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We present a black-box two-level solver for indefinite algebraic linear system of
equations arising from the finite element discretization. Numerical experiments
show the applicability of the method to 3D Helmholtz equations and shear banding
problems with strain softening.

1.0 Introduction

Despite the fact that iterative solution techniques are recently gaining recognition
among practitioners and finding their way into commercial software arena, the current
state of the art in iterative methods remains unsatisfactory in many respects. Users of large
production codes such as ANSYS, NASTRAN, ALGOR, SDRC, EMRC and ANSYS
often observe many “bad” cases resulting from poorly conditioned or indefinite systems
for which their iterative solvers converge prohibitively slow or systematically break. Con-
sequently and perhaps rightfully so, a number of commercial software houses, including
ABAQUS, refrain from utilizing iterative solver technology primarily because of its lack
of robustness.

For positive definite well conditioned systems iterative solvers developed into mature
technology, and in many cases, far more effective than the direct methods. For such sys-
tems the multilevel solution techniques possess an optimal rate of convergence by which
computational work required to obtain a fixed accuracy is linearly proportional to the
number of unknowns, whereas for indefinite systems not even convergence is guaranteed.
Numerical analysis of multilevel methods for indefinite systems shows that convergence is
only guaranteed provided that the coarse model is sufficiently fine [1]. For some “bad”
cases coarsening factor required might be close to one effectively turning the multilevel
solver into a direct method.

Indefinite problems arise in many areas of scientific computing. Examples falling into
this category are: Helmholtz equations, Galerkin or least squares methods with con-
straints, and problems with indefinite constitutive tensor arising as a result of damage/
localization in solids or shocks in fluids.

The manuscript is organized as follows. After briefly describing the principles of mul-
tilevel methods in Section 2, we present a numerical example which demonstrates the crit-
ical role of the prolongation operator and serves as a motivation for developing a family of
two-level methods for indefinite systems. Attention is restricted to symmetric systems.




Complex symmetric algebraic systems are transformed into real symmetric systems prior
to the solution (Section 6.1). In Section 4 we conduct a convergence analysis on a model
problem and identify key factors affecting the convergence of two-level schemes. Section
5 details various approaches for constructing efficient prolongators. In Section 6 we test
various two-level schemes on a sequence of examples involving Helmholtz equation on
bounded domains and shear banding problems with strain softening. A brief discussion of
future research directions conclude the manuscript.

2.0 Principles of multilevel methods

Consider a linear or linearized system of equations within a Newton-Raphson or
related scheme
n

Ku = f uOR' fOR (1)
whereK isamxn symmetric sparse matrix.
The following notation is adopted in this section. Auxiliary model functions are

denoted with subscrifd . For examplg,0R™,m<n  denotes the discrete values of the
solution in the auxiliary model. We also denote the prolongation operator from the coarse
to the fine model by;)
QR". R )
The restriction operatoéT from the fine-to-coarse model is conjugated with the pro-
longation operator, i.e.,
QR - R" 3)
In this section superscripts are reserved to indicate the iteration count. Let  be the
residual vector in the -th iteration defined as
= f-KU (4)
whereu' is the current approximation of the solution inithe -th iteration.
The problem of the coarse model correction consists of finding the stationary values of
the following functional on the subspaR@
(1/2)K(u' + Qui), u' + Quj) —(f, u' + Qui) O stationary uj O R" (5)
where (.,.) denotes the bilinear form defined by

n
(u,v) = z UV, uvOR (6)
j=1
A direct solution of (5) yields a classical two-level procedure. Alternatively, one may
introduce an additional auxiliary model fog ~ and so forth, leading to a natural multilevel

sequence. In the present manuscript we will consider a two-level process resulting from
(5) which yields




Koui = Q'(f—Ku') (7)

~T o~ - . . .
where K, = Q KQ is the restriction of the mati& . The resulting classical two-level

algorithm can be viewed as a two-step procedure:
a) Coarse model correction
i i
r

f—Ku

uh = Kg'Q'r ®)

