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SUMMARY

In this work we present the Generalized Global-Basis (GGB) method aimed at enhancing performance
of multilevel solvers for difficult systems such as those arising from indefinite and nonsymmetric
matrices. The GGB method is based on the Global-Basis (GB) method [1], [2], which constructs an
auxiliary coarse model from the largest eigenvalues of the iteration matrix. The GGB method projects
these modes which would cause slow convergence to a coarse problem which is then used to eliminate
these modes. Numerical examples show that best performance is obtained when GGB is accelerated
by GMRES and used for problems with multiple right hand sides. In addition it is demonstrated
that GGB method can enhance restarted GMRES strategies by retention of subspace information.
Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multilevel methods are very efficient solvers for symmetric positive definite systems arising
from partial differential equations. For such systems, multilevel preconditioners require
computational work proportional to the number of unknowns. However, when the system
is nonsymmetric or highly indefinite, multilevel methods may not perform as well [3]. Such
systems arise in a variety of applications including linearized Navier-Stokes equations, saddle-
point and least squares problems with constraints and problems with an indefinite constitutive
tensor arising as a result of damage/localization in solids. Some multilevel methods have
been applied for certain weakly indefinite systems. However, the proposed strategies impose
restrictions on the coarse grid, requiring that these grids are sufficiently fine for the algorithm
to be convergent [4], [5]. For highly indefinite systems, convergence is not guaranteed unless the
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multilevel procedures are utilized in the context of the normal equations [6], [7]. Often, such an
approach leads to systems which are much worse conditioned than the original system. A better
approach is to use multilevel methods as preconditioners to Krylov iterative solvers [8], such
as GMRES or QMR. However for some problems GMRES might stall in the first iterations
until it resolves the indefinite modes of the system. This can often lead to poor convergence
rates [9], [10], [11]. QMR, on the other hand, does not guarantee convergence for highly
indefinite systems.
Recently, a Global-Basis two level method (GB) for highly indefinite systems has been
developed [1], [2]. The method identifies the eigenvalues of the smoothing iteration matrix that
are outside the region of convergence and constructs a coarse model using the corresponding
eigenvectors. The method was shown to be robust for highly indefinite cases. Another method
that has some similarities to the Global-Basis idea is the Recursive Projection Method
(RPM) [12]. This method attempts to stablize unstable fixed point iterations by computing
a projection onto the unstable subspace. In this paper, we focus on stabilizing the entire
multilevel procedure by generalizing the Global-Basis method. The Generalized Global-Basis
(GGB) method constructs an additional coarse grid correction spanned by the unresolved
eigenmodes of the multilevel method. The idea is to filter out modes that are slow to converge
and resolve them on an additional coarse grid. This accelerates the iterative process and
yields rates of convergence similar to the application of the unaccelerated multilevel method
applied to a positive definite system. We emphasize that any existing multilevel method can
be applied as a preconditioner with the GGB acceleration. This allows any multilevel to be
applied to indefinite systems. In terms of computational work, the method is the most efficient
for problems that can reuse the information of the eigenspace. Examples include multiple right
hand side problems, linear transient problems, variants of eigenvalues computations, nonlinear
schemes where a modified Newton method can be applied. Another method for nonsymmetric
matrices has been proposed in [13]. The method is based on updating preconditioners by a
two level spectral shifting of the smallest eigenvalues of the preconditioned linear system. The
GB and the GGB methods have some connections to these ideas. However, an important
distinction is that the GB and GGB methods avoid the significant expense of computing small
eigenvalues by instead focusing on the largest eigenvalues of the iteration operator.
An outline of the paper is as follows. In Section 2, we briefly summarize multilevel V cycle
principles. We give an overview of the original Global-Basis method and motivate the GGB
scheme. In Sections 3 and 4, analysis of the GB and GGB methods, respectively, are conducted
on a model Helmholtz problem. In section 5, we study performance for three classes of
problems: (i) 1D Helmholtz operator using a standard multilevel method to precondition
GGB. (ii) 2D elastic wave propagation in a cracked membrane using softening zones using
a Generalized Aggregation Multigrid (GAM) solver [18], and (iii) 3D thermal-convection flow
using a piecewise constant multigrid solver [19]. We also discuss scalability and computational
cost. In all cases we demonstrate the convergence characteristics of GGB and its beneficial
effect on GMRES.

2. MOTIVATION AND GOALS

Consider an N ×N linear algebraic system of equations
Ku = f (1)
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with the solution u ∈ RN , and the right hand side vector f ∈ RN . The system matrix
K ∈ RN×N is considered to be generally nonsymmetric indefinite. A generic two-level multigrid
V-cycle is illustrated in Figure 1. We introduce the following notation: the prolongation
operator from the coarse grid to the fine grid Q : Rm → RN , where the coarse model is
m × m and m < N . The restriction operator is taken to be transpose of the prolongation
operator i.e. QT : RN → Rm . The coarse grid operator is defined by K0 = QT KQ, and the
smoothing or relaxation procedure is given by M ∈ RN×N . The subscript zero is used to
denote variables on the coarse space.

