x t τ, ,( ) 1
E y( )
----------- y a2 x t τ, ,( )+d

y0

y0 y+

∫=

a1 x t τ, ,( ) a2 x t τ, ,( ) u0

a1 x t τ, ,( )

u0 u0 x t τ, ,( )=

O ε 1–( )

E y( ) u0 x, u1 y,+( )[ ] y, 0=

u1

u1 x y t τ, , ,( ) U1 x t τ, ,( ) N y( )u0 x,+=

E y( ) 1 N y,+( )[ ] y, 0=

u1 σ0

u1 x y t τ, , ,( )〈 〉 0=

N y( )

N1 y( )
1 α–( ) E2 E1–( )
1 α–( )E1 αE2+

----------------------------------------- y
αΩ
2

--------–= N2 y( )
α E1 E2–( )

1 α–( )E1 αE2+
---------------------------------------- y

1 α+( )Ω
2

-----------------------–=

N y( ) M y η,( )

O ε0( )

ρ y( )u0 tt, E y( ) u0 x, u1 y,+( )[ ] x,– E y( ) u1 x, u2 y,+( )[ ] y,– 0=

σ1
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which is identical to equation (52). In order to capture the dispersion effect, we proceed to
higher order terms.

3.2.1  homogenization

   Higher order correction, , can be determined from  perturbation equation (62).

Substituting (59) and(52) into (62), yields

(63)

   Linearity suggests that  may be sought in the form

(64)

   Substituting the above expression into (63) yields

(65)

   The boundary conditions for the above equation are: periodicity and continuity of 

and  as well as the normalization condition . Here we only provide

general ideas. For detailed solution of the unit cell boundary value problem, we refer to
[12]. Once  is found, we can calculate

,    ,    (66)

   Consider the equilibrium equation of :

(67)

   Applying the averaging operator to the above equation, exploiting the periodicity of 

and making use of (66), we arrive at

(68)

3.2.2  homogenization

   Substituting (59), (64) and (68) into  equilibrium equation (67) yields

           

(69)

   Due to linearity of the above equation, the general solution of  is as follows

O ε( )

u2 O ε0( )

E y( ) u2 y, U1 x, Nu0 xx,+ +( )[ ] y, E0 ρ y( ) ρ0⁄ 1–[ ]u0 xx,=

u2

u2 x y t τ, , ,( ) U2 x t τ, ,( ) N y( )U1 x, P y( )u0 xx,+ +=

E y( ) N Py,+( )[ ] y, E0 ρ y( ) ρ0⁄ 1–[ ]=

u2

σ1 u2 x y t τ, , ,( )〈 〉 0=

P y( )

ρN〈 〉 0= E N Py,+( )〈 〉 0= E u1 x, u2 y,+( )〈 〉 E0U1 x,=

O ε( )

ρ y( )u1 tt, E y( ) u1 x, u2 y,+( )[ ] x,– E y( ) u2 x, u3 y,+( )[ ] y,– 0=

σ2

ρ0U1 tt, E0U1 xx,– 0=

O ε2( )

O ε( )

E y( ) u3 y, Pu0 xxx, NU1 xx, U2 x,+ + +( )[ ] y, E0 ρ y( ) ρ0⁄ 1–( )U1 xx, +=

E0Nρ y( ) ρ0⁄ E y( ) N Py,+( )–[ ]u0 xxx,

u3
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(70)

   Substituting the above expression into (69) gives

(71)

   The above equation, together with the periodicity and continuity of  and  over the

unit cell domain as well as the normalization condition , fully deter-

mines . After  is solved for, we can calculate

(72)

(73)

   Finally, consider the equilibrium equation of :

(74)

   Applying the averaging operator to the above equation, taking into account the periodic-
ity of  and making use of (72) and (73) lead to

(75)

where

(76)

 characterizes the effect of the microstructure on the macroscopic behavior. It is propor-

tional to the square of the dimension of the unit cell . Note that for a homogeneous mate-

rial,  or , and in the case of impedance ratio ,  equal

to one,  vanishes. 

