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Abstract

We analyzed the role of aggregation and interfacial thermal resistance on the effective thermal conductivity of nanofluids and nano-
composites. We found that the thermal conductivity of nanofluids and nanocomposites can be significantly enhanced by the aggregation
of nanoparticles into clusters. The value of the thermal conductivity enhancement is determined by the cluster morphology, filler con-
ductivity and interfacial thermal resistance. We also compared thermal conductivity enhancement due to aggregation with that associ-
ated with high-aspect ratio fillers, including fibers and plates.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the mechanism and magnitude of
enhanced thermal conductivity (keff) of nanoscale colloi-
dal solutions (nanofluids) continues to be an active
research area [1–3]. Understanding the mechanism was
made particularly difficult by limited experimental char-
acterization of the nanofluid, beyond thermal transport
measurement. However, recently reported experimental
studies [4–8] strongly support a notion that nanoparticle
aggregation plays a significant role in thermal transport.
In particular, Hong et al. [7] demonstrated by light scat-
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tering that Fe nanoparticles aggregate into micron size
clusters leading to large conductivity increases. Kwak
and Kim [8] demonstrated that large thermal conductiv-
ity enhancements are accompanied by sharp viscosity
increases at low (<1%) nanoparticle volume fractions,
which is indicative of aggregation effects. Lee et al. [6]
demonstrated the critical importance of particle surface
charge in nanofluid thermal conductivity. The surface
charge is one of the primary factors controlling nanopar-
ticle aggregation. Furthermore, Putnam et al. [9] and
Zhang et al. [10] and Venerus et al. [11] demonstrated
that nanofluids exhibiting good dispersion do not show
any unusual enhancement of thermal conductivity.

Similarly to nanofluids, the desire to increase the ther-
mal conductivity of thermally insulating materials is one
of the motivations for incorporation of conductive fillers
to solid, e.g., polymeric matrix. Nano/micro particle
laden polymers are currently being used as thermal inter-
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Nomenclature

A area
Ak Kapitza radius
a radius of primary nanoparticles
D diffusivity
dl chemical dimension
df fractal dimension
dT/dZ temperature gradient
f volume fraction
k thermal conductivity
N number of particles
q heat flux
r position vector
Rg radius of gyration
T temperature
t time

Greek symbols

u volume fraction
s time

Subscripts

a aggregate
c backbone
eff effective
f fluid
l liquid
nc dead ends
p particle

knc ka

Fig. 1. Schematic of a single aggregate consisting of the backbone (black
circles) and dead ends (gray circles). The aggregate is decomposed into
dead ends with the fluid and the backbone. Thermal conductivity of the
aggregate with only particles belonging to the dead ends, knc, is calculated
using the Bruggeman model. In our homogenization model the linear
chains are embedded inside a medium with effective conductivity of knc.

1432 W. Evans et al. / International Journal of Heat and Mass Transfer 51 (2008) 1431–1438
face materials and high conductivity mold compounds in
electronics cooling [12,13]. Increasing the thermal
conductivity of polymers using highly conducting parti-
cles is, therefore, very important. In both cases, solid
composites and nanofluids, the key factors affecting
thermal conductivity are the filler shape and dispersion/
aggregation state. In the case of nanometer size fillers,
another key parameter effecting thermal transport is the
thermal interfacial resistance, also known as the Kapitza
resistance Rk, which poses an additional barrier to the
heat flow. In fact it is believed that the interfacial thermal
resistance is the key factor limiting thermal performance
in carbon nanotube composites and suspensions [14–16].

In this paper we present predictions of the three-level
homogenization model that we recently introduced [17]
on the effective thermal conductivity of nanofluids and
nanocomposites. We will systematically evaluate the role
of particle volume fraction, aggregation, conductivity,
shape and the interfacial thermal resistance of the effec-
tive thermal conductivity. In particular, our treatment
allows the effect of cluster morphology to be evaluated
in terms of the average radius of gyration, Rg, of the
aggregates and the fractal and chemical dimensions of
the aggregates (df and dl, respectively). We demonstrate
that aggregates can lead to thermal conductivity enhance-
ment that can be significantly higher than that predicted
using homogenization theories of well dispersed compos-
ites. The thermal conductivity enhancement is mainly
attributed to the ability of heat to move rapidly along
the backbone of the cluster. Results of the homogeniza-
tion model are validated by comparison with Monte Car-
lo (MC) numerical simulations of thermal conductivity of
aggregate fractal structures prepared by a diffusion-lim-
ited cluster–cluster aggregation (DLCCA) algorithm.
Finally, we compare results for the fractal aggregates to
results obtained for high-aspect ratio inclusions including
fibers and plates.
2. Homogenization model

