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ABSTRACT

Algorithmic aspects and computational efficiency of the global basis two-level method are
investigated in the context of symmetric indefinite system of equations. The algorithm
includes efficient construction of the global basis prolongator using Lanczos vectors, predic-
tor-corrector smoothing procedures, and a heuristic two-level feedback loop aimed at ensur-
ing convergence. Numerical experiments consisting of 3D Helmholtz equations and shear
banding problems with strain softening demonstrate the excellent performance of the
method.
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1.0 Introduction

In Part 1 [1] we studied the effect of deviation (or error) from the optimal prolongation opera-

tor spanned by the spectrum of highest eigenmodes of the smoothing iteration Rnatrix
referred to as algebraically “smooth” modes. We have shown that for highly indefinite systems
any deviation from the optimality has a detrimental effect on the rate of convergence. This
suggests that a successful two-level method should possess a coarse model able to accurately
reproduce the space of algebraically “smooth” modes. The smoother in turn should be engi-
neered to minimize the spectral radius of the smoothing iteration niatfix [1] we have
introduced the concept of optimal prolongation operator (or equivalently the optimal coarse
model), and shown that for highly indefinite systems such prolongator is (i) nonsmooth in a
geometric sense, (ii) highly sensitive to any deviation from optimality, and (iii) nonlocal.

Based on the studies conducted in [1], Part 2 of the manuscript focuses on the algorithmic
aspects including: efficient construction of the global basis prolongation operator using Lanc-
zos vectors, predictor-corrector smoothing procedures, and a heuristic two-level feedback
loop aimed at ensuring convergence of the global-basis two level method.

Part 2 of the manuscripts is organized as follows: In Section 2.1, we describe an algorithm
designated at constructing a nearly optimal prolongation operator and a corresponding coarse
model matrix. Section 2.2 presents a new incomplete factorization with threshold which
serves as an efficient single-level smoother for indefinite systems. Section 2.3 discusses the
possibility of using multilevel preconditioners, such as the aggregation based method [2], as
the smoothers within the global basis two-level method. The overall heuristic feedback loop is
described in Section 2.4. Numerical experiments on a sequence of examples involving Helm-
holtz equation on bounded domain and shear banding problem with strain softening conclude
the manuscript.




2.0 Elements of global basis two-level method

2.1 Global basis prolongation operator

In [1] we have shown that for highly indefinite systems the prolongation operator has a patho-
logical sensitivity to any deviation from the optimal value defined by a linear combination of
higher spectrum of eigenvalues of the smoothing iteration matrix

R=I,-Mkoo"M B

whereK andM are the stiffness and smoothing preconditioner, respectivelyNostN sym-
metric sparse indefinite matrices. To construct an optimal subspace for prolongation operator
we employ the Lanczos method for nonsymmetric systems. The Lanczos recursion has the
property of first converging to the eigenvalues with largest magnitude in the spectrum [8]. The
original form of the Lanczos method for unsymmetric matrices is susceptible to breakdowns
caused by division by zero or near-zero. This problem has been circumvented by the so-called
look-ahead technique [3]. Possible breakdowns are prevented by relaxing the standard bior-
thogonality condition in the classical Lanczos algorithm to block the biorthogonality condi-
tion whenever the exact or near breakdown would happen. The Lanczos algorithm for
unsymmetric smoothing iteration matrik, has been further simplified by exploiting the sym-
metry ofK andM matrices [3]. The principles of the look-ahead Lanczos method as well as its
utilization for coarse model construction are briefly summarized below.

2.1.1 Lanczos algorithm with look-ahead

Given nonzero starting vectovy, the simplified look-ahead Lanczos method generates a
sequence of vectokg,V,,...,\\h,, 1 = 1,2,...,n The three-term recursions of the Lanczos method
can be written as

RV, = V,H,+[0...0...V,,, 1P+ 1] @
wherep,, 1 = |Voso| \Vn = [V, Vo - V] @ndHyis anx n block tridiagonal matrix.

For the simplified Lanczos method [3], the biothogonality condition for general case reduces
to

v, Kv, = 0 Oi =1,2...,ny-1 (3)

wheren(l) monitors the number of look-ahead steps;n; andn=n;,, -1 mark the start and
the end of thgth look-ahead step.