U = u+Quj

wherel isa partial solution obtained after the coarse model correction.
b) Smoothing
ut = U+ D(f-KU) ©)
whereD is an inverse of smoothing preconditioner.
Let u be the exact solution of the source problem, then the error resulting from the
coarse model correction (8) can be cast into the following form

g =u-0 = (In—CK)ei (10)
: : . . ~ 1T . .
where I 0 0% is an identity matrix andC = QKolQ is an inverse of the coarse
model preconditioner. Likewise the influence of smoothing on error reduction is given by:
"t =u-u"t = (1, -DK)E (11)
Furthermore if we denote
M = 1,-DK
(12)
T=1,-CK

then the error in the two-level process with  pre- and post-smoothing iterations is given
as:
et = MTMe (13)

. . . +1 k . .
In practice, however, the solution increment "1 —u obtained from a single two-

level cycle is used in the determination of the search direction within the framework of the
Conjugate Gradient (CG) method for positive definite systems and QMR [2] or GMRES
[3] for indefinite systems.

3.0 Motivation and goals
Consider a spectral decomposition of the prolongation opef@ator

Q=0da +da =oa (14)
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Note that ifa’ vanishes, the prolongation operator is optimal for a given  and as

~ 1~ . . . , ,
such the terrd " can be viewed as an error in the optimal prolongation. Without loss of
generality we will consider the normalized form of the prolongation opeihtor , such that

H(NQHZ =1.Let €= H&le/Haon denote a measure of quality of the prolongation
operator, i.e., ife = 0 the prolongation operator is optimal for a gimen

As a motivation we consider a linearized shear banding problem, illustrated in Figure
1, where the material in the band is softening, and thus giving rise to an indefinite system
of algebraic equations. The specimen has been discretized with 8x8x8 hexahedral ele-
ments totaling 2187 degrees-of-freedom. We assume that a shear band (or a softening
zone) develops on the diagonal plane of two layers of elements [18] as shown in Figure 1.

Let E,,ng @aNdE be the stiffnesses inside and outside the shear band, respectively. We

consider three material models having the rd&jg,,y/ E equal to: (i) 0.1 (positive defi-

nite system with oscillatory coefficients), (ii) - 0.1 (weakly indefinite system), and (iii) -
0.5 (strongly indefinite system). The three problems have been analyzed with the two-
level method outlined in Section 2 and with prolongators generated by different values of
€. For all problems considered the coarse model had 250 degrees-of-freedom, or approxi-
mately 11% of the modes in the source mesh. The QMR accelerator [2] and the SSOR
smoother have been employed. Note thatgor 0 the eigenmodes corresponding to the
lowest eigenvalues in the absolute value comprise the prolongation operator.

Figure 1 shows the iteration count versus the prolongation quality paraaneter . It can
be seen that for positive definite system with oscillatory coefficients and for weakly indef-
inite system the performance of the two-level method is only mildly sensitive to the qual-
ity of prolongation. On the other hand, it is evident that highly indefinite systems are very
sensitive to the quality of prolongation operator making it a key factor affecting the perfor-
mance of two- or multi- level methods for indefinite systems.

Although this approach is impractical due to the large computational effort in approxi-

mating ®° to the desired accuracy, it still shows that it is possible to construct a robust
multilevel solver for indefinite problems. Furthermore, it is used in the present work to
motivate the efficient construction of local approximations to the eigenvector columns of

@° as discussed in the sequel. As an alternative, we will examine the feasibility of cost-
efficient utilization of normal equations. For highly indefinite systems for which positive
and negative eigenvalues are of the same order of magnitude, it might be necessary to
apply a two- or multi- level scheme to normal equations. For such ‘hard’ cases we will




transform the indefinite source system into a positive definite Kr%x, = f , (provided

thatK is not singular), where (] R' isdefinedass Kx
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Figure 1: Iteration count versus prolongation quality parameter for various indefinite sys-

tems
4.0 Convergence studies

In this section we study the rate of convergence of two-level methods applied to a lin-
ear system of equations:

KPx = f (15)

arising from either the source system= 1 , Or normal equatons,2

4.1 The prolongation operator

We will consider the following model problem:0 gom™m 6(,1: atog™m , are

both diagonal matrices, i.equ =0 i,j =0,1 fa#m . We assume 2nak n

and defined* 00 by choosing arbitrarycolumns fromi)1 to express the error in the




mxn

prolongation operator asla® . Furthermore,kllet] O be the corresponding eigen-

1
values ofd™ .