Following well-established understanding of the fractal
morphology of nanoparticle clusters in colloids [18], we
built our three-level homogenization analysis based on
the model depicted in Fig. 1. In accordance with Fig. 1, a
fractal cluster is embedded within a sphere of radius equal
to Rg and is composed of a few approximately linear
chains, which span the whole cluster (aggregate) and side
chains. The linear chains which span the whole cluster
are called the backbone. The other particles, which do
not span the whole cluster, are called dead ends [18]. The
backbone plays a significant role in the rheology of colloids
because it is the only structure that can transfer elastic
forces between clusters [18]. Due to its connectivity, the
backbone is also expected to play a crucial role in thermal
conductivity.

Following the definition of the fractal dimension df, the
number of particles in the cluster is given [19] by
N int ¼ ðRg=aÞd f , where a is the radius of the primary nano-
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particle. Due to number conservation of the particles,
/p = /int/a, where /p is the volume fraction of the nano-
particles, /int is the volume fraction of the nanoparticles
in the aggregate or the cluster, and /a is the volume frac-
tion of the aggregates. It can be shown [19] that /int ¼
ðRg=aÞdf�3 and [11] ðRg=aÞmax ¼ ð/pÞ

1=ðdf�3Þ for which
/a = 1. The number of particles belonging to backbone,
Nc, is defined by the chemical dimension, dl, and is given
[18] by N c ¼ ðRg=aÞd l . dl ranges between one and df. When
dl = df, all of the particles belong to the backbone and there
are no dead ends. Therefore, the volume fraction of back-
bone particles (/c) in the aggregate is given by /c ¼
ðRg=aÞd l�3. The volume fraction of the particles belonging
to dead ends, /nc, is given by /nc = /int � /c.

In the thermal model, the first level of homogenization is
performed with only the particles belonging to the dead
ends as shown in Fig. 1. The thermal conductivity of the
aggregate due to dead end particles is calculated using
the Bruggeman model, which is preferable when high vol-
ume fractions of highly conductive particles are involved.
This model is given by [19]

ð1� /ncÞðkl � kncÞ=ðkl þ 2kncÞ þ /ncðkp � kncÞ=ðkl þ 2kncÞ
¼ 0; ð1Þ

where knc is the effective thermal conductivity of the aggre-
gate sphere in the presence of the dead-end particles only,
kp is the thermal conductivity of the nanoparticle, and kl

is the thermal conductivity of the liquid.
The effective thermal conductivity of the aggregate

including the particles belonging to the backbone is calcu-
lated by assuming that the backbone is embedded in a med-
ium with an effective conductivity of knc. Since the aspect
ratio of the chains is significantly larger than one, we use
the model by Nan et al. [20] for randomly oriented cylindri-
cal particles. Using Nan’s model, the effective thermal con-
ductivity of the aggregate sphere, ka, with both the chains
and dead ends (Fig. 1) is given by

ka ¼ knc

3þ /c½2b11ð1� L11Þ þ b33ð1� L33Þ
3� /c½2b11L11 þ b33L33�

; ð2Þ

where

L11 ¼ 0:5p2=ðp2 � 1Þ � 0:5pcosh�1p=ðp2 � 1Þ1:5; ð3Þ
L33 ¼ 1� 2L11 and ð4Þ
bii ¼ ðkc

ii � kncÞ=½knc þ Liiðkc
ii � kncÞ�; i ¼ 1; 3: ð5Þ

p is the aspect ratio, which for the cluster spanning chain is
given by p = Rg/a. Interfacial resistance is accounted for in
the term

kc
ii ¼ kp=ð1:0þ cLiikp=klÞ; ð6Þ

where c = (2 + 1/p)a and a = Ak/a. Ak is the Kapitza ra-
dius and represent a thickness of the matrix over which
the temperature drop in a planar geometry, is the same
as at the interface.
Finally, following Prasher et al. [19] and Wang et al. [4]
the effective thermal conductivity of the whole system is
calculated using the Maxwell–Garnet (M–G) model, where
the volume fraction and the thermal conductivity of the
aggregates are used. Therefore, the effective thermal con-
ductivity of the whole system is given [12] by

keff=kl ¼ ð½ka þ 2kl� þ 2/a½ka � kl�Þ=ð½ka þ 2kl� �/a½ka � kl�Þ:
ð7Þ
3. Monte Carlo simulations of model aggregates

