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Global Basis Two-Level Method For Indefinit
Systems. Part 2: Computational Issues

Yong Qu and Jacob Fish
Department of Civil, Mechanical and Aerospace Engineering

Rensselaer Polytechnic Institute, Troy, NY 12180

ABSTRACT  
Algorithmic aspects and computational efficiency of the global basis two-level method are
investigated in the context of symmetric indefinite system of equations. The algorithm
includes efficient construction of the global basis prolongator using Lanczos vectors, predic-
tor-corrector smoothing procedures, and a heuristic two-level feedback loop aimed at ensur-
ing convergence. Numerical experiments consisting of 3D Helmholtz equations and shear
banding problems with strain softening demonstrate the excellent performance of the
method.

Keywords: multilevel, multigrid, indefinite, convergence, global basis

1.0  Introduction

In Part 1 [1] we studied the effect of deviation (or error) from the optimal prolongation o
tor spanned by the spectrum of highest eigenmodes of the smoothing iteration maR
referred to as algebraically “smooth” modes. We have shown that for highly indefinite sy
any deviation from the optimality has a detrimental effect on the rate of convergence
suggests that a successful two-level method should possess a coarse model able to a
reproduce the space of algebraically “smooth” modes. The smoother in turn should be
neered to minimize the spectral radius of the smoothing iteration matrix R. In [1] we have
introduced the concept of optimal prolongation operator (or equivalently the optimal c
model), and shown that for highly indefinite systems such prolongator is (i) nonsmoot
geometric sense, (ii) highly sensitive to any deviation from optimality, and (iii) nonlocal. 

Based on the studies conducted in [1], Part 2 of the manuscript focuses on the algo
aspects including: efficient construction of the global basis prolongation operator using 
zos vectors, predictor-corrector smoothing procedures, and a heuristic two-level fee
loop aimed at ensuring convergence of the global-basis two level method.

Part 2 of the manuscripts is organized as follows: In Section 2.1, we describe an alg
designated at constructing a nearly optimal prolongation operator and a corresponding
model matrix. Section 2.2 presents a new incomplete factorization with threshold w
serves as an efficient single-level smoother for indefinite systems. Section 2.3 discus
possibility of using multilevel preconditioners, such as the aggregation based method 
the smoothers within the global basis two-level method. The overall heuristic feedback l
described in Section 2.4. Numerical experiments on a sequence of examples involving
holtz equation on bounded domain and shear banding problem with strain softening co
the manuscript.
1
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2.0  Elements of global basis two-level method

2.1  Global basis prolongation operator

In [1] we have shown that for highly indefinite systems the prolongation operator has a p
logical sensitivity to any deviation from the optimal value defined by a linear combinatio
higher spectrum of eigenvalues of the smoothing iteration matrix

(1)

where K and M are the stiffness and smoothing preconditioner, respectively, both  
metric sparse indefinite matrices. To construct an optimal subspace for prolongation op
we employ the Lanczos method for nonsymmetric systems. The Lanczos recursion h
property of first converging to the eigenvalues with largest magnitude in the spectrum [8
original form of the Lanczos method for unsymmetric matrices is susceptible to breakd
caused by division by zero or near-zero. This problem has been circumvented by the so
look-ahead technique [3]. Possible breakdowns are prevented by relaxing the standar
thogonality condition in the classical Lanczos algorithm to block the biorthogonality co
tion whenever the exact or near breakdown would happen. The Lanczos algorith
unsymmetric smoothing iteration matrix, R, has been further simplified by exploiting the sym
metry of K and M matrices [3]. The principles of the look-ahead Lanczos method as well 
utilization for coarse model construction are briefly summarized below.

2.1.1  Lanczos algorithm with look-ahead

Given nonzero starting vector, v1, the simplified look-ahead Lanczos method generate
sequence of vectors v1,v2,...,vn, i = 1,2,...,n. The three-term recursions of the Lanczos meth
can be written as

(2)

where ,  and Hn is a  block tridiagonal matrix.