We will seek to enhance the quality of the initial or tentative prolongation opéator
by means of smoothing denoted as

Q=795Q (16)
where SOO™" is a prolongation smoothe, represents the number of times it is
applied, andQ 0 O0™™ is termed as tiehanced prolongator

For positive definite systems the concept of smoothing or weighted interpolation has
been utilized in [6] and [7]. Our studies in [11] indicated that for positive definite systems
with efficient two- or multi- level preconditioners the computational savings resulting
from prolongation smoothing are often very limited due to minor reduction in iteration

count but increased cost associated with prolongation enhancement.

The prolongation smootheé8 can be defined either with respect to the source or nor-
mal equations. It has the following structure:

S=1-P'KP 17)

whereP is a preconditioner o . The exponpnt  can be either one or two. Its value

might be different fronp . For example, we may select to apply an iterative method to the
source system, but to smooth the prolongation with respect to the normal equations. For
the purpose of convergence studies, we will consider the simplest form of prolongation
smoother based on Richardson preconditioner given as

(18)

where\ is an upper bound of the maximal eigenvalu¢ of in the absolute value.

Consequently, the enhanced prolongation is given by:

_ 1,p8P,.0.0 1.1, _ &L i 1,,i\BP i
0 =0 - 1kPP 0%+ plal) = CD[I —A—()\)}a (19)
an AR H iZO " AP

4.2 Auxiliary coarse model stiffness matrix

The auxiliary coarse model stiffness matrix is obtained by restriction:
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KQ = 3 [tn=50"" 0@’ @0

i=0

K°=0Q

Before proceeding with the convergence analysis, we investigate the spectral charac-
teristics ofK®

2p

P : 0
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1
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whereC, <1 . From|Q[, = 1 follows thatz (aj) <10  and we obtain the follow-

ing estimate:
B Unaks
|K%2 < maxd 1 - J—J%F A p% (22)
j
J:1 A0 O

Maximizing HKon with respect tb} fop = 1 yields

K2 < A" (23)
where
_ 102 Pt
n 2pB2pp + 11 ()
We now show that (24) is valid for any tentative prolongaf@) o™ satisfying
IQl2 = 1 or fal, = 1.
~ T ~ T
k%2 = [(®) k(Y25 1012 (S0) K (D) 5)
Since’® = dOAF andSPd = CDB )\B[P we get
i—P-2p
0 BPyp B[P 3 A [F iipd
Ik%2< _Ha AB)\ AP - AB)\ . rRaivqgl %\‘JE} Al C (26)

which is identical to equation (22).




4.3 Auxiliary coarse model iteration matrix

The inverse of the coarse model preconditioner (10) is given as:

c= oKH Q" = z oD’ (@) 27)
where
D" = 150" 'tk e 1 - ) [ 0 O™ @9
A
Since all the matrices in (28) are diagoriztif, is also diagonal with diagonal compo-

nents given as

(29)

1

- p
i&‘bz(xq)p{ -y ]
= AF - b IR - (b

Oooo0,

The coarse model iteration matrix (12) is given by
-1 A~
T=1,-Q(K%) QK = oTo' (30)
whereT 0 0™" has the following block structure

_‘I_ll T12 0
mxm

. i
21222 o T OO (31)

o' 0 |

—»
I

n-—2m

mxm

andT’ 00 is a diagonal matrix given by
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U 2 °B B.2
i 4 0L () D A= (N
o= ol _He O e A -]

— = ~ , - : (32)
oo M2 - " 1A - ()

o o

5Ek [0 0O is a Kronecker delta with respect to the superscripts.