Step 1: Pre-smoothing
ui+1 ← ui + M−1(f −Kui) do ν1

Step 2: Coarse grid correction
a. Residual restriction:

ri
0 = QT (f −Kui)

b. Coarse grid solution:
ui

0 = K−1
0 ri

0 where K0 ← QT KQ
b. Correction:

ui+1 ← ui + Qui
0

Step 3: Post-smoothing
ui+1 ← ui + M−1(f −Kui) do ν2

Figure 1. Generic two-level multigrid V-cycle

If the error after iteration i is ei = u − ui, than reduction of the error after one V-cycle is
controlled by the multilevel iteration matrix, given as

ei+1 = Sν2TSν1ei = Rei, (2)

where ν1 and ν2 are the number of pre and post smoothing. S ∈ RN×N is the smoothing
iteration matrix written as

S = I −M−1K, (3)

and T ∈ RN×N is the coarse grid correction given by

T = I −Q(QT KQ)−1QT K (4)

where I is the N×N identity matrix. T is a projector satisfying T = T 2 with a spectral radius
of ρ(T ) = 1. The two-level cycle is guaranteed to converge iff the spectral radius of the two-
level iteration matrix is inside the unit circle, ρ(R) < 1. The asymptotic rate of convergence
is defined as

c = lim
i→∞

∥∥ei+1
∥∥

‖ei‖ = ρ(R). (5)

Multilevel methods consist of two major elements: smoothing and coarse grid correction. When
symmetric positive definite (SPD) systems are considered, classical iterative methods, used as
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smoothers, eliminate the oscillatory components of the error leaving the smooth components
almost untouched. This motivates the use of a coarse grid correction, where smooth components
of the error are effectively approximated on a coarser grid. However, for difficult systems
such as indefinite and nonsymmetric systems, smoothing may leave some oscillatory modes
untouched, and thus standard multilevel methods might magnify these modes rather than
reducing them [3].
For certain indefinite problems, multilevel methods used as preconditioners to Krylov type
methods might perform well provided that the spectrum of the overall iteration matrix is
clustered around zero [11]. For highly indefinite problems some multilevel preconditioners can
be accelerated leading to rapid convergence, while some can cause GMRES to stall until slow
converging modes are captured [9], [11]. One way to improve the convergence rate is to use
GMRES as a smoother for the multilevel on the coarse grid and as an accelerator on the fine
grid [14]. The method was implemented on a Helmholtz type problem. However, it is not clear
whether this provides a truly efficient solution technique.
The global-basis (GB) method has been shown to be robust [1], [2]. This method accelerates a
standard iterative method by identifing all the modes that are outside the region of convergence
by solving for the largest eigenvalues λi > |1| of the smoothing iteration matrix for smoothing

Sφi = λiφi i = 1, ..., N. (6)

A prolongation operator is then assembled using these global-basis modes as columns and
used in the context of the two-level method. The authors in [1], [2] demostrated robustness
of the method for symmetric indefinite systems. They employed a Lanczos method with look
ahead and re-orthogonalization for the eigenvectors computations. The main shortcomings is
that the convergence rate is governed by the properties of the smoother and for some highly
indefinite systems there might be a significant percentage of error modes outside the unit circle
that causes the entire computational cost to be dominated by the cost of solving the eigen-
problem.
The basic idea of the generalized method, termed as Generalized Global Basis (GGB) method
is this. Instead of accelerating a simple smoothing iteration, we filter out the modes which are
unresolved by a multilevel method. Figure 2 schematically illustrates the architecture of the
method. Black circles denote local smoothing at each level, and GMRES/QMR is an outer
accelerator. We use the multilevel method as a preconditioner, filtering its slowly converging
modes onto a coarse grid, where they are exactly resolved. Mode identification is done by
solving the following eigenvalue problem for the multilevel iteration matrix

Rφi = λiφi i = 1, . . . , N. (7)

Since we are interested in modes corresponding to large magnitude eigenvalues λi > |1|,
implicitly restarted Arnoldi method [15] from ARPACK [16], is employed.
The iteration matrix of a single GGB cycle, shown in Figure 2, without an external accelerator
can be written as

ei+1 = (STS)ν2FGGB(STS)ν1ei = Rν2FGGBRν1ei, (8)

where STS is the multilevel iteration matrix and ν1, ν2 correspond to the number of V-cycles.
FGGB is the multilevel method correction operator, or filter, given as

FGGB = I −Qf (Q∗
fKQf )−1Q∗fK, (9)
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where the prolongation operator Qf is spanned by the highest modes of R. For indefinite
nonsymmetric or complex problems the multilevel iteration matrix R will most likely be
nonsymmetric causing the eigenvectors to be complex. For this reason we use the adjoint
notation. In the next sections, we study convergence characteristics of GB and GGB methods

GMRES\QMR

GGB MLML

Direct solve

Smoothing

Figure 2. Generalized Global Basis (GGB) correction cycle

on Helmholtz problem. We show that the asymptotic convergence rate of GGB depends on
the multilevel preconditioner, unlike the original Global-Basis method whose convergence
characteristics are governed by a single level preconditioner employed for smoothing.

