
1

Multifrontal Incomplete Factorization for
Indefinite and Complex Symmetric Systems

Yong Qu and Jacob Fish
 Departments of Civil, Mechanical and Aerospace Engineering

Rensselaer Polytechnic Institute, Troy, NY 12180

ABSTRACT
A new class of preconditioners based on the adaptive threshold incomplete multifrontal fac-
torization for indefinite and complex symmetric systems is developed. Numerical experi-
ments consisting of the 3D Helmholtz equations, fluid-structure interaction and localization
problems demonstrate the excellent performance of the preconditioner.

Keywords: multifrontal, incomplete factorization, indefinite, complex, adaptive

1.0 Introduction

The primary goal of the manuscript is to construct a black-box preconditioner with efficient
memory-system performance and automated/adaptive selection of algorithmic parameters.
Attention is restricted to the incomplete factorization precondtioner which has been found to
be very effective on a wide variety of problems [3][10]. We first briefly survey various incom-
plete factorization methods followed by a preliminary discussion on how to improve the
memory-system performance and how to adaptively select the algorithmic parameters.

Consider the following linear system of equations

 (1)

where is a general symmetric matrix and is an incomplete factor-
ization. The preconditioned linear system may be represented as

(2)

The ultimate goal of the preconditioning is to make the preconditioned system, , con-
verge faster than the original system. In other words, the eigenvalue spectrum of the iteration
matrix, , should be designed to be densely clustered around 0.

Since the pioneering work of Meijerink and van der Vorst [5]on the incomplete factorization,
most of the attention focussed on selecting the best set of entries to drop in the factorization
process. The dropping strategies include dropping fill-ins based on numerical value, dropping
fill-ins based on matrix structure and the combination of these two strategies [7]. It has been
shown [7][10][11] that dropping by value is preferential, particularly for complex and indefi-
nite matrices. Recently, research efforts have been focussing on block incomplete factoriza-

Ax b=

A C
N N×∈ A LL

T
E–=

L
1–
AL

T–() L
T
x() L

1–
b=

L
1–
AL

T–

IN L–
1–
AL

T–

2

tion and multilevel incomplete factorization methods. In the block incomplete factorization
[8], the original matrix is divided into small dense blocks based on the structure of the matrix
prior to the factorization and single entries of the incomplete factorization are replaced with
dense blocks. The blocking technique can also be used with pivoting to avoid zero or nearly
zero pivots [3][7]. In [16], Saad and Zhang introduced a multi-elimination incomplete factor-
ization which exploits the existence of independent sets of unknowns and performs incom-
plete factorization on several levels of reduced systems. A family of multigraph incomplete
factorization algorithms was presented in [15] by Bank and Smith. Their method recursively
coarsens the graph of the sparse matrix by eliminating vertices using a graph model similar to
Gaussian elimination and obtains the corresponding incomplete factorization by allowing
only a limited amount of fill-ins.

Two issues, improving memory-system performance and adaptive selection of algorithmic
parameters, have a significant effect on the efficiency and robustness of the incomplete factor-
ization based solver, but somewhat surprisingly, received very little attention in the literature.
These two issues are subsequently discussed.

1.1 Improving memory-system performance

For modern machines with shared-memory vector and parallel processors, the incomplete fac-
torization algorithms become inefficient if their memory access patterns disregard the multi-
layered memory hierarchies of the machines [13]. One main factor which causes the poor per-
formance is cache miss. Most CPUs have first-level instruction and data caches on chip and
many have second-level cache(s) that are bigger but somewhat slower. Memory accesses are
much faster if the data is already loaded into the first-level cache. When the program accesses
data that isn’t in one of the caches, it gets a cache miss. This causes a block of consecutively
addressed words, including the data that was just accessed, to be loaded into the cache. This
process is expensive since it may load many unwanted words into the cache, thereby spending
much time on moving the data at the expense of performing floating-point operations. The
other factor is the bottleneck caused by a large amount of load instructions relative to the
number of floating-point operations. The load instructions will quickly stall the load/store
units and leave the floating-point units underutilized.

Both factors are caused by the lack of data locality due to the structures of the matrices and the
algorithms. For example, most incomplete factorization algorithms for sparse symmetric
matrices are based on Crout-Doolittle factorization which factorizes the matrices row-by-row
(or column-by-column). For each row (column), one needs to loop over all previous rows
(column) of the factor which have contributions on the current row (column). The updates are
computed and assembled before moving onto the next row (column). It is clear that this algo-
rithm has a poor data reuse since it may need to reload the same row (column) many times.
Also the sparse matrix data structures used in these algorithms normally need pointer direc-
tion in their inner most loops which may cause a large amount of load instructions.

The problem is not very serious for the incomplete factorizations of very sparse and positive
definite matrices because the total number of the float-point operations is much smaller com-
pared to the complete factorization. However, the inefficiency becomes significant for com-
plex or indefinite matrices which may require a large number of fill-ins and for dense matrices

3

(e.g. the matrices generated by the p-version finite element method with a high order p) which
may require much more floating-point operations than the sparse matrices.

The techniques to overcome the inefficiency caused by the lack of data locality include:

• Develop better renumbering schemes to reduce the total number of floating-point opera-
tions.

• Keep frequently accessed data together and access data sequentially. Store and access fre-
quently used data in flat, sequential data structures and avoid pointer indirection.

• Pack the data to force a big increase in the size of the data. In other words, block techniques
should be used to reduce the number of load instructions

• Unroll the inner most loop to improve the data reuse.

• Use dense matrix operations, such as level 2 and level 3 BLAS primitives [14], as much as
possible in the innermost loops.

To demonstrate the effects of these techniques, we consider the following sparse matrix multi-
plication which is used in the sparse matrix factorization.

(3)

where is a sparse vector with m nonzeros and is a sparse matrix.