The eigenvalues of the block tridiagonal mahijxserve as an approximation of the eigenval-
ues ofR. Forv,, ,p,,.; = O all eigenvalues ¢f, are also the eigenvaluesRfQR method
[3] can be used to compute the eigenpaird pfrom
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where¥ = [W,W,.. W ]0C and\ = diag()N\l)N\z...)N\n) OcC

The approximationy,% , of the eigenvectorfof.e., RV W = VnLP;\ , Is utilized for coarse
model construction in Section 2.1.2.
2.1.2 Approximation of the global-basis prolongation

Since the unsymmetric Lanczos algorithm with look-ahead is used to construct the algebra-
ically “smooth” modes, Lanczos vectors themselves are viable candidates for the prolongation
operator since they approximate the same subspace as the eigenvectors, i.e.

VW= o (5)

Suppose that the Lanczos recursions has found exactly the mgiigshpairs oR. Then if
the prolongation operator is defined as

Q=W (6)
the corresponding two level iteration matiix,coincides with the two-level iteration matrix,
L with optimal prolongation operator defined b}/ VW, . The proof follows from

~ = 1~T
L =R (I,—QKp Q K)R' ©

R'(1,—QW, W, 'Ky W, "W Q'K)R

R'(I, —QKngTK)R =L

2.1.3 Coarse model matrix computation

If Lanczos vectors in (6) were computed exactly, the coarse model niajrix, QTKQ ,

would have been block diagonal due to block biothogonality condition (3). The size of the
block would have been the same as that of the corresponding look-ahead step. However, due
to loss of orthogonality of the Lanczos vectors in finite precision computations [8] the rela-
tionship between eigenpairs Bfand those of the block tri-diagonal matHy is not trivial.

Loss of orthogonality can be also viewed as a deviation from the optimal prolongation, which
may deteriorate the performance of the two-level method. Moreover, increasing the number of
Lanczos vectors in the prolongation operator without reorthogonalization may cause near sin-
gularity of the coarse model matrix due to nearly linear dependence of Lanczos vectors. If we
were to allow for some loss of orthogonality, we would then need to compute the off diagonal
terms of the coarse model matrix and to factorize it. This additional computational cost is
comparable to that of complete reorthogonalization, and thus complete reorthogonalization
seems to be a better choice. From the computational efficiency standpoint we bound the num-




ber of Lanczos vectors selected B§/N whns the size of the source matrix a@ds a
constant (typically in the range from one to ten). This choice is selected to ensure that the
Lanczos process with full reorthogonalization does not dominate the entire computational
cost. If the desired size of the coarse model is too small to resolve all the algebraically
“smooth” modes, it is advantageous to improve the quality of the smoother rather than to
increase the number of Lanczos vectors.

2.2 Single-level smoother

In this section, we develop an Incomplla*fa,-LT predictor-corrector based smoother for indef-
inite systems which is a modification of the row-based Crout-Doolittle factorization for sym-
metric matrices with a dropping rule based on the numerical value of the fill-ins introduced

[4][5].

For indefinite systems, the main difficulties arise due to inaccuracies caused by dropping,
unstable triangular solve and breakdown caused by zero pivots [6]. In attempt to construct a
robust smoother we study several remedies including scaling, reordering, diagonal pertuba-

tion, pivoting, use of mixture oL x1 an@x 2  pivot blocks and selection of appropriate
dropping strategies.

2.2.1 Scaling

The objective of scaling is to improve conditioning of the original matrix. For incomplete fac-
torization by threshold, scaling also allows to use the same drop tolerance for all rows. For
positive definite systems positive diagonal entries of the source matrix are typically used for
scaling. For indefinite systems, on the other hand, we propose an iterative approatdofsee

rithm 1) designated to compute the diagonal scaling m&nxhich makes theo -norm of

each row of the scaled syste}?ﬁlKP to be boundefilbyy, 1 + ] where is a small

positive number. The iterative process is required to preserve the symmetry of the precondi-
tioner.

Algorithm 1: Scaling of Indefinite Systems
1.SetP = I, , flag = 0.

2.Do while flag =0

3. flag=1;T=1,

4. Loop over all nonzeros in matrix K

5. For each nonzerd;

6. if |K;;/P;i/ P =1 > 1, then flag = 0.