3. ANALYSIS OF GLOBAL BASIS TWO LEVEL METHOD

Consider a one-dimensional, Helmholtz model problem on the interval Ω = [0, 1] with
homogeneous Dirichlet boundary conditions

{
−u′′ − k2u = f

u(x = 0) = u(x = 1) = 0
(10)

. The domain is divided into N + 1 segments with equal length h = 1
N+1 . A central difference

discretization is employed

−u′′(x) =
u(x + h)− 2u(x) + u(x− h)

h2
+ O(h2) (11)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



6 H. WAISMAN, J. FISH, R. S. TUMINARO AND J. SHADID

leading to the N ×N linear system (1) with the following stencil

1
h2

[1 − 2 1]− k2I. (12)

The problem is indefinite for k2 > π2 assuming that k2 is not an eigenvalue of the negative
Laplacian [14]. The eigenvalues and eigenvectors of the system matrix K are respectively

λj =
2(1− cos jπh)

h2
− k2 =

4
h2

s2
j − k2 j = 1, . . . , N (13)

and
vj =

√
2h [sin ijπh]Ni=1 j = 1, . . . , N, (14)

were sj = sin jπh
2 . We also define the matrix V as the span of all eigenvectors

V = span {vi}N
i=1 =




| |
v1 . . . vN

| |


 . (15)

Damped Jacobi iteration is given by

ui+1 = ui + ωD−1
(
f −Kui

)
. (16)

D =
(

2
h2 − k2

)
I is the diagonal of K, and ω is a damping factor. The relaxation scheme (16)

is equivalent to the following iteration on the error

ei+1 = (I − ωD−1K)ei = Sei, (17)

where S is the smoothing iteration matrix (see (3)). S shares the same eigenvectors as K.
Specifically,

Svj =
(

1− ω
2
h2 − k2

λj

)
vj = µjvj , (18)

where

µj = 1− ω

(
4s2

j − (kh)2

2− (kh)2

)
j = 1, . . . , N. (19)

We denote Λa,b as a diagonal matrix of size (b−a+1)× (b−a+1), with all sorted eigenvalues
µj such that a ≤ j ≤ b. It is apparent that for indefinite cases some eigenvalues of S are outside
the unit circle, i.e. |µj | > 1 and thus magnify the error of the corresponding eigenmodes. We
are now ready to analyze convergence behavior of the global-basis two level method. Assuming
there are m eigenvalues greater than one (the last µj ’s), the global-basis method constructs
an optimal prolongation operator

Qgb = span {vi}N
i=N−m+1 =




| |
vN−m+1 . . . vN

| |


 . (20)

The eigenvalue problem can be compactly written for the indefinite modes as

SQgb = QgbΛN−m+1,N . (21)
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Substituting (20) into (4) with relation (21) and the ortho-normality condition of the
eigenvectors, gives the following coarse grid projector

FGB = I −Qgb

(
QT

gbKQgb

)−1
QT

gbK = I −Qgb

(
QT

gbKQgb

)−1
(KQgb)

T

= I −QgbQ
T
gb.

(22)

This is a rank m perturbation of the identity and the projector is orthogonal.
The two level yielding iteration matrix can now be analytically resolved using (15), (16) and
(22)

SFGBS = S
[
I −QgbQ

T
gb

]
S = V Λ1,NV T

[
I −QgbQ

T
gb

]
V Λ1,NV T

= V Λ2
1,NV T − V Λ1,N

[
0N−m×N−m

Im×m

]
Λ1,NV T

= V

[
Λ2

1,N−m

0m×m

]
V T .

(23)

(23) illustrates that all the indefinite modes are eliminated from the two level iteration matrix
and thus the convergence of the two-level cycle is guaranteed. It is also evident that the
asymptotic rate of convergence, in eq. (5), is governed by the highest eigenvalue of the smoother

c = µ2
N−m =

[
1− ω

(
4s2

N−m − (kh)2

2− (kh)2

)]2

(24)

that is inside the convergence region. This suggests that substitution of a single level smoother
by a more effective method may lead to both faster rates of convergence and fewer eigen-modes
outside the convergence region.

4. ANALYSIS OF GENERALIZED GLOBAL BASIS (GGB) METHOD

We apply a standard multilevel method to (1). We show that the multilevel preconditioner
filtered by the GGB method is positive definite and its convergence is governed by spectral
characteristics of the convergent modes of the unfiltered operator. Figure 3 shows a one-
dimensional mesh. Superscript zero denotes the coarse grid variables. We assume an odd

Ω

Ω

x

x x

x N

ο

ο

n

ο

Figure 3. Fine and coarse meshes

number of fine grid points with n = N−1
2 being the coarse grid points. Linear interpolation is
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8 H. WAISMAN, J. FISH, R. S. TUMINARO AND J. SHADID

used to transfer from coarse grid to fine grid (prolongation) Qmg : Rn → RN ,

Qmg =
1
2




1
2
1 1

2
. . .

1
. . . 1
. . . 2

1




(25)

and QT
mg is used for the restriction operator (assuming periodic boundary conditions).