For the simplified Lanczos method [3], the biothogonality condition for general case red
to

(3)

where n(l) monitors the number of look-ahead steps; n= nj and n=nj+1-1 mark the start and
the end of the jth look-ahead step.

The eigenvalues of the block tridiagonal matrix Hn serve as an approximation of the eigenv

ues of R. For  all eigenvalues of Hn are also the eigenvalues of R. QR method

[3] can be used to compute the eigenpairs of Hn from

R IN M 1– K–= ℜN N×∈

N N×

RVn VnHn 0…0…vn 1+ ρn 1+[ ]+=

ρn 1+ vn 1+= Vn v1 v2 … vn, , ,[ ]= n n×

vn
T
Kvi 0= i∀ 1 2 … nn l( ) 1–, , ,=

vn 1+ ρn 1+ 0=
2
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where  and .

The approximation, , of the eigenvectors of R, i.e., , is utilized for coarse

model construction in Section 2.1.2.

2.1.2  Approximation of the global-basis prolongation 

Since the unsymmetric Lanczos algorithm with look-ahead is used to construct the al
ically “smooth” modes, Lanczos vectors themselves are viable candidates for the prolon
operator since they approximate the same subspace as the eigenvectors, i.e.

(5)

Suppose that the Lanczos recursions has found exactly the highest n eigenpairs of R. Then if
the prolongation operator is defined as 

 (6)

the corresponding two level iteration matrix, L, coincides with the two-level iteration matrix

, with optimal prolongation operator defined by . The proof follows from

(7)

2.1.3  Coarse model matrix computation

If Lanczos vectors in (6) were computed exactly, the coarse model matrix, 

would have been block diagonal due to block biothogonality condition (3). The size o
block would have been the same as that of the corresponding look-ahead step. Howev
to loss of orthogonality of the Lanczos vectors in finite precision computations [8] the 
tionship between eigenpairs of R and those of the block tri-diagonal matrix Hn is not trivial.
Loss of orthogonality can be also viewed as a deviation from the optimal prolongation, 
may deteriorate the performance of the two-level method. Moreover, increasing the num
Lanczos vectors in the prolongation operator without reorthogonalization may cause ne
gularity of the coarse model matrix due to nearly linear dependence of Lanczos vectors
were to allow for some loss of orthogonality, we would then need to compute the off dia
terms of the coarse model matrix and to factorize it. This additional computational c
comparable to that of complete reorthogonalization, and thus complete reorthogonal
seems to be a better choice. From the computational efficiency standpoint we bound th

HnΨ ΨΛ̃=

Ψ Ψ1Ψ2…Ψn[ ] C
n n×∈= Λ̃ diag λ̃1λ̃2…λ̃n( ) C

n n×∈=

VnΨ RVnΨ VnΨΛ̃≈

VnΨ Φ=

Q Vn=

L̃ Q̃ VnΨn=

L̃ R
v

In Q̃K̃0
1–
Q̃

T
K–( )Rv

R
v

In QΨnΨn
1– K0

1– Ψn
T– Ψn

T
Q

T
K–( )Rv

R
v

In QK0
1–
Q

T
K–( )Rv

L

=

=

= =

K0 Q
T
KQ=
3



at the
tional
ically
an to

f-
ym-
uced

pping,
truct a
rtuba-

riate

 fac-
s. For
ed for
e 

small
condi-
ber of Lanczos vectors selected by  where N is the size of the source matrix and C is a
constant (typically in the range from one to ten). This choice is selected to ensure th
Lanczos process with full reorthogonalization does not dominate the entire computa
cost. If the desired size of the coarse model is too small to resolve all the algebra
“smooth” modes, it is advantageous to improve the quality of the smoother rather th
increase the number of Lanczos vectors.