4.4 Two-level iteration matrix

For the purpose of convergence studies we consider a relaxation scheme based on the
Richardson preconditioner. The corresponding relaxation iteration nhatrix  is given as
M=, —A—lﬁKB (33)

A

Relaxation sweeps can be carried out either with respect to the source gysteln

or normal equationd = 2 . The number pre- and post- relaxation sweeps is denoted by

p. The resulting two-level iteration matrix is given by

FFo..00
2
OF ... 0 O
L= MPTMP = oP Po (34)
00..F"0
0 0..0 G|
where PO O™" is a permutation matrix satisfyingP|, = ; The block diagonal
bIocks,Fi nlnks , are denoted as
Fby Fb,

where

0o . . 0
i AP A P 3B 22 o fPmdfo AP PO
Fry = (-1) =0 Ey ED‘B—OBD + 0500650 BAB—18E(3®]

e = ) e T T A G

andG is a diagonal matrix with diagonal terms given as




L0 e
G =0-0=00 (37)
g oo
The spectral radius of the iteration matrix denotep (&9 is given as:
p(L (38)
The eigenvalues o  canbe computed from
i i _ : ,
det Fll_ APl e (Fiy +FL)N—FL F +F F,0= 0 (39)
Fihr Fh —)‘

which yields

- F +F -
A = > 22 /\/EFll 2252+F| F'zl—":ll“'"': 2‘+ /‘F|12|:|21‘ (40)

Substituting (36) into (40) gives:

+e N+ N
(F)_ ‘ ‘ i (41)
\e /GP +/\/G y
where
AP ol o O Y
N\ = =0 g = |= G = O———0 (42)
ERE o® O \PO

and Gi1 as defined in (37). Siano‘ « )A\ we approxim@q-oe =1

To study the convergence characteristics of the two-level method we consider three
cases: (i\, 20 , (i)-Gie” <A, <0 , and (ii)A, <—G'e” . Only cases (i) and (jii) sat-
isfy the convergence criterip(L) <1 , provided that:

-1 g .
(G) =z1+— N =0 i (43)

i (44)

10



Equations (43) and (44) describe the quality of the smoother required to ensure the
convergence of the two-level scheme for a given tentative prolongation operator.

4.5 Discussion
There are several factors affecting the convergence of the two-level process, namely:

(i) The smootherThe ability of the prolongation and the two-level smoothers to reduce the
higher frequency modes of error is one of the key factors affecting convergence. From (43)

and (44) it can be seen ttﬁf <1 isanecessary condition for convergence. In the context

of Richardson-based preconditioner this condition is satisfied if either the stiffness matrix
is positive definite or both the prolongation and iteration smoothings are carried out with

respect to normal equations, i.€,= 2 . For stronger preconditioners, such as SSOR,

there might be a weaker condition satisfyb< 1

(i) The prolongation operatoifhe quality of the tentative prolongation operaf@r, , is

governed by the ratice;= \ail/aio\ . In the case of the optimal prolongation operator, i.e.

g — 0, the necessary conditicihi1 <1 becomes the sufficient condition provided that the
system is non-singular, i.e\; # 0

(iii) Spectral characteristics of the linear system of equatfemspositive definite systems

Gil(B, p) is minimal with respect to exponerfiss gnd fBr=p =1 and equation
(43) represents the sufficient conditions for convergence. When the multilevel scheme is
applied to normal equations, i.p.= 2 , (43) represents sufficient conditions as well. In
the case of indefinite systems, i@.= 1 , both equations (43) and (44) comprise the suf-
ficiency conditions with (43) foA; >0 and (44) f&xr <0 . By comparing equations (43)
and (44) it can be seen that the existence of extreme eigenvalues with opposite signs slows
down the converge of the two-level method or may require stronger smoother (or increase
the value ofp ) to prevent divergence.

(iv) The size of the coarse modd@ls the size (number of equations) of the coarse model

approaches the size of the source grid,ql.eﬁ, ) Gi1 , defined in (37) approaches zero pro-

vided thatG <1 .

5.0 Prolongation operator

The tentative prolongation operator can be constructed using either Geometric Multi-
grid (GM) method or the aggregation approach [5], [6], [8], [9] which falls into the cate-
gory of Algebraic Multigrid (AMG) methods. While geometric multigrid approach

11



constructs the prolongation operator from auxiliary coarser grids, the method of aggrega-
tion accomplishes the same goal on the basis of the information available in the source
grid. In the present manuscript we focus on the aggregation approach.