The following four algorithms are designed to compare the performance of different tech-
niques. All elements of v are stored in an array with size N. All nonzeros of B are stored in a
dense array with size m2. The indices of nonzeros in v are stored in an integer array I.

Algorithm (1) Sparse matrix multiplication with index loading

for i = 1: m
for j = 1: m

endfor
endfor

Algorithm (2) Sparse matrix multiplication without index loading

Save all nonzeros of v into a dense array u
for i = 1: m

endfor
for i = 1: m

for j = 1: m

endfor
endfor

Algorithm (3) Sparse matrix multiplication with BLAS primitive

B vv
T

=

v ℜN∈ B ℜN N×∈

B i 1–() m j+×[] v I i[][] v I j[][]×=

u i[] v I i[][]=

B i 1–() m j+×[] u i[] u j[]×=

4

Save all nonzeros of v into a dense array u
for i = 1: m

endfor
Call BLAS 2 primitive DGMM to perform the matrix multiplication

Algorithm (4) Sparse matrix multiplication with BLAS primitive and blocking

Save all nonzeros of v into a dense array u
for i = 1: m

endfor
Divide u into n blocks. Each block has the length k. (The length of the
last block is m - (n-1)*k)
for i = 1: n

for j = 1: n
Call BLAS 2 primitive DGMM to perform the matrix
multiplication between the ith block and the jth block.

endfor
endfor

Table 1 summarizes the results of the sparse matrix multiplication with m = 1,000 and N =
10,000. All programs are optimized using level -O3 [6] and run on a Sun Ultra 60 machine.

Several observation can be made from Table 1 :

• All techniques improve the performance of sparse matrix multiplication.

• The best technique is to use the dense matrix operations, such as the BLAS primitives, in
the innermost loops.

• The performance of the BLAS primitives also depends on the size of the dense matrix. The
blocking technique can further improve the performance.

Multifrontal methods [9] address this problem by reorganizing the factorization algorithms to
use the dense matrix operations, such as the level 2 and level 3 BLAS primitives, in the inner-
most loops. These dense matrix operations can be optimized for each architecture to account

Algorithm Block Size CPU time (sec.)

1 0.919

2 0.671

3 0.564

4

10 0.530

20 0.246

50 0.230

100 0.265

200 0.267

TABLE 1. Comparisons of Solver CPU times

u i[] v I i[][]=

u i[] v I i[][]=

5

for the memory hierarchy, and to provide a transportable way to achieve high efficiency on
diverse modern machines. In [12], Campbell and Davis presented a class of multifrontal
incomplete factorization preconditioners, but their dropping strategy was based on fill-in posi-
tions, which makes it inefficient for indefinite and complex systems. In Section 2.0 , we will
describe how to tailor the state-of-the-art complete multifrontal factorization method [21] to
obtain an incomplete version of the Multifrontal factorization with dropping strategies based
on the numerical value.

1.2 Adaptive Parameter Selection

For general symmetric systems, it is not feasible to a prior estimate the optimal algorithmic
parameters of the incomplete factorization, such as the maximum number of allowable fill-
ins, the dropping tolerance etc. The optimal parameters depend on many factors such as eigen-
value spectrum (positive definite, indefinite or complex), problem size and sparsity.

FIGURE 1. Solver CPU time vs. Dropping Tolerance

As an illustration, a threshold incomplete LDLT factorization preconditioner [3] coupled with
the QMR method is employed to solve three different types of problems, a positive definite

6

problem (Poisson equation), a complex problem (Helmholtz equation) and an indefinite prob-
lem (Solid with damage zone). The most important parameter investigated is the dropping tol-
erance. Figure 1 shows the computational cost versus the dropping tolerance for all three
problems. It can be seen that these problems have a different behavior with respect to the
parameter selection. Complex and indefinite problems are more sensitive to the dropping tol-
erance than the positive definite problem. It is not feasible to a prior estimate the optimal
value of the parameter without further knowledge of the matrix properties. In [2][3], we pro-
posed a predictor-corrector based framework to adaptively select algorithmic parameters for
the incomplete factorization preconditioners. In this paper, we will extend this framework to
the threshold multifrontal incomplete factorization. Details are described in Section 2.0 .

The paper is organized as follows. Section 2.0 details the threshold multifrontal incomplete
factorization. Numerical experiments on a sequence of examples involving the Helmholtz
equation, the fluid-structure interaction problem and the shear banding problem are presented
in Section 3.0 . A brief discussion on future research directions concludes the manuscript.

2.0 Multifrontal Incomplete Factorization Precondtioner

In this section, we introduce a new class of preconditoners based on the threshold incomplete
multifrontal factorization. We first describe the threshold incomplete multifrontal Cholesky
factorization with separate analyze and factorize phases. This algorithm can be used for posi-
tive definite and complex symmetric systems. Details of the algorithm are given in Section 2.1
This is followed by a description of how to adaptively select parameters and how to extend it
to incomplete LDLT factorization for indefinite (real) systems in Section 2.2 and Section 2.3 .
In Section 2.4 , we comment on an out-of-core version of the multifrontal incomplete factor-
ization.

2.1 Threshold incomplete multifrontal Cholesky factorization

The proposed threshold incomplete multifrontal Cholesky factorization algorithm is derived
from the state-of-the-art complete multifrontal Cholesky factorization algorithm developed in
[21]. The main features of the complete multifrontal Cholesky factorization are: (i) It has sep-
arate analyze and factorize phases; (ii) Several renumbering schemes are considered in an
attempt to find the best renumbering scheme; (iii) In the analyze phase, adjacent rows with the
same nonzero structures after symbolic factorization are merged in order to exploit the use of
dense matrix operations in the factorize phase; (iv) A two-end stack is used to collect and
assemble contribution matrices during factorization.

The threshold incomplete multifrontal Cholesky factorization algorithm is in principle similar
to the complete multifrontal Cholesky factorization. A dropping scheme based on the numeri-
cal value is inserted into factorization process to reduce the number of fill-ins in the factor. At
the same time, the use of dense matrix operations is maintained in the inner most loops, which
is vital for computational efficiency. An outline of this algorithm is given below.