   Remark 1: In absence of slow time scale, the macroscopic equation of motion at  is

(77)

u3 x y t τ, , ,( ) U3 x t τ, ,( ) N y( )U2 x, P y( )U1 xx, Q y( )u0 xxx,+ + +=

E y( ) P Qy,+( )[ ] y, E0Nρ y( ) ρ0⁄ E y( ) N Py,+( )–=

u3 σ2

u3 x y t τ, , ,( )〈 〉 0=

Q y( ) Q y( )

ρP〈 〉
α 1 α–( )[ ]2 ρ2 ρ1–( ) E1ρ1 E2ρ2–( )E0Ω̂

2

12ρ0E1E2
-----------------------------------------------------------------------------------------------------=

E P Qy,+( )〈 〉
α 1 α–( )E0Ω̂

2

12ρ0
-----------------------------------

E2 E1–( ) α2ρ1 1 α–( )2ρ2–[ ] E0ρ0+

1 α–( )E1 αE2+
------------------------------------------------------------------------------------------- ρ0–

 
 
 

–=

O ε2( )

ρ y( ) u2 tt, 2u0 tτ,+[ ] E y( ) u2 x, u3 y,+( )[ ] x,– E y( ) u3 x, u4 y,+( )[ ] y,– 0=

σ3

ρ0U2 tt, E0U2 xx,–
1

ε2
-----Edu0 xxxx, 2ρ0u0 tτ,–=

Ed

α 1 α–( )[ ]2
E1ρ1 E2ρ2–( )2

E0Ω2

12ρ0
2 1 α–( )E1 αE2+[ ]2

---------------------------------------------------------------------------------=

Ed

Ω

α 0= α 1= r z1 z2⁄= z( Eρ )=

Ed

O ε2( )

ρ0U2 tt, E0U2 xx,–
1

ε2
-----Edu0 xxxx,=
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   In Section 4 we will show that the solution of this equation introduces secular terms.

 Remark 2: Alternatively, we could have considered slow time scaling with , i.e.,

. It can be shown that the homogenized equations of motion in this case are:

(78)

(79)

   3.3 Summary of Macroscopic Equations

   In this section we summarize various order macroscopic equations of motion which have
been derived in the previous section and prescribe initial and boundary conditions. Atten-
tion is restricted to slow time scaling with m=2.

   The macroscopic equations of motion are:

                               :                                                                       (52)

                               :                                                                    (68)

                               :                            (75)

   We consider the following problem: a domain composed of an array of bilaminates with
fixed boundary at  and free boundary at  subjected to the initial disturbance

 in the displacement field. The following initial-boundary conditions are considered:

ICs:     ,      (80)

BCs:    ,       (81)

   The calculation of the field  is performed by solving equation of motion

(68). The initial and boundary conditions applied to  must be such that the

global field  meets macroscopic initial conditions and conditions

imposed on the boundary, i.e.

        ,     

                    ,      

   Considering (80) and (81) the initial and boundary conditions for  are

m 1=

ξ εt ζ= =

ρ0U1 tt, E0U1 xx,– 2ρ0u0 tζ,–=

ρ0U2 tt, E0U2 xx,–
1

ε2
-----Edu0 xxxx, 2ρ0U1 tζ,– ρ0u0 ζζ,–=

O 1( ) ρ0u0 tt, E0u0 xx,– 0=

O ε( ) ρ0U1 tt, E0U1 xx,– 0=

O ε2( ) ρ0U2 tt, E0U2 xx,–
1

ε2
-----Edu0 xxxx, 2ρ0u0 tτ,–=

x 0= x l=

f x( )

u0 x 0 0, ,( ) f x( )= u0 t, x 0 0, ,( ) g x( ) 0= =

u0 0 t τ, ,( ) 0= u0 x, l t τ, ,( ) 0=

εU1 x t τ, ,( )