2.2  Single-level smoother 

In this section, we develop an Incomplete LDLT predictor-corrector based smoother for inde
inite systems which is a modification of the row-based Crout-Doolittle factorization for s
metric matrices with a dropping rule based on the numerical value of the fill-ins introd
[4][5]. 

For indefinite systems, the main difficulties arise due to inaccuracies caused by dro
unstable triangular solve and breakdown caused by zero pivots [6]. In attempt to cons
robust smoother we study several remedies including scaling, reordering, diagonal pe
tion, pivoting, use of mixture of  and  pivot blocks and selection of approp
dropping strategies. 

2.2.1  Scaling 

The objective of scaling is to improve conditioning of the original matrix. For incomplete
torization by threshold, scaling also allows to use the same drop tolerance for all row
positive definite systems positive diagonal entries of the source matrix are typically us
scaling. For indefinite systems, on the other hand, we propose an iterative approach (seAlgo-
rithm 1) designated to compute the diagonal scaling matrix P which makes the -norm of

each row of the scaled system  to be bounded by  where  is a 
positive number. The iterative process is required to preserve the symmetry of the pre
tioner.

Algorithm 1: Scaling of Indefinite Systems

1. Set , flag = 0.

2. Do while flag = 0

3. flag = 1; T = In

4. Loop over all nonzeros in matrix K

5. For each nonzero 

6. if , then flag = 0.

C N4

1 1× 2 2×

∞

P 1– KP 1 µ 1 µ+,–[ ] µ

P In=

Kij

Kij Pii Pjj⁄⁄ 1– µ>
4
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7. if , then 

8. if , then 

9. End of loop

10. P=PT

11. Enddo

2.2.2  Reordering

The effects of reordering on the performance of the smoother have been studied by
researchers [10]. For positive definite systems it has been observed that the Reverse 
McKee and Minimum Degree, have little effect on convergence. Based on our num
experiments, we have observed that indefinite systems are highly sensitive to reor
Reverse Cuthill-McKee reordering scheme seems to be superior for weakly indefinite sy
since it produces less nonzeros than other reorderings. Minimum Degree reordering s
has been found to be a better choice for highly indefinite systems, which require high a
of fill-ins. Similar observations were reported in [10] for nonsymmetric systems.

2.2.3  Diagonal pertubation and block diagonal pivoting

The simplest method to avoid small pivots is to replace them by larger values to ensure 
not create very large off-diagonal entries. For indefinite systems, this stabilization proce
or so-called diagonal pertubation, can be carried out by using a different shift for eac
prior to factorization or by computing the shifts during the factorization. The sign of the
should be the same as that of the pivot. The disadvantages of the diagonal pertuba
inaccuracy caused by the shift and a lack of rigorous approach in determining the value
shift. 

An alternative is to use pivoting. For the symmetric matrix, we must use symmetric pivot
maintain symmetry. Thus like the Bunch-Kaufman factorization and its variants [7][9
diagonal matrix is replaced by the block diagonal matrix, composed of  and 
blocks. To incorporate pivoting in symmetric incomplete factorization, both the row and
umn data structures are required. Figure 1 illustrates the data structures for symmetric
ing. In the implementation of symmetric pivoting, no actual row or column exchange
made. The new indices are determined by the permutation vectors which are update

each symmetric pivoting. We store diagonal matrix, D, and upper triangular matrix, LT, in the
original configuration and use the row headers, column headers and the permutation a
keep track of the current configuration. 

For sparse matrices, the pivoting scheme must improve stability while minimizing the im
of pivoting on sparsity [6][9]. Algorithm 2 is designated to find sucha  balance.

Kij Pii Pjj⁄⁄ Tii> Tii Kij Pii Pjj⁄⁄=

Kij Pii Pjj⁄⁄ Tjj> Tjj Kij Pii Pjj⁄⁄=

1 1× 2 2×
5
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FIGURE 1. : Data structures for Modified Incomplete LDLT Factorization by Threshold

Algorithm 2: Pivot Strategy

After the computation of dense row w for ith row, 

1. Find maximum nonzero  of dense row w;

2. If , 

3. use Dii  as  pivot

else 

4. loop over all nonzeros of w

5. Find such  block which has the maximum 2-norm a

also satisfies 
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where Height(*) is the maximum column index of nonzeros in row *;

m is a small positive integer.