9. End of loop

10.P=PT

11.Enddo

2.2.2 Reordering

The effects of reordering on the performance of the smoother have been studied by many
researchers [10]. For positive definite systems it has been observed that the Reverse Cuthill-
McKee and Minimum Degree, have little effect on convergence. Based on our numerical
experiments, we have observed that indefinite systems are highly sensitive to reordering.
Reverse Cuthill-McKee reordering scheme seems to be superior for weakly indefinite systems
since it produces less nonzeros than other reorderings. Minimum Degree reordering scheme
has been found to be a better choice for highly indefinite systems, which require high amount
of fill-ins. Similar observations were reported in [10] for nonsymmetric systems.

2.2.3 Diagonal pertubation and block diagonal pivoting

The simplest method to avoid small pivots is to replace them by larger values to ensure they do
not create very large off-diagonal entries. For indefinite systems, this stabilization procedure,
or so-called diagonal pertubation, can be carried out by using a different shift for each row
prior to factorization or by computing the shifts during the factorization. The sign of the shift
should be the same as that of the pivot. The disadvantages of the diagonal pertubation are
inaccuracy caused by the shift and a lack of rigorous approach in determining the value of the
shift.

An alternative is to use pivoting. For the symmetric matrix, we must use symmetric pivoting to
maintain symmetry. Thus like the Bunch-Kaufman factorization and its variants [7][9] the
diagonal matrix is replaced by the block diagonal matrix, composebdxat 2 ar

blocks. To incorporate pivoting in symmetric incomplete factorization, both the row and col-
umn data structures are required. Figure 1 illustrates the data structures for symmetric pivot-
ing. In the implementation of symmetric pivoting, no actual row or column exchanges are
made. The new indices are determined by the permutation vectors which are updated with

each symmetric pivoting. We stadeagonal matrixD, and upper triangular matrik], in the
original configuration and use the row headers, column headers and the permutation arrays to
keep track of the current configuration.

For sparse matrices, the pivoting scheme must improve stability while minimizing the impact
of pivoting on sparsity [6][9]Algorithm 2is designated to find sucha balance.
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FIGURE 1. : Data structures for Modified Incomplete LDL T Factorization by Threshold
Algorithm 2: Pivot Strategy
After the computation of dense row w for ith row,

1. Find maximum nonzerw, of dense row w;

p
2.1f D 2w, xa,
3. use  as1x 1 pivot
else
4. loop over all nonzeros of w
, _ |Dji w, , ,
5. Find such2 x 2 blockE = 9| which has the maximum 2-norm and
w, D
a “q

also satisfies

Height( g <Height(i+1) +m




where Height(*) is the maximum column index of nonzeros in row *;

m is a small positive integer.

6. end of loop
7. If such E has been found af], > o x |Dy|
8. use Ea® x 2 pivot

else
9. usesign(D;) xaxw, aslx1 pivot
10. Endif
11.Endif

In the above algorithmy ~ amd are user-defined parameters controlling the numbr2
pivot blocks and the sparsity pattern of the incomplete factorization. In the incomplete factor-

ization, the growth of elements of diagonal matixand upper triangular matrik! is not as
critical as in the complete factorization because each element is updated fewer times than in

the complete factorization. Therefore, we can use significantly smaller valoes of  to reduce

the number o x 2 pivot blocks and to preserve sparsity. The value of the panammsetdso
used to control sparsity. Although we may expect to use large valnefoofproblems with
structurally zero pivot, the valuea should be generally small.

2.2.4 Selecting appropriate dropping schemes

The proposed algorithm is based on two dropping strategies:

(i) The largestfil nonzeros in the dense vector are retained;

(ii) The nonzeros larger than the threshold toleraioptol are retained in the dense vector.

The former is used to construct ttemtative(or initial) incomplete factorizatiowhile the lat-

ter is employed to construct tlemhanced incomplete factorizati¢tetails are described in
Section 2.3). For the numerical dropping schemes, it is vital to apply the same dropping crite-
rion for all matrix rows. Using the data structure described in Figure 1 it is possible to allocate
the memory for incomplete factors dynamically during factorization. Moreover, we have
found that changing the sequence of updating the remaining diagonal elements and dropping
the small element of dense vectors in the incomplete factorization will significantly improve
the performance of the smoother. Our experience indicates that updating the diagonal entries
with dropped elements [5][6] makes the incomplete factorization less accurate, especially for
highly indefinite systems.