Algorithm (5): Multifrontal Incomplete Factorization

7

A: Initialization

B: Analyze Phase: Create a sparse symmetric matrix and multiple frontals

B1: Find the best renumbering schemes

B2: Build an elimination tree and assign weight at each node

B3: Post-reorder the nodes according to the weights by traversing the tree depth-first

B4: Recompute the symbolic factorization

B5: Rebuild the elimination tree

B6: Collapse it to a supernodal elimination tree

C: Factorize Phase: Perform numerical incomplete factorization

C1: Estimate and allocate enough memory for the collection-assembly stack

C2: Scale the original matrix

C3: Loop over all supernodes (or fronts)

C31: Fill the current front with entries from the scaled original matrix

C32: Merge in the updates from its children

C33: Drop some entries according to their numerical values

C34: Factorize the current front and save the factor

C35: Compute the update of the current front

C3: End of the loop

C4: Back scale the factor

2.1.1 Step B1: selecting the best renumbering scheme

Many investigators have studied the effects of reordering on the performance of the incom-
plete factorization. For positive definite systems it has been shown that the renumbering
schemes, such as Reverse Cuthill-McKee (RCM), Minimum Degree (MMD) and its variants
(GenMMD, AMDbar and METIS [18][19]), have little effect on the convergence of the itera-
tive methods [17]. Based on our numerical experiments, we have observed that indefinite sys-
tems and complex systems are highly sensitive to reordering [3]. RCM seems to be superior
for sparse weakly indefinite or positive definite systems while MMD and its variants have
been found to be better choices for highly indefinite or complex systems which require high
amount of fill-ins and for dense or mildly sparse matrices which require high amount of float-

8

point operations. In those systems, the algorithm will attemt three renumbering schemes,
GenMMD, AMDbar and METIS [18][19], and choose the scheme which generates the mini-
mum fill-ins.

2.1.2 Step B2-B6: creating multiple fronts

After an appropriate renumbering scheme is selected, an elimination tree is constructed based
on the results of the symbolic factorization. The elimination tree is constructed in such a way
that each parent node of the tree is ready for factorization if and only if all its children have
been factorized and all corresponding contribution matrices have been computed. From the
elimination tree the factorization sequence is selected to minimize the memory usage. Each
node in the elimination tree is assigned the weight representing the depth of the subtree rooted
at that node. Then the tree is post-reordered so that that for each node all its children are sorted
in an ascending order of weight. After the reordering, the elimination tree is rebuilt by recom-
puting the symbolic factorization. Greater efficiency during the following numerical factor-
ization can be achieved if the size of the nodes and the number of rows they represent are
large. The nodes are collapsed to supernodes by combining the adjacent nodes if the corre-
sponding rows have the same nonzero pattern. We will refer to those supernodes as fronts.
Figure 2 shows an example of this procedure.

Node Weight Reordering

1 0 2

2 0 4

3 0 1

4 1 3

5 2 5

6 3 6

X 0 0 X X 0

X 0 0 X X

X X 0 0

X 0 0

X X

X

1 2 3 4 5 6
1

2

3

4

5

6

SYMM.

Original 6x6 matrix

6

5

2 4

1 3

Elimination tree

9

FIGURE 2. Multifrontal creation

2.1.3 Scaling

The objective of scaling is to improve the conditioning of the original matrix. For the incom-
plete factorization by threshold, scaling also allows to use the same drop tolerance for all
rows. For positive definite systems, the magnitude of diagonal entries of the original matrix is
typically used for scaling. For indefinite systems or complex systems, on the other hand, an
iterative approach (see Algorithm 6) is proposed to compute the diagonal scaling matrix P

which makes the -norm of each row of the scaled system to be bounded by

 where is a small positive number. The iterative process is required to pre-
serve the symmetry of the preconditioner.

Algorithm (6): Scaling for Indefinite Systems

Set , flag = 0, V=0.

Do while flag = 0
flag = 1; T = In, V=0
Loop over all nonzeros in matrix K

For each nonzero

if , then .

if , then

if , then

End of loop
Loop over all elements of the vector V

if or , then flag =0.

End of loop
P=PT

Enddo

X 0 X 0 0 0

X X 0 X 0

X 0 0

X X X

X X

X

1 2 3 4 5 6
1

2

3

4

5

6

SYMM.

Matrix after reordering Supernode elimination tree

F

F: fill-in

1

2,3

4,5,6

∞ P
1–
KP

1–

1 µ 1 µ+,–[] µ

P In=

Kij

Kij Pii Pjj⁄⁄ Vi> Vi Kij Pii Pjj⁄⁄=

Kij Pii Pjj⁄⁄ Tii> Tii Kij Pii Pjj⁄⁄=

Kij Pii Pjj⁄⁄ Tjj> Tjj Kij Pii Pjj⁄⁄=

Vi 1 µ+> Vi 1 µ–<

10

2.1.4 The collection-assembly stack

During the analyze phase, a supernode elimination tree is constructed for the following
numerical factorization. A two-end collection-assembly stack is allocated to collect children’s
contribution matrices and assemble them to their parent’s frontal matrix and contribution
matrix. Figure 3 shows an example of the frontal matrix and the contribution matrix of a par-
ticular front. Since for each front its contribution matrix is assembled once, one stack is suffi-
cient for collection and assembly of the contribution matrices. To avoid the moving of data
within the memory, a two-end stack is designed to push or pop the contribution matrices at
both ends. In other words, the end is switched when the factorization process moves one level
higher within the elimination tree. This process is illustrated in Figure 4.