In an aggregation scheme the coarse model is directly constructed from the source grid
by grouping finite elements into either nonoverlapping or overlapping subdomains
referred to as aggregates, and then for each aggregate assigning a reduced number of
modes with an intent of effectively capturing the lower frequency response of the source
system.

In an attempt to construct an efficient prolongation operator in terms of its spectral
characteristics, the following key issues are discussed in the remainder of this section: (i)
construction of the auxiliary aggregated model (Section 4.1), (ii) construction of the tenta-
tive prolongation operator (Section 4.2), and (iii) enhancement of the tentative prolonga-
tion operator (Section 4.3).

5.1 Aggregation algorithm

Prior to describing the technical details of the aggregation algorithm, we introduce the
concept of “stiff” and “soft” elements which is utilized in the process of aggregation. The
element is considered “stiff” if the spectral radius of its stiffness matrix is relatively large
compared to other elements and vice versa. It has been shown in [8], [9] that it is advanta-
geous to place the “soft” elements at the interface between the aggregates, and “stiff” ele-
ments within the aggregates. This approach is a counterpart of the idea of “weak” and
“strong” nodal connectivity employed in [4].

The maximal eigenvalue of the element stiffness ma?txrﬁ;g,x , estimated using the
Gerschgorin theorem

e e e = k? O (45)
)‘maxSB B miaX%Z‘ IJ‘D
is used to quantify the element stiffness. We consider a finite element mesh consisting of
Ng elements andy nodes. L& (i) be the set of nodes belonging to the elEment
cy(i) = {N:NOE} (46)
where subscripts and  denote sets of elements and nodes, respectively.

Step 1. Setup.

1.1. For each node\Ij,j = [1,Ny] selectthe elements containing this node:

Be(j) = {E:N OE} (47)

12



1.2. For each elemerf , i = |1, Ng] select the set of neighboring elerekiy , e,

elements containing common nodes:

Fe(i) = {E“E“OBg(j),i DCy()}E (48)

Step 2. Start-up aggregation.

2.1. Define the set of elemenis available for aggregation. These are all the elements
which do not contain nodes with essential boundary conditions or the ‘slave’ nodes:

Te = [1, NgI\{Be(j), N O Sy} (49)

where S is the set of ‘slave’ nodes, which depends on so called ‘master’ degree(s)-of-

freedom, and nodes with essential boundary conditions. We d‘é%ote as the initial set.

Remark 1: We include the slave nodes in the Sgt so that we could deal with multi-
point constraints in a conventional way. See [9] for details.

2.2. Find the “peripheral” eleme® |, i.e., the element with minimal number of neigh-
bors:

s= airngrLid Fe (i) (50)
where|X| is a number of elements in the Xet . Elergnt is a starting element for the
aggregation algorithm.

2.3. Setup:
- the current aggregate counter= 1 ;

- the set of interface elementg = [1, Nc]\Tz  , i.e., elements between
aggregates.

Step 3. Formation of the current nonoverlapping aggregate.

3.1 An aggregate with zero neighbors is defined as follows:
AL(0) = E° (51)

3.2 An aggregate with one neighb@r"E(l) , contains the ele@ent andahise
available neighbors which satisfy the relative stiffness condition:

13



Ac(1) = ESO{E'OFg(s) n Te, B 2 pp% (52)

Wherij is a Gerschgorin upper boundjon -the element stiffness matrix maximal eigen-
value, andy is a coarsening parameter. If on the other hand the element stiffness informa-
tion is not available in the aggregation process, then the aggregate with one neighbor is

defined as

Ac(1) = ESO(Fg(s) n Tg) (53)

Similarly we can define an aggregate with arbitrary number neighbors, den@tigd as

Remark 2. Numerical experiments have shown that for higher order elemeht8 ( ) the
zero-neighbors version is typically more efficient, whereas for lower order elements the
one- or two- neighbor aggregation scheme is more appropriate.

Step 4. Update the sets of the interface and available elements.

4.1. Update the set of the interface elements:

le = 1 O {(E“OF&(), E OAp) n (E“O AL} (54)

4.2. Update the set of the available elements:

‘ L . .
Te = TEM(E*OF(), E OAR) O AR} (55)
4.3 Update the set of aggregates:

Ac = Ac O{(E“OF(j), E DAY n AL} (56)

Step 5. Find the new starting element.