Algorithm 3 described below incorporates the aforementioned features into the incomplete
factorization originally developed in [6]. The data structures shown in Figure 1 are used to

storeD andL",

Algorithm 3: Modified Incomplete LDL T Factorization by Threshold
1.Select reordering scheme and reorder matrix K
If droptol > 0.0001
use Reverse Cuthill-McKcee reordering
else
use Minimal Degree reordering
Endif
2.Use Algorithm 1 to scale the matrix K.
3.Load diagonal of scaled matrix into D
4Seti=1
5Whilei<n , Do
6. Load row i of scaled matrix K into vector w
7. Forj=1,...,i-1 Do:

Case 1:1x1 bIocI{Djj]

If LT 20
Update vector w

if p>i and Lij¢O then w, = Wp—Lij X LTji x D;;

Endif

Case 2:2x 2 block DJ'J' Djj+1
D D 1

i+1 Zj+1j+

fFLi200rLj+1i20




Update vector w
. : T T
if p>i and L'jp#0 or L j+1p%0

T T T T
= W, =Dy XL jpxLji—Djj g XL jp+1xLji

Wo
T T T T
XLijpXLj+1i—=Dj qj g ¥ L j+1pxLj+ai

—Dj 41
Endif
Endif
EndDo
Apply the dropping rule to w

Scheme (i): The largest Ifil nonzeros in w are kept
Scheme (ii):If(jw,| < droptol), w, = 0
Use Algorithm 2 to select the pivot scheme
Case 1:1x 1 blocKD;;]
Update remaining diagonal elements

D 0= Dpp—w

) xw,/Dy  O(w, #0)

p

W, = wp/Dj O(w,#0)
Copywto [[
i=i+1
Case 2:2x 2 bloc Dii Dig
Dig Dq

Permute i+1th row(column) with gth row(column) of K

Dii+1 = DigDis1i+1 = Dgq

Load row i+1 of matrix K into vector v

Update v using all previous rows except row i.(Same as step 6)




Apply same dropping rule to v

Compute the inverse @x 2  block

-1
E = ST - Dii  Diis1
Dii+1Di+1i+1

Eio Bpp
Update remaining diagonal elements

ifp>i and w,#0 or v,#0

Dop = Dpp—Eqp X Wy X W, — 2B, x W, x vy —E5, X vy x v,

Compute

Wi — E x W

v v
Copywto [[
i=i+1
Copy vto [l
i=i+1

10.EndDo

11Back Scale D and'L

2.3 Multilevel methods as smoothers

Convergence studies conducted in [1] are valid for any smoothing precondittn&€he
effectivity of the smoother is measured by the spectral radius of the smoothing iteration matrix
R. In other words, any preconditioner, including single-level, multilevel, domain decomposi-
tion and element-by-element method, could be in principle used as the smoother within the
framework of the global basis two-level method. The coarse model in turn serves as a buffer
zone against divergence aimed at capturing the modes which have not been smoothed out by
the smoother of choice.

In Section 3 we focus on extending the application of the global basis two-level method to
multilevel smoothers. In particular, we consider the Generalized Aggregation based precondi-
tioners (GAM) developed in [2] as smoothers within the framework of the global basis two
level method.
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2.4 Some thoughts on adaptive global-basis algorithm

For indefinite systems, it is not feasibleagrior estimate the optimal algorithmic parame-

ters, such as the optimal value of dropping parameters for the incomplete factorization, the
optimal number of aggregates, the optimal size of the aggregates and the optimal number of
local modes selected on each aggregate [2]. For a certain choice of parameters, the quality of
smoother can be estimated on the basis of the magnitude of the maximum eigentalue of
Here we provide some initial thoughts on constructing a heuristic algorithm for adaptive
coarse model construction.

The algorithm starts by constructingestative smoothem the case of a single-level precon-
ditioner, thetentative smootheemploysAlgorithm 3with dropping scheme (i) in attempt to
estimate the maximum eigenvalue of the smoothing iteration matrix. The maximum nonzero

Ifil for rowi is set equal to the number of nonzerok'opart of rowi of matrixK. The original
sparse pattern is ignored and only lilenonzeros with the largest magnitude are kept. This
tentativeincomplete factorization is computationally inexpensive and needs the same memory
as the original matrix. In the case the GAM preconditioner [2] is employed as a smoother, the
tentative GAM preconditionexould employ the same zero-fill-in incomplete factorization as

a relaxation scheme within GAM preconditioner. Téatativelocal coarse model of tHeAM
preconditioner is then formed by selecting very few local eigenmodes from one-neighbor
aggregates with zero Neumann boundary conditions [2].