It is easy verified that the prolongation operator applied to a coarse grid eigenvector yields a
linear combination of one smooth and one oscillatory mode of the fine grid [17]:

Qmgv
0
j = c2

jvj − s2
jvN+1−j j = 1, . . . , N, (26)

where cj = cos jπh
2 and sj was given in (13). Similarly, QT

mg applied to a fine grid eigenvector
yields

QT
mgvj =





c2
jv

0
j j = 1, . . . , n

0 j = n + 1
−c2

jv
0
N+1−j j = n + 2, . . . , N

. (27)

(
v0

j , λ0
j

)
is an eigenpair of the coarse grid matrix

QT
mgKQmgv

0
j = λ0

jv
0
j (28)

given by v0
j = [sin 2ijπh]nj=1 and

λ0
j = c4

jλj + s4
jλN+1−j =

4
h2

s2
jc

2
j − k2

(
s4

j + c4
j

)
. (29)

Combining (26) - (27) one can show

T [vj , vN+1−j ] = [vj , vN+1−j ]


 1− c4

j
λj

λ0
j

s2
jc

2
j

λN+1−j

λ0
j

s2
jc

2
j

λj

λ0
j

1− s4
j

λN+1−j

λ0
j


 j = 1, . . . , n. (30)

Recalling

S [vj , vN+1−j ] = [vj , vN+1−j ]
[

µj

µN+j−1

]
j = 1, . . . , n, (31)

we can deduce

STS [vj , vN+1−j ] =
[

µj

µN+1−j

] 
 1− c4

j
λj

λ0
j

s2
jc

2
j

λN+1−j

λ0
j

s2
jc

2
j

λj

λ0
j

1− s4
j

λN+1−j

λ0
j




[
µj

µN+1−j

]
(32)

= [vj , vN+1−j ]


 µ2

j

(
1− c4

j
λj

λ0
j

)
s2

jc
2
j

λN+1−j

λ0
j

µ2
jµN+1−j

s2
jc

2
j

λj

λ0
j
µ2

jµN+1−j µ2
N+1−j

(
1− s4

j
λN+1−j

λ0
j

)

 .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



A DEMONSTRATION OF THE INT. J. NUMER. METH. ENGNG CLASS FILE 9

The above implies that the Fourier transform can be used to reduce the multigrid iteration
operator to a block diagonal matrix, with 2 × 2 blocks. The eigenvectors of STS, φj , are a
linear combination of [vj , vN+1−j ] with constants xj and yj

φj = xjvj + yjvN+1−j j = 1, . . . , n. (33)

The eigenvalues are the union of the eigenvalues of the 2× 2 matrices. Due to the projection,
one of the eigenvalues of the 2× 2 matrix is always zero and the other is

θj = µ2
j

(
1− c4

j

λj

λ0
j

)
+ µ2

N+1−j

(
1− s4

j

λN+1−j

λ0
j

)
j = 1, . . . , n. (34)

This implies that the rank of STS must be n+1 (the middle mode is left untouched). Figure 4
illustrates the first and second eigenvectors of STS.
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Figure 4. First and second eigenvectors of STS

We now examine how GGB corrects the multilevel scheme. We define the prolongation operator
for the GGB scheme

Qf = span {φi}N
i=N−k+1 =




| |
φN−k+1 . . . φN

| |




N×k

. (35)
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10 H. WAISMAN, J. FISH, R. S. TUMINARO AND J. SHADID

The operator is spanned by all modes corresponding to eigenvalues |θj | > 1 , say k eigenvalues.
In analogy to GB, the eigenvalue problem for STS can be written as

(STS)Φ = ΦΘ, (36)

where Φ is the complete set of eigenvectors and Θ is the eigenvalue matrix. There are n zero
eigenvalues associated with STS, i.e. dim N (STS) = n (dim N is the dimension of the
nullspace). We can now partition Φ in (36) into three subpaces: the null space, the convergent
space and the indefinite space we want to filter out.

null sapce N (STS) = {Φ0 : (STS)Φ0 = 0}
convergent space C(STS) = {Φc : (STS)Φc = ΦcΘn+1,N−k}
indefinite space F(STS) = {Qf : (STS)Qf = QfΘN−k+1,N}

(37)

We denote Θa,b as a diagonal matrix of size (b − a + 1) × (b − a + 1), with all eigenvalues θj

on the diagonal such that a ≤ j ≤ b. The subspaces satisfy the following properties:

N ⊕ C ⊕ F = Φ
N ∩ C ∩ F = 0

N⊥C,N⊥F , C⊥F .

(38)

Rewriting (36), we have

(STS)[Φ0, Φc, Qf ] = [Φ0,Φc, Qf ]




0n×n

Θn+1,N−k

ΘN−k+1,N


 . (39)

We now establish the convergence rate for the GGB method preconditioned by a standard
multigrid. The eigenvalues of the GGB iteration matrix in equation (8) can now be analytically
resolved. The eigenvalue problem reads

(STS)FGGB(STS)Ψ = ΨΣ. (40)

Assuming that Ψ = Φ and substituting into (40) along with a similiarity transform, that is
possible due to the properties given in (38), we get

Σ = ΦT (STS)FGGB(STS)Φ. (41)

We form the following relation based on (36) and (38):

ΦT (STS) = ΦT (STS)ΦΦT = ΦT ΦΘΦT = ΘΦT . (42)

Substituting the relations (36), (37), (39) and (42) into (41), yields

Σ = ΦT (STS)FGGB(STS)Φ = ΘΦT FGGBΦΘ

= ΘΦT
[
I −Qf (Q∗fKQf )−1Q∗fK

]
ΦΘ

= Θ [Φ0,Φc, Qf ]T
[
I −Qf (Q∗fKQf )−1Q∗

fK
]
[Φ0, Φc, Qf ] Θ.