FIGURE 3. Frontal matrix and contribution matrix

FIGURE 4. Elimination tree and two-end collection-assembly stack

2.1.5 Step C3: Numerical Incomplete Factorization

Before updating and factorizing each front, it should be filled in with entries from the scaled
original matrix and the contribution matrices of its children, using the elimination tree and the

Frontal Matrix

Contribution Matrix

1 2 3

4 5

6

Elimination Tree

1 2 3 4

456

Two-end Collection-Assembly Stack

11

two-end collection-assembly stack. The incomplete Cholesky factorization scheme can be
constructed by utilizing the dropping scheme within the complete Cholesky factorization pro-
cess. Algorithm 7 gives the incomplete Cholesky factorization using regular threshold drop-
ping schemes. Note that with if-statements in the inner most loops for dropping small entries,
it is not possible to exploit dense matrix operations such as the level 2 and level 3 primitives
of BLAS. In the following algorithms, we denote as the magnitude of x.

Algorithm (7): m-step Incomplete Cholesky Factorization

1. Update and factorize the frontal matrix

for i = 1... m Do:
S = 0
for k = 1.... i-1 Do:

if

endif
endfor

for j = i+1... n Do
S = 0
for k = 1.... i-1 Do:

if and

endif
endfor

endfor
apply the dropping rule to where

Scheme (i): The largest lfil nonzeros of are kept

Scheme (ii): If ,

endfor

2. Update the contribution matrix

for i = m+1... n Do:
S = 0
for j = 1.... n Do:

for k = 1.... m Do:

if and

endif

x

aki 0≠

S S aki aki×+=

aii aii S–=

aki 0≠ akj 0≠

S S akj aki×+=

aij aij S–() aii⁄=

aij i 1+ j n≤ ≤

aij

aij droptol≤ aij 0=

aki 0≠ akj 0≠

S S akj aki×+=

12

endfor
endfor

endfor

FIGURE 5. Block structures of the frontal matrix

In order to effectively utilize the level 2 and level 3 primitives of BLAS in the inner most
loops, we first divide the whole triangular matrix into small block matrices. To simplify the
description, we assume all block matrices have the same dimensions, l by l, as shown in Fig-
ure 5. For a general case, we need to treat the block matrices on the boundary separately since
they may have different dimensions.

As shown in Algorithm 2, it is the dropping scheme based on a single entry that precludes the
utilization of the dense matrix operations. Apparently, we need to develop a new dropping
scheme which drops a group of entries at a time. In the following, we will introduce three
types of block dropping schemes: block-based threshold dropping scheme, column-based
threshold dropping scheme, and segment-based threshold dropping scheme.

Algorithm (8): Block-based threshold dropping scheme:

For matrix

if all entries of A satisfies then

drop A
else

keep A
endif

Algorithm (9): Column-based threshold dropping scheme:

For matrix
loop over all columns of A, A(j)

aij aij S–=

n

m

n-m

l

l

nb

mb

nb-mb

A C
l l×∈

aij droptol≤

A C
l l×∈

13

if all entries of column A(j) satisfies then

drop column A(j)
else

keep column A(j)
endif

endloop
if all columns of A are dropped then

drop A
endif

Algorithm (10): Segment-based threshold dropping scheme:

As shown in Figure 6, all columns of matrix A are divided into equal size segments and a
binary number is assigned to each column according to its dropping pattern.

For matrix
loop over all columns of A, A(j)

set binary number B(j) to be zero
loop over all segments, A(k)(j), of column A(j)

if all entries of segment A(k)(j) satisfies then

drop segment A(i)(j)
set the last bit of B(j) to be 0 and left-shift B(j) one bit

else
keep column A(j)
set the last bit of B(j) to be 1 and left-shift B(j) one bit

endif
endloop
if all segments of A(j) are dropped then

drop A(j)
endif

endloop
if all columns of A are dropped then

drop A
endif

With a binary number assigned to each column, it is possible to compute the inner product
of two columns using BLAS dense vector inner products in the inner most loop.

In order to compute the inner product of two columns, A(j) and A(k), we first compute the
logical AND operation of the two binary numbers, B(j) and B(k), assigned to the two col-
umns.

C(j)(k) = AND(B(j), B(k))
temp = 0
Loop over all bits of C(j)(k)

aij droptol≤

A C
l l×∈

aij droptol≤

14

Find all blocks of bit 1, the consecutive bits of 1, within C(j)(k).
For each block, compute the inner-product of the corresponding
segments of A(j) and A(k).
Add the result to temp.

endloop
temp is the final result of the inner product.

FIGURE 6. Segment-based threshold dropping scheme

As shown in Algorithm 3, for the block-based threshold dropping scheme, it is possible to
take full advantage of the dense matrix operations by using dense matrix multiplications in the
inner most loops. However, since the basic unit of this dropping scheme is a block, it prevents
from dropping more nonzeros and makes the incomplete factorization process expensive.

The column-based dropping scheme is a compromise between the efficient utilization of
dense matrix operations and the accuracy of the preconditioner. The basic unit of this drop-
ping scheme is a column, which is much smaller than the block. In the inner most loops, dense
vector inner products are used instead of the dense matrix multiplications. In other words, we
settle for less than optimal use of BLAS in the interest of keeping the memory usage and the
total number of float-point operations low.

The segment-based dropping scheme is more aggressive than the column-based dropping
scheme. It intends to drop more nonzeros by using a segment, which is smaller than the col-
umn, as the basic unit for dropping. This scheme is very useful if the size of the column is
very large.