6. end of loop

7. If such E has been found and 

8. use E as  pivot

else

9. use  as  pivot

10. Endif

11. Endif

In the above algorithm,  and m are user-defined parameters controlling the number of 
pivot blocks and the sparsity pattern of the incomplete factorization. In the incomplete f

ization, the growth of elements of diagonal matrix, D, and upper triangular matrix, LT is not as
critical as in the complete factorization because each element is updated fewer times 
the complete factorization. Therefore, we can use significantly smaller values of  to r

the number of  pivot blocks and to preserve sparsity. The value of the parameter m is also
used to control sparsity. Although we may expect to use large values of m for problems with
structurally zero pivot, the value m should be  generally small. 

2.2.4  Selecting appropriate dropping schemes

The proposed algorithm is based on two dropping strategies:

(i) The largest lfil  nonzeros in the dense vector are retained;

(ii) The nonzeros larger than the threshold tolerance droptol are retained in the dense vector.

The former is used to construct the tentative (or initial) incomplete factorization while the lat-
ter is employed to construct the enhanced incomplete factorization (details are described in
Section 2.3). For the numerical dropping schemes, it is vital to apply the same dropping
rion for all matrix rows. Using the data structure described in Figure 1 it is possible to al
the memory for incomplete factors dynamically during factorization. Moreover, we 
found that changing the sequence of updating the remaining diagonal elements and d
the small element of dense vectors in the incomplete factorization will significantly imp
the performance of the smoother. Our experience indicates that updating the diagonal
with dropped elements [5][6] makes the incomplete factorization less accurate, especia
highly indefinite systems. 

E 2 α̂ Dii×≥

2 2×

sign Dii( ) â wp×× 1 1×

α̂ 2 2×

α̂
2 2×
7



plete
ed to
Algorithm 3 described below incorporates the aforementioned features into the incom
factorization originally developed in [6]. The data structures shown in Figure 1 are us

store D and LT. 

Algorithm 3: Modified Incomplete LDLT Factorization by Threshold

1.Select reordering scheme and reorder matrix K

If droptol > 0.0001

use Reverse Cuthill-McKcee reordering

else

use Minimal Degree reordering

Endif

2.Use Algorithm 1 to scale the matrix K.

3.Load diagonal of scaled matrix into D 

4.Set i = 1 

5.While , Do

6. Load row i of scaled matrix K into vector w  

7. For j = 1,...,i-1 Do:

Case 1:  block 

If 

 Update vector w 

if  then 

Endif

Case 2:  block 

If  or 

i n≤

1 1× Djj[ ]

L
T

ji 0≠

p i>   and  L
T

jp 0≠ wp wp L
T

jp L
T

ji Djj××–=

2 2× Djj Djj 1+

Djj 1+ Dj 1j 1+ +

L
T

ji 0≠ L
T

j 1i+ 0≠
8



Update vector w 

if 

Endif

Endif

EndDo

8. Apply the dropping rule to w

Scheme (i): The largest lfil nonzeros in w are kept.

Scheme (ii): 

9. Use Algorithm 2 to select the pivot scheme 

Case 1:  block 

Update remaining diagonal elements

 Copy w to LT

i = i + 1

Case 2:  block 

Permute i+1th row(column) with qth row(column) of K

Load row i+1 of matrix K into vector v

Update v using all previous rows except row i.(Same as step 6) 

p i>   and  L
T

jp 0  or  L
T

j 1p+ 0≠≠

wp wp Djj L
T

jp L
T

ji××– Djj 1+ L
T

jp 1+ L
T

ji××–

Djj 1+ L
T

jp L
T

j 1i+××– Dj 1j 1+ + L
T

j 1p+ L
T

j 1i+××–

=

If wp droptol≤( ) wp, 0=

1 1× Dii[ ]