εU1 x t τ, ,( )

u0 x t τ, ,( ) εU1 x t τ, ,( )+

u0 x 0 0, ,( ) εU1 x 0 0, ,( )+ f x( )= u0 t, x 0 0, ,( ) εU1 t, x 0 0, ,( )+ g x( ) 0= =

u0 0 t τ, ,( ) εU1 0 t τ, ,( )+ 0= u0 x, l t τ, ,( ) εU1 x, l t τ, ,( )+ 0=

εU1 x t τ, ,( )
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                                                                                  ICs:       ,                                                                                                                                                                  

                                                                   BCs:      ,                                                                                                                                                                 

   Similarly, the macroscopic field  is determined from the equation of motion

(75), with the initial and boundary conditions for  constructed so that the glo-

bal field, , should satisfy macroscopic initial and

boundary conditions.

   With this in mind, we obtain the initial and boundary conditions for different order equa-
tions of motion

                    ICs:      ,       

        ,            (82)

BCs:   ,             (83)

   From the above equations of motion and initial/boundary conditions, we can observe
that

(84)

4. Solution of Macroscopic Equations

4.1 Without Slow Time Scaling

   First we show that in absence of slow time scaling, the response of the second order
equation contains secular terms. We begin with the zero-order equation of motion (52) and
employ separation of variables to solve for this initial/boundary value problem. Let

(85)

   Substituting the above equation into (52) and dividing by the product  yields

(86)

where  is the separation constant and

(87)

   The resulting differential equations and corresponding solutions are:

εU1 x 0 0, ,( ) 0= εU1 t, x 0 0, ,( ) 0=

εU1 0 t τ, ,( ) 0= εU1 x, l t τ, ,( ) 0=

ε2
U2 x t τ, ,( )

ε2
U2 x t τ, ,( )

u0 x t τ, ,( ) εU1 x t τ, ,( ) ε2
U2 x t τ, ,( )+ +

u0 x 0 0, ,( ) f x( )= u0 t, x 0 0, ,( ) g x( ) 0= =

Ui x 0 0, ,( ) 0= Ui t, x 0 0, ,( ) 0= i( 1 2),=

Ui 0 t τ, ,( ) 0= Ui x, l t τ, ,( ) 0= i( 0 1 2), ,=

U1 x t τ, ,( ) 0≡

u0 x t,( ) X x( )T t( )=

X T⋅

T′′
T

------- c
2X′′

X
------- q

2–= =

q

c E0 ρ0⁄=
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,      (88)

,      (89)

where A, B, K and D are constants of integration. Substituting the above solutions into the
boundary conditions (83) gives

,        (90)

   The second condition in the above equation gives

,      (91)

   Due to linearity of the differential equation, the total solution to the problem is the sum
of individual solutions. Hence, we may write

(92)

   The coefficients  and  can be determined by the initial conditions. Substituting

(92) into the initial conditions (82) gives

,       (93)

   Multiplying both sides of the above equations by  and integrat-

ing in space between  and , yields

,         (94)

   Substituting (94) into (92) gives the final expression for 

(95)

    Next, we proceed to solve for the second order macroscopic equation. Taking the fourth
derivative of  with respect to x and substituting the result into (77) gives

T′′ q
2
T+ 0= T t( ) A qt( ) B qt( )cos+sin=

X′′ q
2

c
2

-----X+ 0= X x( ) K
qx
c

------ D
qx
c

------cos+sin=

D 0= K
ql
c
-----cos 0=

qn 2n 1–( )πc
2l
------= n( 1 2 3 … ), , ,=

u0 x t,( )
qnx

c
-------- An qnt( ) Bn qnt( )cos+sin[ ]sin

n 1=

∞

∑=

An Bn

f x( ) Bn
2n 1–( )πx

2l
--------------------------sin

n 1=

∞

∑= An
2n 1–( )πc

2l
-------------------------- 2n 1–( )πx

2l
--------------------------sin

n 1=

∞

∑ 0=

2m 1–( )πx 2l( )⁄ dxsin

x 0= x l=

An 0= Bn
2
l
--- f x( ) 2n 1–( )πx

2l
--------------------------sin xd

0

l

∫=

u0 x t,( )