(43)

Using the orthogonality properties (38), we arive at

Σ = Θ [I, I, 0]Θ =




0n×n

Θ2
n+1,N−k

0k×k


 . (44)
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This completes the proof. It also implies that the rate of convergence is governed by c = ρ(Σ)
or the highest eigenvalue within the convergent space C, which is given by

θ2
k =

[
µ2

k+1

(
1− c4

k+1

λk+1

λ0
k+1

)
+ µ2

N−k

(
1− s4

N−k

λN−k

λ0
k+1

)]2

. (45)

5. NUMERICAL RESULTS

We apply the GGB scheme to three classes of problems: a one-dimensional Helmholtz equation,
a two-dimensional, elastic wave propagation problem, and a three-dimensional thermal-
convection flow application. For the Helmholtz problem we use the standard multilevel method
described in section 4. In the wave propagation example we apply Generalized Aggregation
Multilevel (GAM) [7], [18] accelerated by the GGB method. Since this problem is time
dependent, many linear systems are solved, and thus the cost of the eigenvectors computations
is minimized (only done at the setup phase) and the eigenspace information is reused. This case
is similar to problems with multiple right hand sides. For the third example we use a stabilized
finite element code (MPsalsa) [24], [25] to obtain the algebraic nonsymmetric system. We
apply the smoothed aggregation method [19], [20] from the ML package [21], as a multilevel
preconditioner. The problems were run on an Intel(R) Xeon(TM) i686 processor with speed
of 1700 MHz and a Linux operating system.
The solvers considered are: unpreconditioned GMRES, two-levels Global-Basis (GB),
Generalized Global-Basis (GGB), GMRES preconditioned by GGB and GMRES
preconditioned by the appropriate multilevel method. We use GMRES(m) to restart GMRES
every m iterations [22], and the following right preconditioning

KP−1(Pu) = f, (46)

where KP−1 is the new preconditioned system that contains one or two sweeps of a multilevel
cycle [11]. Right preconditioning guarantees that the norm of the preconditioned residual is
the same as the unpreconditioned one [22]. For all examples we used the following stopping
criteria ∣∣∣∣ri

∣∣∣∣
2

||r0||2
< 10−6, (47)

where ri = f − Kui is the residual at iteration i. Finally, we discuss scalability and
computational cost of GGB.

5.1. 1D Helmholtz preconditioned by standard multilevel

Figure 5 presents the convergence behavior of the solvers applied to a one-dimensional
Helmholtz problem given in equations (10) and (12) for varying wave number k. The governing
equations and boundary conditions are given in Sections 3 and 4. As shown in Table I, the
indefiniteness of the system can be controlled by varying the value of k. Highly indefinite
systems are obtained for large wave numbers. In the present study GMRES is not restarted.
We use two cycles of the standard multilevel method to precondition GMRES so that this can
be compared with GGB which uses two multilevel cycles per iteration. As a smoother for the
two-grid method we use a simple damped Jacobi smoother with damping factor ω = 2

3 . The
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system consists of 411 equations.
Neither the unpreconditioned GMRES nor the Global-Basis method (GB) performs well on
this problem. Unpreconditioned GMRES converges only after 411 (system size) iterations and
therefore is not presented. On the other hand, excellent performance has been observed for
both the two-grid preconditioned GMRES and the GGB methods. However, when k is large,
GMRES preconditioned by GGB outperforms all methods (see Figure 5). Table I shows the
number of eigenvectors used for the GB and GGB methods versus the number of negative
eigenvalues of the system. It corresponds to the number of eigenvalues greater than 0.95 in
absolute value. It is clear that not is the GGB convergence rate faster than the GB rate, but
it requires less eigenvectors.
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Figure 5. Number of Iterations required by the solvers to converge as the wave number (indefinitness)
of the system increases

Figure 6 demonstrates the convergence of the solvers for a highly indefinite system (k = 130π)
with 130 negative eigenvalues of the shifted Laplacian. It can be seen that GMRES without
restarting converges only in the last iteration, i.e. in 411 iterations. GGB converges slightly
better than GB but remarkably requires only 1

6 of the eigenvectors. The performance of
GMRES preconditioned by multigrid stalls in the first iterations and eventually converges
after 54 iterations. GGB accelerated by GMRES does not stall and converges in 20 iterations.
By incorporating the “bad” modes in an additional coarse level, GMRES can be significantly
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Table I. Number of eigenvectors used for convergence studies, compared to the number of indefinite
eigenvalues of the system

GB GGB Negative
eigenvalues of K

k = 10π 52 1 10
k = 30π 58 1 30
k = 50π 70 2 50
k = 70π 85 5 70
k = 90π 102 8 90
k = 110π 121 13 110
k = 130π 167 27 130

accelerated.