Dpp Dpp wp wp Dii⁄×     wp 0≠( )∀–=

wp wp Dii⁄= wp 0≠( )∀

2 2× Dii Diq

Diq Dqq

Dii 1+ Diq Di 1i 1+ +, Dqq= =
9
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Apply same dropping rule to v

Compute the inverse of  block 

Update remaining diagonal elements

if

Compute

Copy w to LT

i = i + 1

Copy v to LT

i = i + 1

10. EndDo

11.Back Scale D and LT

2.3  Multilevel methods as smoothers

Convergence studies conducted in [1] are valid for any smoothing preconditioner, M. The
effectivity of the smoother is measured by the spectral radius of the smoothing iteration 
R. In other words, any preconditioner, including single-level, multilevel, domain decom
tion and element-by-element method, could be in principle used as the smoother with
framework of the global basis two-level method. The coarse model in turn serves as a
zone against divergence aimed at capturing the modes which have not been smoothe
the smoother of choice. 

In Section 3 we focus on extending the application of the global basis two-level meth
multilevel smoothers. In particular, we consider the Generalized Aggregation based pre
tioners (GAM) developed in [2] as smoothers within the framework of the global basis
level method.

2 2×

E
E11 E12

E12 E22

Dii Dii 1+

Dii 1+ Di 1i 1+ +

1–

= =

p i>   and  wp 0  or  vp 0≠≠

Dpp Dpp E11 wp wp××– 2E12 wp vp××– E22 vp vp××–=

w

v
E w

v
×=
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2.4  Some thoughts on adaptive global-basis algorithm

For indefinite systems, it is not feasible to a prior estimate the optimal algorithmic parame
ters, such as the optimal value of dropping parameters for the incomplete factorizatio
optimal number of aggregates, the optimal size of the aggregates and the optimal num
local modes selected on each aggregate [2]. For a certain choice of parameters, the q
smoother can be estimated on the basis of the magnitude of the maximum eigenvaluR.
Here we provide some initial thoughts on constructing a heuristic algorithm for ada
coarse model construction.

The algorithm starts by constructing a tentative smoother. In the case of a single-level precon
ditioner, the tentative smoother employs Algorithm 3 with dropping scheme (i) in attempt t
estimate the maximum eigenvalue of the smoothing iteration matrix. The maximum no

lfil  for row i is set equal to the number of nonzeros of LT part of row i of matrix K. The original
sparse pattern is ignored and only the lfil nonzeros with the largest magnitude are kept. T
tentative incomplete factorization is computationally inexpensive and needs the same me
as the original matrix. In the case the GAM preconditioner [2] is employed as a smooth
tentative GAM preconditioner would employ the same zero-fill-in incomplete factorization 
a relaxation scheme within GAM preconditioner. The tentative local coarse model of the GAM
preconditioner is then formed by selecting very few local eigenmodes from one-nei
aggregates with zero Neumann boundary conditions [2]. 

If the smoother is found to be satisfactory (see Section 3 for the criterion), the coarse m
formed to include the algebraically “smooth” modes. If the number of required “alge

ically” smooth modes exceeds the user prescribed limit ( ), the quality of the smoot
improved. 

On the other hand, if the tentative incomplete factorization for the single-level smoother is
found to be not satisfactory, i.e., a very large coarse model is required, the new toleran
ting is heuristically (see Section 3) determined on the basis of the magnitude of the ma
eigenvalue. The enhanced incomplete factorization is carried out using Algorithm 3 with the
new tolerance setting for dropping scheme (ii). The quality of the enhanced smoother 
mated using Lanczos method. If it remains unsatisfactory, the value of dropping tolera
further reduced (see Section 3 for the details). This process continues until the satis
smoother is found. The Lanczos vectors from the previous incomplete factorizations a
lized for the prolongation operator construction. 