If the smoother is found to be satisfactory (see Section 3 for the criterion), the coarse model is
formed to include the algebraically “smooth” modes. If the number of required “algebra-

ically” smooth modes exceeds the user prescribed ligfif){ ), the quality of the smoother is
improved.

On the other hand, if thientative incomplete factorizatidior the single-level smoother is

found to be not satisfactory, i.e., a very large coarse model is required, the new tolerance set-
ting is heuristically (see Section 3) determined on the basis of the magnitude of the maximum
eigenvalue. Thenhanced incomplete factorizaticarried out usinglgorithm 3with the

new tolerance setting for dropping scheme (ii). The quality of the enhanced smoother is esti-
mated using Lanczos method. If it remains unsatisfactory, the value of dropping tolerance is

further reduced (see Section 3 for the details). This process continues until the satisfactory
smoother is found. The Lanczos vectors from the previous incomplete factorizations are uti-

lized for the prolongation operator construction.

If the tentative GAM preconditiondor the GAM smoother is found to be not satisfactory, we

may either enhance the relaxation scheme by u#sggyithm 3with the new tolerance setting

for dropping scheme (ii), or construct@amhanced GAM coarse modsl increasing the value
number of modes on each aggregate or taking larger aggregates. Schematics of the adaptive
global basis algorithm are illustrated in Figure 2.
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FIGURE 2. : Schematics of the heuristic adaptive two-level algorithm
3.0 Numerical Examples and Discussion

3.1 Helmholtz equation on bounded domains

Consider Helmholtz’s equation in the region enclosed between two concentric cubes of length
2(I'p) and 6(; ). The strong form of the governing equations is given as

Dzu(x) + kzu(x) =0 xdQ (8)

a_‘r‘] = %(eikr/r) x0T, 000 (©)
rO

ou _ ai(eikf/r) x0, 090 (10)
n r r,
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where n is a coordinate in a direction normal fo, ahd ,0rM; =0Q and

o n I, = 0;risdistance from the center of the cube. Equations (8)-(10) describe the acous-
tic pressures of a wave in a transmitting medium.

Because of symmetry, only one-eighth of the domain is discretized. Three meshes consisting
of 3,072, 23,925 and 156,009 4-node linear tetrahedral elements have been considered. The
coarsest discretization is shown in Figure 3.

FIGURE 3. : Typical finite element mesh and boundary conditions

The resulting discrete linear system of equations f, is symmetric, complex and indefinite.
It is convenient to transform the complex symmetric linear system into a real symmetric sys-
tem by replacing each term in the stiffndSgg, force vectorf,, and the solution vectox,,

R | R R
by Kag Kag| |fa and Xa
| R | |
Kag —Kag| |fa —Xa

respectively. The superscrig®sand| denote the real and

imaginary parts which can be interpreted as two degrees-of-freedom per node.

We consider four approaches for the solution of discrete linear system of equations:
() Global-basis two-level method applied to source equati®osr¢e-GB,

(i) Local-basis two-level method applied to source equationsS@jice-LB,
(ii)Local-basis two-level method applied to normal equationsN@jr(nal-LB),

(iv) Direct sparse solver with minimum degree reordering [2iect).

Schemes (ii) and (iii) use eigenfunctions defined on overlapping aggregates with Dirichlet
boundary conditions for construction of prolongation operator [2]. SSOR is employed as
smoother for Scheme (ii), while for Scheme (iii) we adopt the Incomplete Cholesky precondi-
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tioner for normal equation [11] as a smoother. Scheme (i) and (ii) use QMR as an accelerator
whereas a Conjugate Gradient acceleration for normal system is employed in Scheme (iii).

Helmholtz linear system with 1478 equations

o——o Source GB
a~——=a Source LB
=- -8 Normal LB
oo Direct

N
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[
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FIGURE 4. : CPU Time versuskh for discrete Helmholtz linear systems with 1,478 equations

Helmholtz linear system with 9648 equations
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FIGURE 5. : CPU Time versuskh for discrete Helmholtz linear systems with 9,648 equations
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Helmholtz linear system with 57586 equations
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FIGURE 6. : CPU versuskh for Helmholtz linear system of 57,586 equations

Figures 4-6 show the CPU time on SUN ULTRA2/2200 versus the product of the average ele-
ment size and the wave numbdr, for the three meshes considered. The proklubas been
selected since it represents a measure of solution accuracy [12]. Even though practitioners
dealing with wave propagation problems are primarily interested in the tdmgk,required

for solution accuracy[13], we conduct numerical experiments outside the range of the usual
interest. Our interest in a much wider spectrurktofalues stems from the fact that not only

the analyst may frequently encounter highly nonuniform meshes, where the precise definition
of his questionable, but primarily, because our ultimate goal is to develop a generic black-box
equation solver for positive definite, weakly and highly indefinite systems.