Form the set of “frontal” elemen®: , i.e., available elements neighboring the interface
elements
k N
Re = {(E'OF(), E'Olg) n T} (57)
and select the stiffest new starting element from theRget defined as
s= argmaxp) (58)

=]
JJEORg
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If on the other hand the stiffness information is not available in the aggregation process we
simply select an arbitrary starting element belonginrto

Step 6. Stopping criteria for nonoverlapping aggregation.

If Re = O then stop; elsei =i+1 and repetps 3-6

Step 7. Define the element-free aggregates

7.1 Each node i is classified as an element-free aggregate
A =N ON' OS, (59)
7.2 Find the set of nodes which is not contained in one of the aggregates.
Vy = {N:([1, Ny\(N' O Cy(K), EX 0 AD\S)} (60)

For higher order elements there will be a significant number of nodes belondigg to
primarily in the interface region between the aggregates. For linear elements it is also pos-
sible thatvy # O as shown in Figure 2. There are two approaches to deal with\he set

(i) collapse N O Vy and the corresponding elements to one of the neighboring aggre-
gates as shown in Figure 2. If such collapsing makes the aggregate invalid (attaching
the node without elements) makd [V, a ‘master’ node in the coarse model and
classify it as an element free-aggregate, or

(i) consider N O Vy as a ‘slave’ nodes in the coarse model and interpolate the solu-
tionin N' from the adjacent nodes Ag

One-Neighbor

Node to be Aggregates Ag(1)

collapsed

“:‘:"o’;n» ¢
Delolel steme

’ < o )
S N&T
A VA Lo
SO } SR
L‘ 930S ,
- ‘ — .,\
SN

Interface
elements

Figure 2: A typical nonoverlapping one-neighbor aggregation model

In the present manuscript the first approach is adopted.
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Step 8. Formation of the overlapping aggregates (for overlapping version only)

_ For each nonoverlapping aggregm:_e define a corresponding overlapping aggregate
A'E(l) with one overlapping layer of elements:

A(1) = {((E*OF(), E OAD DAY n T3) 61)
Similarly, an overlapping aggregate witk+ 1 overlapping layers of elements is
defined as
Ac(k+1) = {((E“OFe(), E DALK) DAL(K) n T3 (©2)

5.2 Construction of the tentative prolongation

The goal of the aggregation method is to approximate the eigenmgdbﬁ i cor-
responding to the lowest eigenvalues of the source stiffness matrix (in the absolute value)
by a linear combination o€®  continuous local functions defined over the individual

aggregates. The following four choices have been considered:

5.2.1 A priori selected functions on nonoverlapping aggregates

By this technique a finite element mesh is decomposed into nonoverlapping aggregates

(steps one to seven in Section 4.1). On each aggrAigate , a low oder polynomial function
(constant or linear field) is used to approximate the solution (typically for Poisson or elas-

ticity equations with constant coefficients). For problems where eigenfuncﬁ%ns are
oscillatory, such as in the case of elasticity with oscillatory coefficients or Helmholtz
equation, an analytical solution with either periodic boundary conditions [11] or on
unbounded domains is used instead. Figure 3(a) illustrates a linear approximation over
nonoverlapping aggregates.

5.2.2 Eigenmodes on nonoverlapping aggregates with Neumann boundary
conditions

An alternative to selecting analytical functions@lg is to conduct a local eigenvalue

analysis on each aggregate

K'e¢ = Ndiag(K)e (63)
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with zero Neumann boundary conditions Ag and to select the eigenmodes for which

A< y. In (63) diag( Ki) denotes the diagonal of the aggregate stiffness riAtrix

The value ofy controls the effectiveness of the aggregated model. In the limit as

y - m_ax()\i), the auxiliary coarse model captures the response of the source system for all
frequelncies and therefore the two-level procedure converges in a single iteration even
without smoothing. On the negative side, for large valugs of , the eigenvalue analysis on
each aggregate becomes prohibitively expensive and the auxiliary matrix becomes both
large and dense. At the other extreme in the limjt as0 , the prolongation operator con-
tains rigid body modes only, and thus the auxiliary coarse model becomes inefficient for
ill-posed problems. For best performance of the iterative process the value of pasameter

should be in the range a0t wo

[8], [9]. The optimal value depends on the prob-
lem type (3D elasticity, shells, Helmholtz). Typically 6-50 modes satisf&dngy are
selected. The Lanczos algorithm with partial orthogonalization [13] is utilized for local

eigenvalue analysis.