If the tentative GAM preconditioner for the GAM smoother is found to be not satisfactory, 
may either enhance the relaxation scheme by using Algorithm 3 with the new tolerance setting
for dropping scheme (ii), or construct an enhanced GAM coarse model by increasing the value
number of modes on each aggregate or taking larger aggregates. Schematics of the 
global basis algorithm are illustrated in Figure 2.

C N4
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FIGURE 2. : Schematics of the heuristic adaptive two-level algorithm

3.0  Numerical Examples and Discussion

3.1  Helmholtz equation on bounded domains

Consider Helmholtz’s equation in the region enclosed between two concentric cubes of
2( ) and 6( ). The strong form of the governing equations is given as

(8)

(9)

(10)

Smoother Quality Estimator
Estimate maximal eigenvalue

Enhanced Incomplete Factorization

symmetric block-diagonal pivoting
iterative scaling
reordering
dropping schemes 

Prolongation Construction
Construct Lanczos subspace

Smoother OK?

Required Lanczos
subspace too large? end

Yes

No

Yes

No

start

Heuristic estimation of drop parameter

Enhanced Smoother

Enhanced Local Coarse Model
Increase the size of coarse model
Improve the quality of local eigenmodes 
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where n is a coordinate in a direction normal to  and ;  a

; r is distance from the center of the cube. Equations (8)-(10) describe the a

tic pressure u of a wave in a transmitting medium.

Because of symmetry, only one-eighth of the domain is discretized. Three meshes con
of 3,072, 23,925 and 156,009 4-node linear tetrahedral elements have been consider
coarsest discretization is shown in Figure 3.

FIGURE 3. : Typical finite element mesh and boundary conditions

The resulting discrete linear system of equation, Kx = f, is symmetric, complex and indefinite
It is convenient to transform the complex symmetric linear system into a real symmetri
tem by replacing each term in the stiffness, KAB, force vector, fA, and the solution vector, xA,

by  respectively. The superscripts R and I denote the real and

imaginary parts which can be interpreted as two degrees-of-freedom per node. 

We consider four approaches for the solution of discrete linear system of equations:

(i) Global-basis two-level method applied to source equations (Source-GB),

(ii) Local-basis two-level method applied to source equations [2] (Source-LB),

(iii)Local-basis two-level method applied to normal equations [2] (Normal-LB), 

(iv)Direct sparse solver with minimum degree reordering [2] (Direct).

Schemes (ii) and (iii) use eigenfunctions defined on overlapping aggregates with Dir
boundary conditions for construction of prolongation operator [2]. SSOR is employe
smoother for Scheme (ii), while for Scheme (iii) we adopt the Incomplete Cholesky prec

Γ0 Γ1 Γ0 Γ1∪ ∂Ω=
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R
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I
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tioner for normal equation [11] as a smoother. Scheme (i) and (ii) use QMR as an acce
whereas a Conjugate Gradient acceleration for normal system is employed in Scheme 

FIGURE 4. : CPU Time versus kh for discrete Helmholtz linear systems with 1,478 equations

FIGURE 5. : CPU Time versus kh for discrete Helmholtz linear systems with 9,648 equations
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FIGURE 6. : CPU versus kh for Helmholtz linear system of 57,586 equations

Figures 4-6 show the CPU time on SUN ULTRA2/2200 versus the product of the averag
ment size and the wave number, kh, for the three meshes considered. The product kh has been
selected since it represents a measure of solution accuracy [12]. Even though pract
dealing with wave propagation problems are primarily interested in the range, kh<1, required
for solution accuracy[13], we conduct numerical experiments outside the range of the
interest. Our interest in a much wider spectrum of kh values stems from the fact that not on
the analyst may frequently encounter highly nonuniform meshes, where the precise de
of h is questionable, but primarily, because our ultimate goal is to develop a generic blac
equation solver for positive definite, weakly and highly indefinite systems. 