3.1. Cluster generation

To provide a test bed for the homogenization procedure
described above and to faithfully represent the well-known
fractal nature of clusters observed in many colloidal sus-
pensions of nanoparticles, we determined the thermal con-
ductivity of model fractal aggregates obtained by diffusion
controlled cluster–cluster aggregation. Cluster–cluster
aggregation algorithms have been described in detail in
the past [21]. In brief, we randomly marked 10,000 sites
on a cubic lattice as filled to represent the nanoparticles.
The remaining empty sites on the cubic lattice represent
the volume occupied by the fluid. The overall size of the lat-
tice was varied such that structures with particle volume
fractions of 0.5%, 1.0%, 2.0%, and 4.0% were generated.
For example, to represent the lowest volume fraction a lat-
tice of size 1263 was prepared. Starting from the initial
structures, particles were allowed to diffuse and form clus-
ters upon contact followed by cluster diffusion and cluster
aggregation (see Fig. 2(a)). In our model, the cluster mobil-
ity is inversely proportional to the size of the cluster.

For each volume fraction, we prepared several indepen-
dent sets of aggregates at various aggregation states rang-
ing from approximately 9000 clusters (essentially no
clustering) to a single large cluster. We characterized the
aggregates by the average radius of gyration, Rg, where
the average is weighted by the number of particles in each
aggregate. As described extensively in the literature [21],
such a cluster–cluster aggregation algorithm leads to frac-
tal structures with df � 1.8 and dl � 1.4. These values
match the experimental data on diffusion controlled cluster
aggregation well [18,21,22].
3.2. Effective thermal conductivity

The effective thermal conductivity of model fractal
aggregate composites was obtained using a random walker
Monte Carlo (MC) algorithm [23]. The MC simulations are
performed on the same cubic lattice on which the aggre-
gates are defined. Empty grid cells representing the liquid
matrix are assigned a thermal conductivity, kl. Cells occu-
pied by the aggregate were assigned a thermal conductivity
of kp. The relative thermal conductivity increase is only
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Fig. 2. (a) An aggregate structure obtained from the diffusion limited
aggregation algorithm with 30 aggregates at 1% volume fraction. (b) A
typical plot of the random walker’s mean squared displacement over the
simulation time (x, y and z components). The Einstein relation can then be
used to obtain the diffusion coefficient which is proportional to thermal
conductivity.
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dependent on the ratio kp/kl. In our simulations, ratios
from 50 to 400 were explored.

The MC simulation starts a random walker at a ran-
domly chosen location on the cubic lattice. Then, the
walker attempts to move randomly into one of the six
directions on the cubic lattice. The probability of accepting
the move, P, is calculated as P = kin/(kin + kfi), where kin

and kfi are the thermal conductivities of the cubes at which
the walker resides and to which it attempts to move, respec-
tively. The clock is advanced by the time proportional to
1/kin regardless of the success of the move. The position
of the random walker is continuously recorded for post
processing which requires computation of the mean
squared displacement. Each MC simulation involved about
0.5 � 106 MC steps, which is sufficient for adequate statis-
tical accuracy.

The effective thermal conductivity of the aggregate sys-
tem is proportional to the random walker diffusivity that
can be evaluated using the well-known Einstein relation
[24]

D ¼ lim
s!1

1

6s
hjrðt þ sÞ � rðtÞj2i; ð8Þ

where the triangle brackets indicate average over multiple
time origins, t, and r is the position vector of the random
walker. In practice, the diffusivity is obtained from the
mean squared displacement (MSD) vs. time slope. A typi-
cal simulation result is shown in Fig. 2(b). All reported dif-
fusivities are normalized by the diffusivity of the pure
matrix, which in turn gives the ratio of the composite/
nanofluid conductivity to the pure matrix conductivity.