The aforementioned approach [8], [9] does not requpedori knowledge of the solu-
tion characteristics nor does it utilizes any information regarding the choice of coordinate
functions or the nature of the discrete approximation (i.e., rotations, displacements, pres-

sures, etc.). As such it falls into the category of ‘black-box’ solvers.

5.2.3 Eigenmodes on overlapping aggregates with Dirichlet boundary conditions

For normal equationsk’x = f p = 2 , itis not trivial to construct a local Neumann
problem due to coupling resulting from the product of two global matrices. Instead, a local
eigenvalue problem with Dirichlet boundary conditions can be constructed by extracting
appropriate information from the global mati? . This approach can be also applied to

the source system.

For each overlapping aggreg@té we conduct a local eigenvalue analysis

Ki(_pi _ )_\idiag(_Ki)(_pi (64)
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and select eigenmodgs  for whikhey K; is a block within the global stiffness matrix
corresponding to the aggregaﬂ&ig . Typically y since the Dirichlet problem is stiffer
than the corresponding Neumann problem. Figure 3(b) shows a typical approximation for

the 1D problem on overlapping aggregates.

5.2.4 Mixed prolongation

In [8] we have shown that the coarse model approximation space should satisfy the
homogenous differential equation. For elasticity problems this means that each aggregate
should be able to represent rigid body modes, whereas for Helmholtz equations it should

contain functions of the forrBikX , whekas the wavenumber.

The eigenvalue problem with Dirichlet boundary conditions (64) is usually overcon-

strained, and thus in general the eigenfuna_ﬁon does not satisfy homogeneous problem.

For this reason we define a mixed approximation scheme by which the coarse model
approximation space consists of: (i) functions satisfying homogeneous solution or eigen-

functionscpi computed from the eigenvalue problem with Neumann boundary conditions

on nonoverlapping aggregates, and (ii) eigenfunct&_pi)ns computed from the eigenvalue
problem with Dirichlet boundary condition on overlapping aggregates.

o

(b)

Figure 3: (a) Linear interpolation on non-overlapping aggregates, (b) Eigenfunctions on
overlapping aggregates with Dirichlet boundary conditions
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5.3 Enhanced prolongation

The quality of the initial prolongation operatér can be improved by smoothing:

Q = (I,-P'k»"Q (65)

where3 is equal to one if smoothing is carried out with respect to the source system, or
two if it is applied to normal equations. The goal is to construct an efficient prolongation
smoothing process (65) with minor or no additional memory requirements that will result
in a sparse prolongatio and will significantly reduce the iteration count. In practice,
however, it is not trivial to bridge between these contradicting requirements. For example,
an efficient prolongation smoother, which may significantly reduce the iteration count,
might increase the total computational cost since smoothing has to be carried out for as
many vectors as the number of equations. Furthermore, the prolongation smoothing may
result in a non-sparse prolongation making the stiffness restriction process a dominant part
of the solution cost.

The key to constructing an efficient smoothing process is to exploit the sparsity struc-

ture of the tentative prolongaticf@ and the locality of pollution effects. These two guid-
ing principles are employed within the framework of the incomplete SSOR.

5.3.1 The incomplete SSOR prolongation smoother for the source system

Consider the decompositionK = D +L +LT , whele dnd  are the diagonal
and strict lower part oK , respectively. Nt be a set of degrees-of-freedom correspond-

ing to a nonoverlapping aggregaﬁ% , awd be the corresponding@%(mh , Where

w is the user-defined number of overlapping layers of eIement@SUEtD s be the

prolongation operator corresponding to the &t ,rapnd be the number of degrees-of-

freedom in the aggregat(i!!sES . For ea~@?1 we define an incomplete SSOR precondi-
tioner, P° , as follows:
_ T
P°= (D+L)D YD +L%) (66)

where

|:| S
Ly =g ©ION (67)

Uo otherwise
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It can be seen that even if aggregates are nonoverlapping the enhanced prolongation is
overlapping withw controlling the size of the overlap. Increasing the value of reduces
the number of iterations but increases the cost of prolongation smoothing and stiffness
restriction. Numerical experiments indicate that for optimal performance  should be in
the range of one to three.