Algorithm (11): m-step Block Incomplete Cholesky Factorization

1. Update and factorize the frontal matrix

for i = 1... mb Do:

Column Assigned Binary Number

1 100

2 000

3 100

4 010

5 001

6 011

7 110

8 111Kept Dropped

Matrix A

Segment

15

S = 0
for k = 1.... i-1 Do:

Block-based dropping scheme:
if is kept

endif
Column-based dropping scheme:

if is kept

for p = 1... l
for q = p... l

if is kept and is kept

endif
endfor

endfor
endif

Segment-based dropping scheme:
if is kept

for p = 1... l
for q = p... l

if is kept and is kept

Compute the inner product of and

using Algorithm 10.
Add the result to

endif
endfor

endfor
endif

endfor

Compute l-step Cholesky factorization of and replace the

corresponding first l rows of with the factorization results

for j = i+1... nb Do
S = 0
for k = 1.... i-1 Do:

Block-based dropping scheme:
if is kept and is kept

endif

Aki

S S Aki
T

Aki+=

Aki

Aki()
p() Aki()

q()

Spq Spq Aki()
p()

T
Aki()

q()+=

Aki

Aki()
p() Aki()

q()

Aki()
p() Aki()

q()

Spq

Aii Aii S–=

Aii

Aii

Aki Akj

S S Aki
T

Akj+=

16

Column-based dropping scheme:
if is kept and is kept

for p = 1... l
for q = 1... l

if is kept and is kept

endif
endfor

endfor
endif

Segment-based dropping scheme:
if is kept and is kept

for p = 1... l
for q = 1... l

if is kept and is kept

Compute the inner product of and

using Algorithm 10.
Add the result to

endif
endfor

endfor
endif

endfor

endfor
apply the dropping rule to where

endfor

2. Update the contribution matrix

for i = mb+1... nb Do:
for j = i... nb Do

S = 0
for k = i.... mb Do:

Block-based dropping scheme:
if is kept and is kept

endif
Column-based dropping scheme:

Aki Akj

Aki()
p() Akj()

q()

Spq Spq Aki()
p()

T
Akj()

q()+=

Aki Akj

Aki()
p() Akj()

q()

Aki()
p() Aki()

q()

Spq

Aij Aij S–=

Aij Aii() 1–
Aij=

Aij i 1+ j n≤ ≤

Aki Akj

S S Aki
T

Akj+=

17

if is kept and is kept

for p = 1... l
for q = 1... l

if is kept and is kept

endif
endfor

endfor
endif

Segment-based dropping scheme:
if is kept and is kept

for p = 1... l
for q = 1... l

if is kept and is kept

Compute the inner product of and

using Algorithm 10.
Add the result to

endif
endfor

endfor
endif

endfor
endfor

endfor

2.2 Multifrontal LDLT incomplete factorization

The multifrontal LDLT incomplete factorization is needed for solving indefinite and close-to-
singular positive definite systems. The multifrontal LDLT incomplete factorization uses the
same data structures, such as fronts, elimination trees, the two-end stacks etc. Since it is
unnecessary to keep ones on the diagonal of LT, the diagonals of all front matrices can be used
to keep the diagonal, D, and the off-diagonals to keep the upper triangular matrix, LT.

The two major differences between the multifrontal Cholesky incomplete factorization and
the multifrontal LDLT incomplete factorization are the factorization of the frontal matrices
and the updating process of the contribution matrices. The following is the algorithm for the
multifrontal LDLT incomplete factorization with the block-based dropping scheme. For other
dropping schemes, the algorithms are similar. In the following algorithm, the diagonal of the
block matrix Akk is denoted as Dk.

Algorithm (12): m-step Block Incomplete LDLT Factorization

Aki Akj

Aki()
p() Akj()

q()

Spq Spq Aki()
p()

T
Akj()

q()+=

Aki Akj

Aki()
p() Akj()

q()

Aki()
p() Aki()

q()

Spq

Aij Aij S–=

18

1. Update and factorize the front matrix

for i = 1... mb Do:
S = 0
for k = 1.... i-1 Do:

Block-based dropping scheme:
if is kept

endif
endfor

Compute l-step LDLT factorization of and replace the

corresponding first l rows of with the factorization results

for j = i+1... nb Do
S = 0
for k = 1.... i-1 Do:

Block-based dropping scheme:
if is kept and is kept

endif
endfor

endfor
apply the dropping rule to where

endfor

2. Update the contribution matrix

for i = mb+1... nb Do:
for j = i... nb Do

S = 0
for k = i.... mb Do:

Block-based dropping scheme:
if is kept and is kept

endif
endfor

endfor

Aki

S S Aki
T

DkAki
+=

Aii Aii S–=

Aii

Aii

Aki Akj

S S Aki
T

DkAkj
+=

Aij Aij S–=

Aij Aii() 1–
Aij=

Aij i 1+ j n≤ ≤

Aki Akj

S S Aki
T

DkAkj
+=

Aij Aij S–=

19

endfor

2.3 Adaptive estimation of parameters by global-basis two-level method

The multifrontal incomplete factorization can be used as a general-purpose single-level pre-
condtioner for Krylov subspace methods such as CG, GMRES, QMR etc. However, its
robustness and efficiency can be further improved if it is incorporated into the framework of
the global-basis two-level method as a smoother[2][3].

The global-basis two-level method is a methodology designated to enhance the performance
of a single- or multi-level iterative methods by constructing an additional coarse level aimed
at eliminating the components of error which have not been removed by the iteration matrix R
of a single- or multi-level iterative method of choice. The matrix R is given as

(4)

where denotes the smoothing preconditioner.

Convergence studies in [2] showed that for weakly and highly indefinite systems a successful
iterative method should possess a coarse model able to accurately reproduce the space of alge-
braically “smooth” modes which span the spectrum of highest eigenmodes of the smoothing
iteration matrix R.

The adaptive global-basis method starts by constructing a tentative multifrontal incomplete
factorization as a smoother. The tentative multifrontal incomplete factorization employs a
small number of fill-ins in attempt to estimate the maximum eigenvalue of the smoothing iter-
ation matrix R. If the smoother is found to be satisfactory, the coarse model is formed to
include the algebraically “smooth” modes. If the number of required “algebraically” smooth
modes exceeds the user prescribed limit, the quality of the smoother is improved. On the other
hand, if the tentative incomplete factorization smoother is found to be not satisfactory, i.e., a
very large coarse model is required, the new tolerance setting is heuristically determined on
the basis of the magnitude of the maximum eigenvalue of R.