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Helmholtz 1D with k=130π

Number of Iterations

GB (167 modes)   
GGB (27 modes)   
GMRES            
GMRES pre. by MG 
GMRES pre. by GGB

Figure 6. Convergence behavior of the solvers for 1D Helmholtz equation with k = 130π
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5.2. 2D Elastic wave propagation preconditioned by Generalized Aggregation Multilevel (GAM)

We next study performance of various solvers for a 2D elastic wave propagation problem in a
cracked membrane with softening zones at the tips of the crack. The governing equation for
transverse displacement u in the domain (x, y) ∈ Ω with boundary Γ is:

ρ(x, y)
∂2u

∂t2
= ∇ · (µ(x, y)∇u) + f in Ω, (48)

where t is time,ρ is the density, µ is the material constant (usually greater than zero) and f is
the forcing function. We neglect structural damping. The boundary conditions for the problem
are given as

u = 0 on Γ
∂u

∂n
= 0 on s+, s−

(49)

s+, s− are the two sides of the cracks boundaries. The initial conditions are set to zero for
both the displacement and the displacement velocity

u(t = 0) = u̇(t = 0) = 0. (50)

A standard Galerkin finite element semi-discretization in space produces a system of ordinary
differential equations of the form

Mü + Ku = f, (51)

where M is the mass matrix, K is the stiffness matrix and f is the force vector obtained by the
assembly operation over the local element domains. Figure 7 shows the finite element meshes
considered. The membrane is constrained all around and a point force is applied at a single
node. Details of the finite element mesh at the tip of the crack are shown in Figure 8. The red
dashed line illustrates the crack interface. The circles around the crack tips define the damage
regions for which µ is negative. This causes the problem to become indefinite.
An Implicit Newmark predictor-corrector time integration method is used with parameters
β = 1

4 and γ = 1
2 that define the average acceleration method or the trapezoidal rule (for more

details see [23]). The integration scheme leads to the system of linear equations (1) at each
time step. The parameters ρ and µ are chosen to be constants within the element.
The multilevel method used as preconditioner is the Generalized Aggregation Method
(GAM) [18]. We use two GAM cycles to precondition GMRES, similar to two cycles in GGB.
The method constructs aggregates using element connectivity information only. Aggregates
are defined as a group of connected elements that do not touch Dirichlet boundary conditions.
Once the aggregation process is complete (details can be found in [7]) aggregates stiffness
matrices KA are assembled. We then solve the aggregate eigenvalue problem KAΨA = ΨAΣA

for the eigenpair (ΨA, ΣA) and span the prolongation operator QGAM by the eigenvectors
corresponding to the lowest eigenvalues. The number of aggregate eigenvectors used must be
equal or greater than the size of the nullspace of the aggregate, i.e. greater or equal to the
rigid body modes. Figure 9 shows the formation of such large aggregates.
The results are obtained for normalized variables ρA = 2, ρB = 1 where subscripts A and B
indicate material type (see Figure 8),µ = 5 outside the damaged region and µ = −5 inside.
The damaged region is set to have radius of 3 units. We use 5 time steps of ∆t = 5[sec] to
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Figure 9. Formation of large aggregates used to span the prolongation operator

march with the Newmark scheme. Figure 10 presents the overall number of iterations versus
the step number of the various solvers, and Figure 11 illustrates the convergence at the first
time step.
We use GMRES without restarting. Unpreconditioned GMRES is not shown due to poor
performance. It is evident that the iterations count increase linearly over the time integration as
only the right hand side varies. We use an Implicit Restarted Arnoldi method [15] implemented
in ARPACK [16] for eigenvectors calculations. Again, the fastest method to converge is GMRES
preconditioned by GGB. In terms of CPU time, GGB requires the additional projection step
within each iteration and the time to compute the eigenvectors. The additional projection is
inexpensive compared to the multigrid iterations. The eigenvector calculation time is also
negligible as it is only performed in the first step and then reused throughout the time
integration. This is in contrast to GMRES which builds information during the computation
of a linear solve but then normally throws this information away for subsequent linear solve.
Restarting the GMRES iteration makes it even harder and the computational cost increases
tremendously, where sometimes convergence is not guarantied.
This example illustrates the main advantage of the GGB method when the matrix is constant
but the right hand side varies. The GGB method computes eigenspace information that it is
able to reuse over many linear solves. Examples of multiple right hand side solves come from
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Figure 10. Number of iterations until convergence of the solvers for a transient 2D elastic wave
propagation

linear transient problems, shift and invert eigenvalue calculations using an iterative solve for
the “invert” phase, nonlinear problems when one uses a modified Newton scheme, Monte-Carlo
simulations, etc.

5.3. Thermal-convection, flow preconditioned by Smooth Aggregation

In this section we demonstrate the performance of GGB method applied to steady, thermal-
convection flow. The governing PDEs are the following Navier-Stokes with thermal energy
equations

Momentum ρu · ∇u−∇ · T− ρg = 0 (52)
Total mass ∇ · (ρu) = 0 (53)

Thermal energy ρĈpu · ∇T +∇ · q = 0 (54)

The unknown quantities are u the fluid velocity vector, P the hydrodynamic pressure and T
the temperature. ρ, g, and Ĉp are respectively, the density, the gravity vector and the specific
heat at constant pressure. The Boussinesq approximation is used for representing the body
force term.
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The necessary constitutive equations for T and q are

Stress tensor T = −P I + Υ = −P I + µ(∇u +∇uT )
Heat flux q = −κ∇T (55)

where µ is the viscosity and κ is the thermal diffusivity. (52)-(54) are approximated by a
Galerkin Least Squares formulation. The resulting nonlinear system of equations gives rise to
a system of coupled, nonlinear and nonsymmetric (definite) algebraic equations. We employ
MPSalsa [24], [25] to generate the system of equations, and a smooth aggregation multilevel
method [19] , [20] implemented in ML package [21] as preconditioner to GMRES. Due to
nonsymmetry of the problem our experience shows that best performance is obtained when
piecewise constants are used as grid interpolants (unsmoothed aggregation). The solvers are
applied to the following cases:
(i) 3D flow between two finite length concentric cylinders.
(ii) Large-scale 3D flow in a cube.