u0 x t,( ) Bn
2n 1–( )πct

2l
----------------------------cos

2n 1–( )πx
2l

--------------------------sin

n 1=

∞

∑=

u0 x t,( )
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(96)

   Equation (96) can be solved by using either the method of separation of variables or
Laplace transform. We employ the latter. Taking the Laplace transform of (96) with
respect to time, t, and making use of the initial conditions (82) yields

(97)

where  is the Laplace transform of . The general solution of (97) is

(98)

where  and  are constants. Substituting the above equation into the boundary condi-

tions (83), gives

(99)

   Inserting the above equation into (98) and taking the inverse Laplace transform to the
resulting equation yields the solution for 

(100)

   It can be readily observed that the solution of  is linear in time and will grow

unbounded as the time approaches infinity. Obviously, this does not reflect the physics of
the problem. Hence, the solution is only valid when the time window is very small. In an
attempt to construct an uniformly valid solution, we will consider a slow time scale in the
next section.

4.2 Dispersive Solution

   We consider the solution of the macroscopic equations of motion (52) and (75). Assume
the following separation of variables for 

(101)

   Substituting (101) into (52) and dividing by the product  yields

U2 tt, c
2
U2 xx,–

Ed

ε2ρ0

----------- Bn

qn

c
----- 

 
4

qnt( )cos
qnx

c
-------- 

 sin

n 1=

∞

∑=

s
2
U2 x s,( ) c

2
U2 xx,–

Ed

ε2ρ0

----------- Bn

qn

c
----- 

 
4 s

s
2

qn
2+

----------------
qnx

c
-------- 

 sin

n 1=

∞

∑=

U2 x s,( ) U2 x t,( )

U2 x s,( ) b1
sx
c
----- b2

sx
c
-----

Ed

ε2ρ0

----------- Bn

qn

c
----- 

 
4 s

s
2

qn
2

+( )
2

------------------------
qnx

c
-------- 

 sin

n 1=

∞

∑+sinh+cosh=

b1 b2

b1 b2 0= =

U2 x t,( )

U2 x t,( )
Edt

2ε2ρ0c
4

-------------------- Bnqn
3

qnt( )
qnx

c
-------- 

 sinsin

n 1=

∞

∑=

U2 x t,( )

u0 x t τ, ,( )

u0 x t τ, ,( ) Y x( )Θ t τ,( )=

Y Θ⋅
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(102)

where  is a separation constant. The resulting differential equations and corresponding
solutions are

,       (103)

,      (104)

where  and  are integration constants,  and  are undetermined functions.

Substituting the above solutions into the boundary conditions (83) gives

,        (105)

   The second condition in the above equation leads to

,      (106)

   Due to linearity of the differential equation, the total solution can be written as the sum
of individual solutions, i.e.

(107)

   Inserting the above solution into the second order macroscopic equation of motion (75)
gives

    

(108)

   The forcing terms in (108) will typically generate secular terms. In order to eliminate
secular terms the forcing terms are set to zero, i.e.