Numerical experiments have indicated that it is more efficient to improve the quality of the
multifrontal incomple factor than to construct the coarse level. The reason is that a multifron-
tal incomplete factorization with a large dropping tolerance converges very slow. As the num-
ber of fill-ins is increased the iterative method converges very fast with the spectrum radius of
the smoothing iteration matrix R rapidly decreasing.

As an illustration, we consider a fluid-structure interaction problem [21] with 1,436 degrees-
of-freedom. Figure 7 and Figure 8 show the number of the algebraically “smooth” modes and
the iterations versus the quality of the smoother for the multifrontal incomplete factorization
smoother (ICMultifrontal) and the scalar version of incomplete factorization (ICScalar) [3],
respectively. The quality of the smoother is measured in terms of the percentage of total non-
zeros it keeps. Figure 7 and Figure 8 also show the computational cost of the incomplete fac-
torization and the total solver CPU time, respectively. It can be seen that the number of the
algebraically “smooth” modes rapidly decreases as the number of fill-ins is increased. On the

R IN M
1–
A–= C

N N×∈

M C
N N×∈

20

other hand, for the same number of nonzeros the scalar version of the incomplete factorization
has fewer algebraically “smooth” modes and results in less number of iterations, but the CPU
time is significantly higher.

FIGURE 7. Percentage of “smooth” modes vs. percentage of the nonzeros in the incomplete factor

FIGURE 8. Number of iterations vs. percentage of the nonzeros in the incomplete factor

Although it may not be necessary to construct the global-basis coarse model for the multifron-
tal incomplete factorization smoother, we exploit its framework to heuristically determine the
algorithmic parameters on the basis of the magnitude of the maximum eigenvalue of the
smoothing iteration matrix, . The estimation of the maximum eigenvalue normally only
requires a few steps of the Lanczos procedure (typically in the range from five to ten). Besides

λmax

21

the dropping tolerance, the other important parameter for the multifrontal incomplete factor-
ization is the block size. The optimal block size depends not only on the type of the hardware
but also on the properties of the matrices. For example, if a matrix is positive definite and
well-conditioned, the multifronal incomplete factorization with a small block size is more
efficient than with a large block size since the small block size allows to drop more nonzeros
without significantly deteriorating the quality of the incomplete factorization. If the tentative
smoother is satisfactory and the incomplete factorization keeps only a small percentage of
nonzeros, 20% - 30%, the algorithm attempts to reconstruct the incomplete factorization with
a smaller block size and to estimate the maximum eigenvalue of the new smoothing iteration
matrix and the sparsity of the new incomplete factorization. Schematics of the algorithm is
illustrated in Figure 9.

FIGURE 9. Flow chart for adaptive parameter selection

2.4 Out-of-core version of the multifrontal incomplete factorization

Any solver should have both in-core and out-of-core capabilities since it is not usually possi-
ble to keep the entire matrix and factor in core especially for large and dense matrices. To
keep the memory usage low, out-of-core solution methods usually utilize the secondary mem-
ory. Only part of the matrix and factor are loaded into memory from the disk files when neces-
sary.

For the multifrontal Cholesky/LDLT incomplete factorization, we can store the incomplete
factor of each front into the disk files after its factorization. The data kept in the disk files
includes the nonzeros and their positions in the compressed row format [1]. The only data
which should be kept in the memory are the positions of the factors in the disk files which

construc t a ten ta tive incom ple te fac to r iza tion

Yes
end

N o

change the param eters and construct a new

start

with the initial dropping tolerance and the block size

Smaller Block Size?
No

 incom p lete fac to r iza tion

Yes

Smoother OK?

22

allow the solver to quickly locate and load the factors during the process of the precondition-
ing. The same method can also be applied for storing the original matrix.

3.0 Numerical Examples and Discussion

3.1 Helmholtz equation on bounded domains

Consider Helmholtz’s equation in the region enclosed between two concentric cubes of length
2() and 6(). The strong form of the governing equations is given as

(5)

(6)

(7)

where n is a coordinate in a direction normal to and ; and

; r is distance from the center of the cube. Equations (5)-(7) describe the acous-

tic pressure u of a wave in a transmitting medium.

Due to symmetry, only one-eighth of the domain is discretized. Three meshes consisting of
3,072, 23,925 and 156,009 p-method tetrahedral fluid elements have been considered. The
basic information of the three meshes is listed in Table 2 and the coarsest discretization is

shown in Figure 10. We define the sparsity of the system, as , where

nz(L) is the number of nonzeros in the factor L, and n is the size of the system.

FIGURE 10. : Typical finite element mesh and boundary conditions

Γ0 Γ1

u
2

x() k
2
u x()+∇ 0= x Ω∈

n∂
∂u

r∂
∂ e

ikr
r⁄()

Γ0

= x Γ0 ∂Ω⊂∈

n∂
∂u

r∂
∂ e

ikr
r⁄()

Γ1

= x Γ1 ∂Ω⊂∈

Γ0 Γ1 Γ0 Γ1∪ ∂Ω=

Γ0 Γ1∪ 0=

ω nz L() 0.5n
2()⁄=

SYM

SYM

Ω

Γ0

Γ1

23

The resulting discrete linear system of equations, Kx = f, is complex symmetric. We consider
three approaches for solving the discrete linear system of equations:

(i) Global-basis two-level method coupled with QMR method (GlobalBasis + QMR) [3],

(ii) Multifrontal Cholesky incomplete factorization preconditioner coupled with QMR
method (ICMultifrontal + QMR),

(iii) Multifrontal Direct solver (Cholesky factorization) (Multifrontal Direct).