It can be seen from Figures 4-6 that for the medium and large meshes the global-basis method
(with a single-level smoother) applied to the source systamr¢e-GB)s the best solver over

the whole spectrum & while theDirect solver is better suited for the small mesh. The break
even point between the one- and two-level methods considered is approximately 5,000 equa-
tions. In the case of 50,000 unknowns, the global-basis two-level method is faster than the
Direct solver by a factor of 5-30. The local-basis method $jufce-LB)only converges at

both ends of the spectrum when the system is positive definite or slightly indédiitd) or

negative definitekh > (20-40). Although the local-basis method applied to the normal sys-
tem (Normal-LB) does converge for all situations, it is significantly slower than the global-
basis method, especially when the system is highly indefiditekll < 20-40Q. Convergence

was measured in terms of the normalizgchorm of the residual with the tolerance of®10

For the global-basis method with a single level smoother, weused.1 for adaptive scal-
ing anda = 0.001 anan= 4for pivoting. In the adaptive algorithm, tkentative incomplete
factorizationsmoother is considered satisfactory\if, ) <10 . The initial drop tolerance for

theenhanced incomplete factorizatiendetermined adroptol = min(1/( /])\maJ), 0.01)
and is reduced by factor of 5 for subsequent incomplete factorizations.
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Figure 7 illustrates the effect of deviation from the optimal prolongation operator on the per-
formance of the local-basis two-level method [2] in terms of iteration count. We use the small
mesh with wave numbdér= 10 as an illustration. The Modified Incomplete Factorization with

a threshold as described in Section 2 is employed as a smoother. In this example we consider
the values ofiroptol =0.15 and 0.05. The maximum eigenvalu&ka$ 20.8 and 0.8 fadrop-

tol equal0.15 and0.05, respectively. It can be seen that in both cases the coarse model
increases the number of iterations. This result is consistent with our findings in Part 1 [1]. It
can be seen that simply increasing the size of coarse model may not be helpful, and in this par-
ticular case it deteriorates the performance of the local-basis two-level method.

droptol = 0.15 droptol = 0.05
500

IS
[

450

IN
[S]

+ 400
f=t

3
Q 350
O

w
a

< 300
=]

Iteration Count
w
o

=
®© 250
9]

=

200

N
A

150

100

N

0 50 100 150 200 50 100 150 200
Size of Coarse Model Size of Coarse Model

o

FIGURE 7. : Convergence of local-basis methods
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Size of Coarse Model

FIGURE 8. : Convergence of global-basis methods

Another form of deviation from the optimal prolongation is due to loss of orthogonality of the
Lanczos vectors. The example we used is that of the small mesh=&hFigure 8 compares
various global-basis two-level method which utilize Lanczos vectors for prolongation opera-
tor. The Lanczos vectors have been generated by the Lanczos recursions with and without
reorthogonalization. To distinguish the effect of prolongation error from the effect caused by
near singularity of the coarse model due to linear dependence of Lanczos vectors, we orthogo-
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nalize the Lanczos vectors after the completion of the Lanczos recursions without reorthogo-
nalization post-orthogonalization The results are shown in Figure 8. It can be seen that the
first 20 modes, generated by the Lanczos recursions without reorthogonalization, considerably
reduce the iteration count while the following 90 modes only reduces the iteration count by
half. It can also be seen that using more than 130 Lanczos vectors without orthogonalization
makes the two-level method diverge. Even with post-orthogonalization, the number of the iter-
ations increases when the size of coarse model is larger than 150 due to the deviation from the
optimal prolongation. When the Lanczos vectors were generated with reorthogonalization
(full orthogonalizatiof, the number of iterations always decreased with the increase in the
size of coarse model. This suggests that if a larger coarse model is needed, reorthogonalization
must be applied in the process of Lanczos recursions to reduce the effects of prolongation
error and near singularity of the coarse model. Also, as we have mentioned in Section 2.1.3, it
is advantageous to apply the reorthogonalization in the Lanczos process to maximize compu-
tational efficiency.