1
Θ
----

t
2

2

∂
∂ Θ

c
2Y′′

Y
------- p

2–= =

p

t
2

2

∂
∂ Θ

p
2Θ+ 0= Θ t τ,( ) S τ( ) pt( ) R τ( ) pt( )cos+sin=

Y′′ p
2

c
2

-----Y+ 0= Y x( ) h1
px
c

------ h2
px
c

------cos+sin=

h1 h2 S τ( ) R τ( )

h2 0= h1
pl
c
-----cos 0=

pn 2n 1–( )πc
2l
------= n( 1 2 3 … ), , ,=

u0 x t τ, ,( )
pnx

c
-------- Sn τ( ) pnt( ) Rn τ( ) pnt( )cos+sin[ ]sin

n 1=

∞

∑=

U2 tt, c
2
U2 xx,–

pn

c
-----

pnx

c
--------

Ed

ε2ρ0

-----------
pn

c
----- 

 
3

Sn τ( ) 2cR'n τ( )+ pnt( )sin +




sin

n 1=

∞

∑=

Ed

ε2ρ0

-----------
pn

c
----- 

 
3

Rn τ( ) 2cS'n τ( )– pnt( ) }cos



18

,         (109)

Let

(110)

   Then (109) can be written as 

,         (111)

   Differentiating the first equation in (111) and inserting the second equation into the
resulting equation lead to

(112)

   Likewise, differentiating the second equation in (111) and inserting the first equation
into the resulting equation yields

(113)

   Solutions of (112) and (113) are

 (114)

where , ,  and  are constants of integration. The above solutions must satisfy

(111). Inserting  (114) into (111) gives

,        (115)

   Substituting (114) and (115) into (107) and utilizing initial conditions gives

 ,      (116)

and thus the dispersive solution up to the second order, denoted here as , is 

given as

(117)

Ed

ε2ρ0

-----------
pn

c
----- 

 
3

Sn τ( ) 2cR'n τ( )+ 0=
Ed

ε2ρ0

-----------
pn

c
----- 

 
3

Rn τ( ) 2cS'n τ( )– 0=

ωn

Ed

2cρ0
------------

pn

c
----- 

 
3 2n 1–( )π[ ]3

Ed

16ρ0cl
3

-------------------------------------= =

ε2
R'n τ( ) ωnSn τ( )+ 0= ε2

S'n τ( ) ωnRn τ( )– 0=

ε4
R′′n τ( ) ωn

2
Rn τ( )+ 0=

ε4
S′′n τ( ) ωn

2
Sn τ( )+ 0=

Rn τ ε2⁄( ) d1 ωnτ ε2⁄( ) d2 ωnτ ε2⁄( )cos+sin=

Sn τ ε2⁄( ) d3 ωnτ ε2⁄( ) d4 ωnτ ε2⁄( )cos+sin=

d1 d2 d3 d4

d1 d4–= d2 d3=

d1 0= d2 Bn=

ud x t τ ε2⁄, ,( )

ud x t τ ε2⁄, ,( ) Bn

pnx

c
-------- ωn

τ
ε2
----- pnt– 

 cossin

n 1=

∞

∑=



19

For function evaluation we insert  which yields 

(118)

5. Numerical Results

   To assess the accuracy of the proposed model, we construct a reference solution by uti-
lizing a very fine finite element mesh and employ an explicit time integration scheme. We
consider the following initial disturbance in the displacement field:

               

where  and  is the Heaviside step function; ,  and  are the magni-

tude, the location of the maximum value and the half width of the initial pulse. Several
pulses with  and different half pulse width, , are plotted in Figure 2.

It can be seen that this pulse is similar in shape to the Gaussian distribution function. Sub-
stituting the initial disturbance  into (94) and integrating it analytically, yields

                                                                                                                                                                                                                                                         

                                                                                                                                                                                                                                                                                                                                                  

                                             

                                                                                                                                                                                                                         

t τ ε2⁄=

ud x t,( ) Bn
2n 1–( )πx

2l
--------------------------

2n 1–( )π[ ]2
Ed

8ρ0c
2
l
2

------------------------------------- 1–
2n 1–( )πct

2l
----------------------------

 
 