FIGURE 11. : CPU Time versus kh for discrete Helmholtz linear systems with 218,994 equations

Mesh #1 Mesh #2 Mesh #3

of Elements 156,009 23,925 3,072

Average Element Size h 0.3094 0.3572 0.7733

Order of p 2 3 5

Problem Size 218,994 114,886 69,151

of Nonzeros (Original System) 2,943,139 3,570,150 2,616,864

of Nonzeros (Complete Factor) 149,478,256 59,752,343 28,391,676

System Sparsity 0.00623 0.00905 0.0119

TABLE 2. Basis information of three meshes

ω

24

FIGURE 12. : # of nonzeros versus kh for discrete Helmholtz linear systems with 218,994 equations

FIGURE 13. : CPU Time versus kh for discrete Helmholtz linear system of 114,886 equations

25

FIGURE 14. : # of nonzeros versus kh for discrete Helmholtz linear systems with 114,886 equations

FIGURE 15. CPU Time versus kh for discrete Helmholtz linear system of 69,151 equations

26

FIGURE 16. # of nonzeros versus kh for discrete Helmholtz linear systems with 69,151 equations

The Global-basis scheme uses the scalar version of the incomplete LDLT factorization precon-
ditioner as a smoother. We used for adaptive scaling and , m = 4 for piv-
oting. In the Global-basis algorithm, the tentative incomplete factorization smoother is
considered satisfactory if . The initial dropping tolerance for the enhanced incom-

plete factorization is determined as and is reduced by

factor of 5 for subsequent incomplete factorizations [3].

In the multifrontal incomplete scheme, the initial dropping tolerance for the multifrontal
incomplete factorization is set as and the new dropping tolerance is deter-
mined as

(8)

for subsequent incomplete factorizations if . The initial block size is set as 32 and is

reduced by factor of 2 for subsequent incomplete factorizations if necessary. We only con-
sider the column-based dropping scheme.

Figure 11, Figure 13 and Figure 15 show the CPU time versus the product of the average ele-
ment size and the wave number, kh, for the three meshes considered, respectively. The num-

bers of nonzeros in the scalar version of incomplete LDLT factorization (Scheme i), the
multifrontal incomplete factorization (Scheme ii) and the complete factorization (Scheme iii)
are shown in Figure 12, Figure 14 and Figure 16, respectively.

It can be seen that for the densest system, Mesh # 3, the multifrontal incomplete scheme is the
best solver over the whole spectrum of kh. The multifrontal incomplete scheme is also the best

µ 0.1= α 0.001=

λmax 10<

droptol min 1 λmax()⁄ 0.01,()=

droptol 0.005=

droptolnew min 1 λmax()⁄ droptol 5.0⁄,()=

λmax 1>

27

solver for Mesh #1 and Mesh #2 when the real part of the system is highly indefinite
(4<kh<10). The global-basis scheme is best suited for very sparse systems, Mesh #1 and
Mesh #2 and when the real part of the system is positive definite or weakly indefinite (kh<4).
However, for systems which require dense preconditioners, the global-basis scheme is signifi-
cantly slower than the multifrontal direct solver because its algorithm and data structures do
not take advantage of the fast dense matrix operations such as the level 2 and level 3 primi-
tives of BLAS.

The multifrontal incomplete scheme has been found to be faster than of the direct solver
although the CPU times are very close when the preconditioners are dense. For a given sys-
tem, the incomplete multifrontal scheme keeps more nonzeros than that of the global-basis
scheme. However, since it employs fast dense matrix operations in the inner most loops, it is
faster than the global-basis scheme with the scalar version of the incomplete factorization
even though it drops 20%-30% of total nonzeros as shown in Figure 12, Figure 14 and Figure
16.

3.2 Fluid-structure interaction problem

28

FIGURE 17. Typical Finite element mesh

Figure 17 illustrates the schematics of a fluid-structure interaction problem [21]. The resulting
system of equations is complex symmetric. The size of the system is 41,592 and the number
of nonzeros is 3,140,344.

The results of the three solvers described in Section 3.1 are listed in Table 3 . It can be seen
that the multifrontal incomplete scheme is the best solver although its multifrontal incomplete
factorization only drops 25% of total nonzeros. On the other hand, the scalar version of the
incomplete factorization in the global-basis scheme keeps 30% of nonzeros but the CPU time
is higher than that of the multifrontal incomplete scheme. We were unable to drop more terms
since the fluid-structure interaction problem is exteremely bad conditioned. Also it can be
seen from Table 3 that the I/O operations are very fast making the computational costs of the
in-core and the out-of-core methods to be very close.

3.3 Shear banding problem

We considered a linearized shear banding problem, illustrated in Figure 18. The cube is dis-
cretized with 8-node hexahedral elements totaling to 107,787 degrees-of-free-
dom. We assume that a shear band (softening zone) develops on the diagonal plane of two
layers of elements [24]. We considered the spectrum of ratios between the stiffness inside and
outside the shear band, , in the range of 0.3 and -0.9.

GlobalBasis + QMR ICMultifrontal + QMR Multifrontal Direct

in-core in-core out-of-core in-core out-of-core

Nonzeros of factor 5,478,751 11,601,625 15,416,567

Solver Total (sec.) 1516 273 278 346 349

Incomplete Factorization 283 225 227 335 338

GlobalBasis Construction 130

Iterative Process 1103 48 51

Forward/ backward

Substitutions

11 11

Iterations 72 8 8

TABLE 3. Split-up Times

32 32 32××

Eband E⁄

29

FIGURE 18. : Model for shear banding problem

We consider three approaches for the solution of discrete linear system of equations:

(i) Global-basis two-level method coupled with QMR method (GlobalBasis + QMR),

(ii) Multifrontal LDLT incomplete factorization preconditioner coupled with QMR method
(ICMultifrontal + QMR),

(iii) Multifrontal Direct solver (LDLT factorization) (Multifrontal Direct).

Figure 19 and Figure 20 show the CPU time and the number of nonzeros of the preconditoners
versus the measure of indefiniteness (). It can been seen that the multifrontal incom-

plete scheme has the best overall performance among the three approaches. The behavior of
the global-basis scheme is similar to that in the Helmholtz equations. It is very fast when the
system is positive definite or weakly indefinite, , but is very slow for highly

indefinite systems, .