It can be seen from Figures 4-6 that for the medium and large meshes the global-basis 
(with a single-level smoother) applied to the source system (Source-GB) is the best solver over
the whole spectrum of kh while the Direct solver is better suited for the small mesh. The bre
even point between the one- and two-level methods considered is approximately 5,000
tions. In the case of 50,000 unknowns, the global-basis two-level method is faster th
Direct solver by a factor of 5-30. The local-basis method [2] (Source-LB) only converges at
both ends of the spectrum when the system is positive definite or slightly indefinite (kh<2) or
negative definite (kh > (20-40)). Although the local-basis method applied to the normal s
tem (Normal-LB) does converge for all situations, it is significantly slower than the glo
basis method, especially when the system is highly indefinite (2< kh < 20-40). Convergence

was measured in terms of the normalized L2-norm of the residual with the tolerance of 10-6.

For the global-basis method with a single level smoother, we used  for adaptive

ing and  and m = 4 for pivoting. In the adaptive algorithm, the tentative incomplete

factorization smoother is considered satisfactory if . The initial drop tolerance

the enhanced incomplete factorization is determined as 

and is reduced by factor of 5 for subsequent incomplete factorizations. 

10
1

10
0

10
1

10
2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
 Helmholtz linear system with 57586 equations 

 kh 

S
ol

ve
r 

C
P

U
 T

im
e 

(s
ec

) 

SourceGS
SourceD 
NormalD 
Direct   

µ 0.1=

α̂ 0.001=

λmax 10<

droptol min 1 λmax( )⁄ 0.01,( )=
15



 per-
small
ith
onsider

odel
[1]. It
his par-

f the

pera-
without
ed by
rthogo-
Figure 7 illustrates the effect of deviation from the optimal prolongation operator on the
formance of the local-basis two-level method [2] in terms of iteration count. We use the 
mesh with wave number k = 10 as an illustration. The Modified Incomplete Factorization w
a threshold as described in Section 2 is employed as a smoother. In this example we c
the values of droptol = 0.15 and 0.05. The maximum eigenvalue of R is 20.8 and 0.8 for drop-
tol equal 0.15 and 0.05, respectively. It can be seen that in both cases the coarse m
increases the number of iterations. This result is consistent with our findings in Part 1 
can be seen that simply increasing the size of coarse model may not be helpful, and in t
ticular case it deteriorates the performance of the local-basis two-level method.

FIGURE 7. : Convergence of local-basis methods 

FIGURE 8. : Convergence of global-basis methods 

Another form of deviation from the optimal prolongation is due to loss of orthogonality o
Lanczos vectors. The example we used is that of the small mesh with k = 3. Figure 8 compares
various global-basis two-level method which utilize Lanczos vectors for prolongation o
tor. The Lanczos vectors have been generated by the Lanczos recursions with and 
reorthogonalization. To distinguish the effect of prolongation error from the effect caus
near singularity of the coarse model due to linear dependence of Lanczos vectors, we o
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nalize the Lanczos vectors after the completion of the Lanczos recursions without reor
nalization (post-orthogonalization). The results are shown in Figure 8. It can be seen tha
first 20 modes, generated by the Lanczos recursions without reorthogonalization, consid
reduce the iteration count while the following 90 modes only reduces the iteration cou
half. It can also be seen that using more than 130 Lanczos vectors without orthogona
makes the two-level method diverge. Even with post-orthogonalization, the number of th
ations increases when the size of coarse model is larger than 150 due to the deviation f
optimal prolongation. When the Lanczos vectors were generated with reorthogonali
(full orthogonalization), the number of iterations always decreased with the increase in
size of coarse model. This suggests that if a larger coarse model is needed, reorthogona
must be applied in the process of Lanczos recursions to reduce the effects of prolon
error and near singularity of the coarse model. Also, as we have mentioned in Section 2
is advantageous to apply the reorthogonalization in the Lanczos process to maximize c
tational efficiency.