 

cossin

n 1=

∞

∑=

f x( ) f0a0 x x0 δ–( )–[ ]4
x x0 δ+( )–[ ]4 1 H x x0 δ+( )–[ ]–{ } 1 H x0 δ– x–( )–[ ]=

a0 1 δ8⁄= H x( ) f0 x0 δ

f0 1m= δ

Figure 2: The initial disturbance in displacement with different half pulse widths

f x( )

Bn
2
l
--- f0a0 x x0 δ–( )–[ ]4

x x0 δ+( )–[ ]4 2n 1–( )πx
2l

--------------------------sin xd

x0 δ–

x0 δ+

∫=

49152l
4
f0

δ8
2n 1–( )π[ ]9

------------------------------------- 1680l
4 180 2n 1–( )πδl( )2– +[{=

2n 1–( )πδ( )4]
2n 1–( )πx0

2l
----------------------------- 2n 1–( )πδ

2l
--------------------------- 20l 2n 1–( )πδ( )3 –[+sinsin

840 2n 1–( )πδl
3 ]

2n 1–( )πx0

2l
-----------------------------

2n 1–( )πδ
2l

---------------------------




cossin
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   We choose material properties as  GPa,  GPa,  Kg/m3,

 Kg/m3, and volume fraction . The dimension of the macro-domain

and that of the unit cell are set as  m and  m, respectively. The homoge-

nized material properties are calculated as  GPa,  Kg/m3 and

 N. In this case,  and the ratio of the impedances of the two

material constituents is . The initial pulse is centered at the midpoint of the

domain, i.e.  m, with the magnitude  m.

 Figure 3: Displacements at  for the normalized pulse width 

Figures 3-5 show the evolution of displacements at  m for different values of pulse

width:  m,  m and  m. The corresponding ratios between the

pulse width and the unit cell dimension, , are: 14, 8 and 6, respectively. In each of
the Figures 3-5, there are three plots denoted as (a)-(c), which correspond to the numeri-
cally exact solution of the original heterogeneous problem, the analytical nondispersive
solution  obtained by the classical homogenization theory and the analytical dis-

persive solution .

E1 120= E2 6= ρ1 8000=

ρ2 3000= α 0.5=

l 40= Ω 0.2=

E0 11.43= ρ0 5500=

Ed 1.76 10
7×= E1 E2⁄ 20=

r 7.30=

x0 20= f0 1.0=

Fig.3 Displacements at x= 30m for the normalized pulse width

x 30m= 2δ Ω⁄ 14=

x 30=

δ 1.4= δ 0.8= δ 0.6=

2δ Ω⁄

u0 x t,( )

ud x t,( )
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 Figure 4: Displacements at  for the normalized pulse width 

   The dispersion phenomenon can be clearly seen from Figures 3-5. In the low frequency
case, depicted in Figure 3, the pulse almost maintains its initial shape except for some
small wiggles at the wavefront. In this case, the zero-order homogenization theory pro-
vides a reasonable approximation to the response of the heterogeneous media. However,
when the pulse width of the initial disturbance is comparable to the dimension of the unit
cell and the observation time is large, which are the cases shown in Figures 4 and 5, the
wave becomes strongly dispersive and the zero-order homogenization errs badly. It can be
also seen that our dispersive model is in good agreement with the reference solution of the
heterogeneous media.

6. Concluding Remarks

   Mathematical homogenization theory with multiple spatial and temporal scales have
been investigated. This work is motivated by our recent study [12] which suggested that in
absence of multiple time scaling, higher order mathematical homogenization method gives
rise to secular terms which grow unbounded with time. In the present manuscript we have
demonstrated that multiple scale analysis based on fast spatial and temporal scales gives

x 30m= 2δ Ω⁄ 8=
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rise to nondispersive  model. On the other hand, the combination of fast spatial and
slow temporal scales successfully captures dispersion effects. 

   In our future work we will focus on the following three issues: (i) developing an uni-
formly valid mathematical model, (ii) generalization to the multidimensional case, and (ii)
a finite element implementation.

Figure 5: Displacements at  for the normalized pulse width 
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