To ensure that the MC results are well converged and
indeed represent the correct solutions of the diffusive heat
flow equation for a selected structure we evaluated thermal
conductivity by a thermodynamic finite element method
(FEM) model. The model structure consisting of fluid
and aggregate cubes was transferred to appropriate ele-
ments in a FEM model. At 0.5% volume fraction,
2 � 106 elements were required in the FEM model. A uni-
form heat flux, q, was imposed on two opposite faces of the
cubic model. Adiabatic boundary conditions were estab-
lished on the other faces. Under steady-state conditions,
keff was calculated from Fourier’s law

keff ¼ qA
dT
dZ

�
; ð9Þ

where A is the cube face area, and the temperature gradi-
ent, dT/dZ, is computed by FEM. The MC simula-
tion and FEM model showed excellent agreement (within
2%).
4. Results

4.1. Homogenization model validation

Fig. 3 shows the effective thermal conductivity as a func-
tion of the average radius of gyration of the aggregates
obtained both from homogenization theory and from
MC simulations. For homogenization theory, we used
parameters matching those characterizing the model fractal
aggregates including dl = 1.4, df = 1.8, and kp/kl = 100 and
zero interfacial thermal resistance. The result of the
homogenization theory and MC simulations match very
well with all volume fractions and across the whole range
of the aggregate sizes (measured by the radius of gyration).
These are indeed quite remarkable results showing that a
simple three-level homogenization model is able to quanti-
tatively predict the effective thermal conductivity. It is also
important to note that the critical aspect of the model is the
explicit incorporation of the backbone into the model.
Without the backbone present, i.e. treating the cluster as
a disperse particle object, the homogenization model pre-
dicted conductivity is much lower and does not match
the results of the MC simulations.



0.000 0.005 0.010 0.015 0.020 0.025 0.030

1.0

1.1

1.2

1.3

1.4

1.5

1.6

dl=1.4

dl=1.7

k e
ff

/k
l

dl=1.8

Particle Volume Fraction

Fig. 4. Effect of chemical dimension on effective thermal conductivity for
fully aggregated clusters (kp/kl = 100 at 0.5% volume fraction). As
chemical dimension increases (1.4 squares, 1.7 circles, 1.8 triangles), an
increasing number of particles join the backbone. For comparison
purposes, effective medium theory results for fully dispersed particles are
also shown.

1.04

1.06

1.08

1.10

1.12

1.14

1.16

kp=100

K
ef

f/
K

l

kp=200

0 10 20 30 40 50 60 70 80 90
1.0

1.1

1.2

1.3

1.4

1.5

φp=.5%

φp=1%

φp=2%

φp=4%

K
ef

f/
K

l

Rg /a

Fig. 3. Comparison between the three-level homogenization model (lines)
and Monte Carlo simulation (symbols) for different values of particle
volume fraction as a function of the radius of gyration illustrating good
agreement between model and simulation. In all cases kp/kl = 100, df = 1.8
and dl = 1.4.

W. Evans et al. / International Journal of Heat and Mass Transfer 51 (2008) 1431–1438 1435
4.2. Effect of the aggregation state

According to Fig. 3 the effective thermal conductivity
increases rapidly with initial increase of the aggregate size
and then saturates at the level dependent of the volume
fraction. This increase is mainly caused by the increased
size of the backbone that promotes rapid conduction
across the cluster. Once, the clusters start to overlap, the
conductivity reaches the maximum value that represent
an interconnected network of nanoparticle clusters.

Since the backbone is primarily responsible for the ther-
mal conductivity increases, one expects that bringing more
particles to it, rather than to dead ends, will promote high
thermal conduction. This is illustrated in Fig. 4 which
shows the conductivity of fully aggregated structures at
0.5% volume fraction for structures with different chemical
dimensions, dl. The number of particles in the aggregate
backbones increases with increasing chemical dimension,
and for the chemical dimension equal to the fractal dimen-
sion all particles are in the backbone. As shown in Fig. 4,
the latter case corresponds to maximum thermal conduc-
tivity. As a reference, the prediction of the effective medium
theory for a fully dispersed composite shows much lower
thermal conductivity increases than that of any structure
with aggregated particles.
0 20 40 60 80
1.00

1.02

Rg/a

Fig. 5. The three-level homogenization model (lines) and Monte Carlo
simulation results (symbols) for 0.5% volume fraction and kp/kl = 200
(solid lines and symbols) and kp/kl = 100 (dashed line and open symbols).
4.3. Effect of the particle conductivity

For well-dispersed spherical particles at low volume
fractions the composite thermal conductivity is essentially
particle conductivity independent, provided that the parti-
cle conductivity is about 10 times, or more, larger than the
matrix conductivity [25]. This is associated with the fact
that particles act as constant temperature regions and the
resistance to the heat flow comes only from the matrix.
However, aggregation of the particles into clusters is
expected to utilize the high particle conductivity more
effectively.