Solution Methods Number of cycles and CPU Split-up Times

Smoother

Global 
Basis 

Coarse 
Model

Smoother 
Construction

Global Basis 
Construction

# of 
cycles

Iterative 
Process

Solver 
Total

Type Size Size CPU (sec) CPU(sec) CPU(sec) CPU(sec

Single-level

0 0 1 0 >1000 NA NA

0 20/40/60 1 4/10/16 >1000 NA NA

0 120 1 26 461 629 656

GAM 

(Neumann)

319 0 6 0 >1000 NA NA

1459 0 10 0 830 237 247

319 20 6 5 427 164 175

1459 20 10 6 237 104 120

319 40 6 11 274 125 142

1459 40 10 12 108 56 78

319 60 6 17 103 79 102

1459 60 10 18 58 48 76

GAM

(Dirichlet)

276 0 10 0 933 224 234

317 0 11 0 555 139 150

276 20 10 5 249 97 112

317 20 11 5 153 61 77

276 40 10 11 102 49 70

317 40 11 11 73 38 60

276 60 10 18 46 33 61

317 60 11 18 37 30 59

TABLE 1. Comparision of Solvers
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Results of the preliminary investigation on the application of multilevel preconditione
smoothers within the framework of the global-basis two-level method are illustrated in 
1. We considered the problem of the medium mesh with k = 4. The following solution
schemes have been studied: The single-level smoother with or without the global-basis
model, the GAM smoother (Neumann BC) with or without global-basis coarse model
GAM smoother (Dirichlet BC) with or without the global-basis coarse model. The tentative
incomplete factorization, described in Section 2.4, was employed as a single-level smo
and as a relaxation scheme within the GAM preconditioner. It can be seen that the globa
two-level method with a single-level smoother does not converge within 1000 steps 
over 120 global modes are selected, in which case the computational costs of the glob
coarse model construction dominates the entire computational cost. If, on the other ha
employ the GAM preconditioner as a smoother, the computational cost can be signifi
reduced. 

3.2  Shear banding problem

We considered a linearized shear banding problem, illustrated in Figure 9. The cube 
cretized with  8-node hexahedral elements tot
ing to 14793, 46875 and 107811 degrees-of-freedom. We assume that a shear band (s
zone) develops on the diagonal plane of two layers of elements [14]. We considered th
trum of ratios between the stiffness inside and outside the shear band, , in the

of 0.3 and -0.7.

FIGURE 9. : Model for shear banding problem

The four approaches described in 3.1 have been tested. Figures 10-12 show the CPU t
sus the measure of indefiniteness ( ) for the three meshes considered. It can be

that for all three meshes considered, the global-basis method has the best performance
the four approaches. The behavior of the local-basis methods is similar to that of the 
holtz equations. It converges when the system is positive definite or weakly inde
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, but diverges for highly indefinite system, . The no

mal equation approach converges over the whole spectrum and is competitive with the
solver for problems above 100,000 unknowns.

The influence of deviation from the optimal prolongation operator is similar to that illustr
in Figures 7 and 8. The performance of two-level method is very sensitive to the quality 
prolongation operator. The deviation from the optimal prolongation operator may deter
the performance of two-level method significantly.

FIGURE 10. : CPU Time vs.  for shear banding problem with 14,739 equations

FIGURE 11. : CPU Time vs.  for shear banding problem with 46,875 equations
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FIGURE 12. : CPU Time vs.  for shear banding problem with 107,811 equations

4.0  Summary

Algorithmic aspects and computational efficiency of the global basis two-level me
including nearly optimal global basis prolongation operator, single-level and multi
smoothers, and a heuristic feedback control loop, were studied. Numerical experimen
ducted on the Helmholtz equations and the shear banding problems affirm the potentia
method.

Further studies will be conducted to develop optimal smoothing preconditioners, a
extend the application of the solver to nonsymmetric indefinite systems. From the pra
point of view, adaptivity and automation of the method are the key remaining issues. 
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