5.3.1. 3D flow between two finite length concentric cylinders In this case the fluid is confined
between two cylinders with a outer to inner radius ratio of 8

3 and a ratio of length to outer
diameter of 1. A no-slip condition is enforced on all boundaries. A hot temperature is set to
the inner cylinder and a cold temperature is set to the outer cylinder. The ends of the annular
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region are insulated. The momentum transport, total mass conservation and energy transport
are given in equations (52)-(54). We set the Prandtl number to be 1.0 and the Rayleigh number
to be 4 × 103, which is relatively small but demonstrates the behavior. The mesh described
in Figure 12 consists of 768 elements with 5400 unknowns. The results are presented for the
Jacobian arising in the last Newton step.
Figure 13 presents the eigenvalues spectrum of the Jacobian and the multilevel iteration matrix,
respectively. Figure 14 and Table II illustrates the convergence behavior of the various solvers.
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Figure 12. Concentric Cylinders meshed with 768 elements. Side and top views.

Two multilevel sweeps are applied to precondition GMRES, with a two-level cycle each. The
smoother used in the multilevel aggregation method is a damped Jacobi with ω = 2

3 . GMRES
is restarted every 100 iterations in the case of the multilevel preconditioner and every 20
iterations in the case of GGB preconditioner. In this way GMRES(100) without GGB uses
approximately the same storage as GMRES(20) with GGB using 80 modes.
The results clearly show that GGB accelerated by GMRES has the best performance,
converging in just 51 iterations. GGB alone converges faster than GMRES preconditioned
by aggregation. We use 80 largest eigenvectors as the additional coarse grid correction for
both GB and GGB. We also note that GMRES(100) preconditioned by aggregation did not
converge in a reasonable time and therefore the restarting was increased to 150. To this end
it is important to mention that GGB plays an important complementary role to GMRES.
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Figure 13. The spectrum of the Jacobian and multilevel iteration matrices, respectively, at the last
Newton step.

Restarting GMRES is crucial for convergence. However, once GMRES is restarted, all the prior
information is lost, causing temporal stall (see Figure 14) until it reconstructs a sufficient space
for further reduction of the error. When GGB is used, the information about the indefinite
modes which span the most difficult space is stored (the space that is slow to converge), which
enables GMRES to recover rapidly and to converge faster.

Table II. Total number of iterations until convergence for 3D cylinder-inside-cylinder thermal-
convection problem.

GB GGB GMRES(150) GMRES(20)
pre. by ML pre. by GGB

Total 440 76 441 51
iterations
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Figure 14. Comparison of solvers for 3D cylinder-inside-cylinder thermal-convection problem.

5.3.2. Large-scale 3D flow in a cube Finally we compare the performance of the solvers
applied to a 3D thermal-convection flow in a cube. A no-slip condition is enforced on all
surfaces. A hot temperature is set to one face of the cube and a cold temperature is set to the
parallel. The governing equations are given in (52)-(54). We set Rayleigh number to 2.4× 105

and the Prandtl number to 1.0. ilu(0) is applied as a smoother to the aggregation method at
each level excluding the coarse one. We consider cubes consisting of 16×16×16 and 32×32×32
mesh elements that yield systems with 24, 565 and 179, 685 number of unknowns, respectively.
A 3-level aggregation method is applied to the 16×16×16 cube and a 4-level to the 32×32×32
cube. All methods are applied as preconditioners to GMRES(30). We also introduce a modified
GGB scheme (MGGB) where the eigenspace is not always recomputed for each linear solve
of Newton’s method. In the current cube examples, the eigenspace is computed only once at
the first Jacobian and the GGB cycle (see Figure 2) is performed with the same prolongation
operator for all the remaining linear solves. This idea stems from the assumption that the
Jacobian does not change too much during the Newton iterations. Actually, in this example
the second Jacobian is significantly different from from the first Jacobian. However, the GGB
method still performs quite well.
We present results for 16 × 16 × 16 cube in Figure 15 and Table III and for 32 × 32 × 32
in Figure 16 and Table IV. The results reported include total CPU time, eigen solver time,
the pracentage of the eigensolver time from the overall time and iterations count of the linear
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solver. It is evident that GGB and MGGB outperformed aggregation multilevel method both
in CPU time and in iterations count. For both cubes, MGGB preformed the best in terms
of overall time due to the inexpensive cost of the eigensolutions compared to GGB as the
projection is computed only once. The eigen solve time slightly decreases as the problem
size increases. In terms of iterations count, GB and GGB had about the same count for the
16× 16× 16 cube but for the 32× 32× 32 cube GGB outperformed all the other methods. In
general, it is best to recompute the eigenspace if the Jacobian changes significantly. In fact, in
this example the best run times are obtained by recomputing the eigenspace after the second
and third Jacobians (not shown in this paper), as the Jacobian changes in the first couple of
iterations.
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Figure 15. CPU time and linear solver iteration count of various solvers for thermal-convection flow
in 16× 16× 16 cube with 24, 565 unknowns. 3-levels aggregation method is applied.