Fig. 5 shows the effective thermal conductivity as a func-
tion of the average radius of gyration obtained both from
homogenization theory and from the MC for 0.5% volume
fraction for kp/kl = 100 and 200. Within the statistical fluc-
tuations both models yield essentially the same results.
Without aggregation (Rg/a = 1) the composite thermal
conductivity predicted by the homogenization model is
indeed independent from the particle conductivity.
However, with increased aggregation the composite with
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kp/kl = 200 consistently outperforms the one with kp/kl =
100 and for fully aggregated systems, kp/kl = 200 structure
has thermal conductivity more than double that of
kp/kl = 100 structure.

In Fig. 6 we compare the thermal conductivity of a fully
aggregated systems i.e. for ðRg=aÞmax ¼ ð/pÞ

1=ðdf�3Þ for val-
ues of kp/kl ranging from 25 to 200, and with chemical
dimension equal to the fractal dimension (all particles in
the backbone) to thermal conductivity of a composite con-
sisting of randomly oriented cylinders. For randomly ori-
ented long cylindrical objects for large kp/kl, keff varies as

keff

kl

¼ 1þ up

kp

3kl

: ð10Þ

This represents an upper limit for conductivity enhance-
ment within our model, which fully explores the high par-
ticle conductivity. Fig. 6 shows that at low volume
fractions the conductivity characterizing composites of
long cylinders matches very well with that obtained by
the homogenization model. This is because in this region
(Rg/a)max is large which makes the aspect ratio of the chain
large. Finally, in Fig. 7 we show that thermal conductivity
increase of the fully aggregated system at 0.5% volume
fraction is proportional to kp/kl in perfect agreement with
Eq. (10).
4.4. Effect of interfacial resistance

The interfacial resistance poses a barrier to heat flow
that might inhibit the benefit of adding highly conductive
filler. In this case, in the limit of low volume fractions of
spherical, well-dispersed nanoparticles, all effective medium
theories [25] predict
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keff

kl

� 1 ¼ 3f
r=Ak � 1

r=Ak þ 2
; ð11Þ
where r is the particle radius and Ak is the Kapitza radius
(see Section 2). According to Eq. (11) when the particle ra-
dius becomes equal to the Kapitza radius there is no
enhancement at all, while for larger interfacial resistance
the addition of particles decreases the thermal conductivity
of the composite. From Eq. (11) it is clear that the interfa-
cial resistance is more of a problem for small particles as
for these particles the ratio r/Ak is small. A range of inter-
facial resistances reported for interfaces is from �10 MW/
m2 K for weakly bonded (such as hydrophobic) interfaces
[26] to �100–300 MW/m2 K for strongly bonded interfaces
[27]. The corresponding Kapitza radius, assuming a low
conductivity matrix, e.g. kf = 0.2 W/m K, ranges from
20 nm to a fraction of nanometer. Therefore, for the major-
ity of nanoparticles we expect that interfacial resistance will
not significantly affect the composite conductivity. How-
ever, when small radius (or diameter) particles coincide
with large interfacial resistance, such as is the case for sin-
gle wall carbon nanotubes, the composite conductivity may
be significantly diminished [15,20].