Solution Methods Number of cycles and CPU Split-up Times
Global
Basis Smoother Global Basis # of Iterative Solver
Smoother Coarse | Construction | Construction | cycles | Process Total
Model
Type Size Size CPU (sec) CPU(sec) CPU(sef) CPU(s€c)
0 0 1 0 >1000 NA NA
Single-level 0 20/40/60 1 4/10/16 >100( NA NA
0 120 1 26 461 629 656
319 0 6 0 >1000 NA NA
1459 0 10 0 830 237 247
319 20 6 5 427 164 175
GAM 1459 20 10 6 237 104 120
(Neumann) | 319 40 6 11 274 125 142
1459 40 10 12 108 56 78
319 60 6 17 103 79 102
1459 60 10 18 58 48 76
276 0 10 0 933 224 234
317 0 11 0 555 139 150
276 20 10 5 249 97 112
GAM 317 20 11 5 153 61 77
(Dirichlet) 276 40 10 11 102 49 70
317 40 11 11 73 38 60
276 60 10 18 46 33 61
317 60 11 18 37 30 59

TABLE 1. Comparision of Solvers
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Results of the preliminary investigation on the application of multilevel preconditioners as
smoothers within the framework of the global-basis two-level method are illustrated in Table
1. We considered the problem of the medium mesh Wwith 4. The following solution
schemes have been studied: The single-level smoother with or without the global-basis coarse
model, the GAM smoother (Neumann BC) with or without global-basis coarse model, and
GAM smoother (Dirichlet BC) with or without the global-basis coarse model téritative
incomplete factorizatigndescribed in Section 2.4, was employed as a single-level smoother
and as a relaxation scheme within the GAM preconditioner. It can be seen that the global-basis
two-level method with a single-level smoother does not converge within 1000 steps unless
over 120 global modes are selected, in which case the computational costs of the global basis
coarse model construction dominates the entire computational cost. If, on the other hand, we
employ the GAM preconditioner as a smoother, the computational cost can be significantly
reduced.

3.2 Shear banding problem

We considered a linearized shear banding problem, illustrated in Figure 9. The cube is dis-
cretized with1l6x 16x 16, 24 x 24x 24 and32 x 32x 32 8-node hexahedral elements total-

ing to 14793, 46875 and 107811 degrees-of-freedom. We assume that a shear band (softening
zone) develops on the diagonal plane of two layers of elements [14]. We considered the spec-

trum of ratios between the stiffness inside and outside the shearfhangiE , In the range
of 0.3 and -0.7.
Epand * ol
I
Eband
E
>
€
A
E

v

FIGURE 9. : Model for shear banding problem

The four approaches described in 3.1 have been tested. Figures 10-12 show the CPU time ver-
sus the measure of indefinitenegg (,y/E ) for the three meshes considered. It can been seen
that for all three meshes considered, the global-basis method has the best performance among

the four approaches. The behavior of the local-basis methods is similar to that of the Helm-
holtz equations. It converges when the system is positive definite or weakly indefinite,
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Epand’ E> 0.1, but diverges for highly indefinite system).7<E,,,/E<-0.1 . The nor-

mal equation approach converges over the whole spectrum and is competitive with the direct
solver for problems above 100,000 unknowns.

The influence of deviation from the optimal prolongation operator is similar to that illustrated
in Figures 7 and 8. The performance of two-level method is very sensitive to the quality of the
prolongation operator. The deviation from the optimal prolongation operator may deteriorate
the performance of two-level method significantly.
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FIGURE 10. : CPU Time vs.Ey .4/ E for shear banding problem with 14,739 equations
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FIGURE 11.: CPU Time vs.Ey .4/ E for shear banding problem with 46,875 equations
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FIGURE 12.: CPU Time vs.Ey .4 E for shear banding problem with 107,811 equations

4.0 Summary

Algorithmic aspects and computational efficiency of the global basis two-level method,
including nearly optimal global basis prolongation operator, single-level and multilevel
smoothers, and a heuristic feedback control loop, were studied. Numerical experiments con-
ducted on the Helmholtz equations and the shear banding problems affirm the potential of the
method.

Further studies will be conducted to develop optimal smoothing preconditioners, and to
extend the application of the solver to nonsymmetric indefinite systems. From the practical
point of view, adaptivity and automation of the method are the key remaining issues.
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