5.4. Scalability and computational cost

We focus on studying the scalability properties of the GGB filter. The computational efficiency
of the GGB filter is tightly linked to the performance of the eigen solver which could dominate
the entire computational cost. Clearly, the filter is most attractive in applications with multiple
right hand sides, such as linear transient problems or nonlinear problems where the projector
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Table III. CPU time and iteration summary for thermal-convection flow in 16 × 16 × 16 cube with
24, 565 unknowns. 3-levels aggregation method is applied.

GMRES(30) GMRES(30) GMRES(30) GMRES(30)
pre. by ML pre. by GB pre. by GGB pre. by MGGB

Total CPU time [sec] 481.49 352.29 367.01 295.99
Total Eigen time [sec] - 112.10 112.66 11.65
Percentage of Eigen work - 31.82 % 30.70 % 3.94 %
Total linear solves iter. 1186 178 156 279
Aver. num. of linear solves 107.81 16.18 14.18 25.36
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Figure 16. CPU time and linear solver iteration count of various solvers for thermal-convection flow
in 32× 32× 32 cube with 179, 685 unknowns. 4-levels aggregation method is applied.
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Table IV. CPU time and iteration summary for thermal-convection flow in 32 × 32 × 32 cube with
179, 685 unknowns. 4-levels aggregation method is applied.

GMRES(30) GMRES(30) GMRES(30) GMRES(30)
pre. by MG pre. by GB pre. by GGB pre. by MGGB

Total CPU time [sec] 6998.40 9191.40 7183.63 5817.99
Total Eigen time [sec] - 2306.10 2033.50 206.9
Percentage of Eigen work - 25% 28.31% 3.56%
Total linear solves iter. 1521 1849 501 616
Aver. num. of linear solves 126.75 168.09 45.54 56.00

can be kept fixed over a certain number of iterations. However, the GGB filter offers significant
computational advantages even for problems with a single right hand. Further, when a fixed
number of modes is used, the cost of using the GGB filter is scalable. Table V illustrates the
scalability properties of the GGB preconditioner with 10 modes using GMRES(80) on several
2D thermal-convection flows. The Rayleigh number is set to 1.0 × 105. The results presented

Table V. Scalability of GGB applied to several 2D flow in a box. The number of modes is set to 10

Unknowns Levels Total CPU Ave. No. Eig. CPU Percentage of
time [sec] of iter. time [sec] Eigen work

10× 10 484 2 2.09 5.90 1.00 47.85%
32× 32 4356 3 13.71 10.50 5.50 40.12%
64× 64 16900 3 90.12 16.10 49.98 55.46%
100× 100 40804 4 214.45 26.10 97.35 45.40%
128× 128 66564 4 334.41 35.50 109.55 32.76%
256× 256 264196 5 1783.30 63.60 404.85 22.70%

in Table V indicate a decrease in the cost of the eigensolver relative to the total computational
cost. That is, the setup cost associated with GGB becomes less significant for larger problems.
Of course, the number of iterations increases if the GGB modes are kept fixed as the mesh
is refined. However, this is consistent with numerous observations [11] for nonsymmetric and
highly indefinite systems. The lack of scalability of multilevel methods for highly indefinite
nonsymmetric systems can be explained by observing the spectrum of the multilevel iteration
matrix (the highest 300 eigenvalues shown in Figure 17). The spectrum is depicted for the
first Newton iteration. It can be seen that as the problem increases more eigenvalues appear
to be outside the unit circle and there is a significant clustering of eigenvalues close to the
unit circle. In principal, one can increase the number of global basis modes selected with
increase in problem size to preserve the scalability of the multilevel method. Unfortunately,
such a strategy has been found to be suboptimal in terms of the total computational cost.
The important point is that though mesh independent convergence on indefinite problems
is not attained in a computationally attractive fashion, a fixed number of GGB modes does
significantly accelerate convergence of an existing scheme.
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Figure 17. The spectrum of the multilevels iteration matrix, for problem sizes 32 × 32 and 64 × 64,
respectively, at the first Newton step.

6. CONCLUSIONS

In this manuscript we introduce and study the Generalized Global Basis (GGB) method. We
show that GGB is robust for variety of problems considered and can be used to accelerate any
multilevel method. If sufficient number of modes is taken, convergence is ensured for indefinite
and/or nonsymmetric systems. Theoretical convergence estimates have been obtained for a 1D
Helmholtz problem. Numerical experiments have been conducted for a 1D Helmholz equation,
2D wave propagation in a membrane and a 3D thermal-convection flow. In all examples
considered GMRES preconditioned by GGB has been found to have the best performance. The
GGB is most attractive for problems with multiple right hand sides such as linear transient
problems, or nonlinear schemes where the Jacobian varies only slightly, since the indefinite
eigenspace information is stored and reused. This also enhances restarted GMRES strategies.
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