Interfacial resistance is accounted for in our 3-level
homogenization model at level 1 for dead end particles
and at level 2 for backbone particles. At level 2, interfacial
resistance is incorporated in the Nan model as described in
Section 2. For homogenization of the dead end particles at
level 1, a particle of resistance 2a/kp is considered to be in
series with a Kapitza resistance 2Rb where the factor of 2
accounts for a resistance layer on each side of a slab (par-
ticle) of thickness 2a. The equivalent combined resistance is
then

2a
kpeff

¼ 2a
kp

þ 2Rb: ð12Þ
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The effective particle thermal conductivity, kpeff, is then

kpeff ¼
kp

1þ Rbkp

a

; ð13Þ

which replaces kp in Eq. (1).
The role of the interfacial resistance for aggregated

structures is demonstrated in Fig. 8. As expected, the inter-
facial resistance reduces the effective thermal conductivity
of the composite. Without aggregation and with the Kap-
itza radius equal to the particle radius there is no thermal
conductivity enhancement. However, with increasing clus-
ter size much of the benefit of the high conductivity fillers
is realized. For example, for Ak = 1, 0.5% particle volume
fraction, and kp/kl = 100, keff increase is about 2.5% of
the matrix conductivity vs. about 4% with the zero interfa-
cial resistance.
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5. Discussion

Our analysis and simulations demonstrates that aggre-
gation of high conductive nanoparticles in a liquid or solid
low-conductivity matrix contributes to significant thermal
conductivity enhancement. The key underlying factor is
the high aspect ratio backbone of the fractal-like aggre-
gates that allows for rapid heat flow over large distances.
The high aspect ratio is also capable of diminishing a neg-
ative role of interfacial thermal resistance on thermal trans-
port. For cases where well dispersed composites show low
thermal conductivity enhancement, composites with fractal
aggregates show significant enhancements, even with sub-
stantial interfacial resistance.

The above observations, quite naturally, suggest in the
design of the high-thermal conductivity materials that the
key factor is the high-aspect ratio of the filler, coming
either from sparse aggregates or particles with intrinsically
high aspect ratio. To illustrate the effect of the particle
shape, we compare our results for fractal aggregates
(Fig. 8) with the effective medium results for fiber and flat
plate nanoparticles composites calculated according to
Nan et al. [20]. Fig. 9 shows keff for randomly oriented
fibers and randomly oriented flat plates as a function of
the aspect ratio. Both fibers and plates show greater
enhancement in thermal conductivity than aggregates.
The key reason is the fact that in the aggregates some par-
ticles are in dead ends and thus contribute little to thermal
transport. As discussed before, if all particles are in the
backbone the aggregates are as good as randomly dispersed
fibers or plates.

Fig. 9 also shows the effect of increasing interfacial ther-
mal resistance for fibers and plates. At fixed volume fraction
and aspect ratio, the thermal conductivity enhancement
decreases much more with increasing interfacial resistance
for plates than for long fibers.

These results suggest that the optimum design for nano-
fluids and nanocomposites for thermal conductivity
enhancement would involve the use of high-aspect-ratio
fibers, e.g. single wall carbon nanotubes, rather than spher-
ical or ellipsoidal particles. On the other hand, single wall
carbon nanotubes are characterized by high interfacial
thermal resistance with fluids and solids, which inhibits
the potential of thermal conductivity increases [28]. Fur-
thermore, long fibers tend to curl in the liquid of polymer
matrix reducing the effective length of the fiber.

When synthesizing nanofluids and nanocomposites with
spherical nanoparticles, the most effective heat conduction
increases will be achieved with purposely chained nanopar-
ticles with very few, if any, particles forming dead ends
(that is, aggregates with large chemical dimension) since
dead end particles provide little benefit to the thermal con-
ductivity of the system. It is, however, important to notice
that the use of large aggregates or high aspect ratio fillers in
fluids will lead to dramatic increases in fluid viscosity [29]
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which might render this fluid useless in applications requir-
ing fluid flow.
6. Conclusions

By using three-level homogenization theory, validated
by MC simulation of heat conduction on model fractal
aggregates, we have demonstrated based purely on thermal
conduction physics that the thermal conductivity of nano-
fluids and nanocomposites can be significantly enhanced as
a result of aggregation of the nanoparticles. The conductiv-
ity enhancement due to aggregation is also a strong func-
tion of the chemical dimension of the aggregates and the
radius of gyration of the aggregates. The model developed
in this paper accounts for aggregation kinetics and the
impact of chemistry of the system through their depen-
dence of the radius of gyration [19]. By including the effect
of interfacial thermal resistance in the homogenization
model, we have also shown that any enhancement in the
thermal conductivity will be degraded; however, this degra-
dation can be limited by large aggregate sizes.
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