Γ1

Γ0
E

Eband

E

Eband

ε

σ

Eband E⁄

Eband E⁄ 0.1>

0.9– Eband E⁄ 0.1–≤ ≤

30

FIGURE 19. : CPU Time vs. for shear banding problem with 107,787 equations

FIGURE 20. : # nonzeros vs. for shear banding problem with 107,787 equations

4.0 Conclusions

This paper addresses two important issues concerning the incomplete factorization precondi-
tioner: improving the memory-system performance and adaptive selection of algorithmic
parameters. A multifrontal incomplete factorization preconditioner is developed for indefinite

Eband E⁄

Eband E⁄

31

and complex symmetric systems. The precondtioner keeps the dense matrix kernels in the
innermost loops of its computation in order to achieve high computational efficiency. An
adaptive scheme based on the global-basis method has been utilized to adaptively select the
algorithmic parameters for the preconditioner. Numerical experiments conducted on the
Helmholtz equations, the fluid-structure interaction problem and the shear banding problem
affirm the potential of the method.

Further studies will be conducted to incorporate pivot selection into the analyze and factorize
phases, to further improve the adaptive parameter selection and to extend the application of
the preconditioner to nonsymmetric indefinite and complex systems.

References

1 Y. Saad, “Iterative Methods for Sparse Linear Systems,” PWS Publishing Co., Boston,
1996.

2 J. Fish and Y. Qu, “Global Basis Two-Level Method For Indefinite Systems. Part 1: Con-
vergence studies,” International Journal for Numerical Methods in Engineering, Vol. 49,
pp. 439-460, (2000).

3 Y. Qu and J. Fish, “Global Basis Two-Level Method For Indefinite Systems. Part 2:
Computational Issues” International Journal for Numerical Methods in Engineering, Vol
49, pp. 461-478, (2000).

4 R. W. Freund and N. M. Nachtigal, “Software for Simplified Lanczos and QMR Algo-
rithms,” Applied Numerical Mathematics, Vol. 19, pp. 319-341, (1995).

5 J. Meijerink and H. van der Vorst, “An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix,” Math. Comput. 31, 137 (Jan.), pp.
148-162, (1977).

6 B. Stroustrup, “The C++ Programming Language, Bjarne Stroustrup,” Addison-Wesley
1991.

7 Chow, E. and Y. Saad, “Experimental Study of ILU Preconditioners for Indefinite Matri-
ces,” J. Comput. and Appl. Math. Vol. 87, pp. 387-414, (1997).

8 E. Chow and M. A. Heroux, “An object-oriented framework for block preconditioning,”
ACM Trans. Math. Softw., 24, pp. 159-183, (1998).

9 I.D. Duff and J.K. Reid, “The Multifrontal Solution of Indefinite Sparse Symmetric Lin-
ear Equations,” ACM Transactions on Mathematical Software, Vol. 9, No. 3, pp. 302-
325,(1983).

10 M.T. Jones and P.E. Plassmann, “An improved incomplete factorization,” ACM Transac-
tion on Mathematical Software, Vol. 21, pp.5-17,(1995)

11 J. Fish and A. Suvorov, “Automated Adaptive Multilevel Solver,” Comp. Meth. Appl.
Mech. Engng.,Vol. 149, pp. 267-287, (1997).

12 Y.E. Campbell and T.A. Davis, “Incomplete LU Factorization: A Multifrontal
Approach,” Technical Report TR-95-204, Computer and Information Sciences Depart-

32

ment, University of Florida, (1995)

13 Timothy A. Davis, “Block matrix methods: Taking advantage of high-performance com-
puters,” Technical Report TR-98-024, Computer and Information Sciences Department,
University of Florida, (1998)

14 E. Anderson etc., “LAPACK Users’ Guide Third Edition”, the Society for Industrial and
Applied Mathematics (1999).

15 R. E. Bank, R. K. Smith, “The Incomplete Factorization Multigraph Algorithm,” SIAM
Journal on Scientific Computing, Vol. 20, No. 4, pp. 1349-1364, (1999).

16 Y. Saad and J. Zhang, “Diagonal Threshold Techniques in Robust Multi-Level ILU Pre-
conditioners for General Sparse Linear Systems,” Technical Report umsi-98-7,University
of Minnesota, Minneapolis, MN, 1998.

17 M. Benzi, D. B. Szyld, and A. van Duin, “Orderings for Incomplete Factorization Precon-
ditioning of Nonsymmetric Problems,” SIAM J. Scientific Computing 20, 3, pp. 1652--
1670,(1999).

18 G. Karypis and V. Kurnar, “METIS: A Software Package for Partitioning Unstructed
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
Version 4.0,” University of Minnesota, Minneapolis, MN, 1998.

19 J. Harding, “Harwell Subroutine Library,” B 552, AEA Technology, C Harwell, Didcot,
Oxon OX11 0RA

20 S. Toledo, “Improving the Memory-System Performance of Sparse-Matrix Vector Multi-
plication,” IBM Journal of Research and Development, Vol. 41. No.6, (1997)

21 The Naval Research Laboratory (NRL), 555 Overlook Ave. S.W. Washington, DC 20375

22 A.Bayliss, C.I.Goldstein and E.Turkel, “On accuracy conditions of the numerical compu-
tation of waves,” Journal of Computational Physics, Vol. 59,(1985)

23 N.N.Abboud and P.M. Pinsky, “Finite element dispersion analysis of the numerical com-
putation of waves,” Int. J. For Numerical Methods In Engineering, Vol. 35, pp. 1183-
1218, (1992)

24 T.Belytschko, J.Fish and B. Engelmann, “A finite element with embedded localization
zones,” Comp. Meth. Appl. Mech. Engng., Vol.108, (1993).