The incomplete SSOR preconditioner (66), (67) is based on the topological informa-
tion only. An incomplete SSOR preconditioner based on the concept of strong and weak
connections in the stiffness matrix has been developed in [14].

5.3.2 The incomplete SSOR prolongation smoother for normal equations

An efficient implementation of the SSOR preconditioner for normal equations,

KX = f, which does not require explicit formation Ksf has been developed in [3].

Here we focus on the incomplete version of this algorithm.

Starting from the initial approximation of the prolongat'@ﬁ Q° = (53 , the for-
ward Gauss-Seidel sweep is based on succession of relaxation steps of the form

Qf]ew = Q(S)Id + ek(ak)T (68)

whereeg, [ 0" is théeth column of the identity matrik,, aif 00™  is a column vec-

tor of unknowns. Fok 0 N° the vectd,  is chosen so thakitrecomponent of the

T
residual, (flT—KZQf]ew) e, , becomes zero, whérél 0™ is a vector of ones. Other-
wise o, = 0 , which yields:

)
Mf'e — (KQS),) Key O
(Key)'(Key) B (69)

0 otherwise

O =

-

Relaxation steps (68), (69) are carried out fosahdk for which k[ N .

6.0 Numerical Examples and Discussion

Various aggregation schemes described in Section 5 have been applied to a sequence
of examples involving Helmholtz equation on bounded domains and linearized shear
banding problems with strain softening.
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6.1 Helmholtz equation on bounded domains

Consider Helmholtz’s equation in the region enclosed between two concentric cubes
oflength 2 (", ) and 6I(; ). The strong form of the governing equations is given as

02u(x) +k2u(x) =0, xOQ (70)
ou _ 0, jkr
an - E(e /1) xOr,00Q (71)
rO
ou _ 0, jkr
%_W(e /r)r xdr,d0Q (72)
where n is a coordinate in a direction normal fq, ahd T L]r; =0Q and

NoN I, = 0, ris distance from the center of the cube. Equations (70)-(72) describe the
acoustic pressure  of a wave in a transmitting media.
Because of symmetry, one-eighth of the domain is discretized. Three meshes consist-

ing of 3072, 23,925 and 156,009 4-node linear tetrahedral elements have been considered.
The coarsest discretization is shown in Figure 4.

Figure 4: Typical finite element mesh and boundary conditions

The resulting discrete linear system of equatiokg, = F , Is symmetric, complex
and indefinite. It is convenient to transform the complex symmetric linear system into a
real symmetric system by replacing each term in the stiffess, , force ¥egtor, , and
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R I R R
: K F X .
the solution vectorx, , by| AB "AB Al and A , respectively. The super-
| R | |
Kag Kag] [Fa —Xa

scripts R andl denote the real and imaginary parts, which can be interpreted as two
degrees-of-freedom per node.

We consider two approaches of constructing aggregation-based prolongation operator:
(i) eigenfunctions defined on nonoverlapping aggregates with Neumann boundary condi-
tions, (ii) eigenfunctions defined on overlapping aggregates with Dirichlet boundary con-
ditions. The two schemes have been applied to both the source system and the normal
equations. We denote the resulting four methods _as: Soljecarisnn), _Source-
D(irichlet), Normal-Néumann), Normal-Qrichlet).

For normal equations we employ a dedicated conjugate gradient acceleration for nor-
mal systems [3] and Incomplete Cholesky preconditioner for normal equations [3] as a
two-level smoother. For the source system a combination of QMR [2] accelerator and
SSOR smoother is adopted.

Preliminary numerical investigation revealed that for all problems and methods con-
sidered a nearly optimal performance has been obtained with the following combination of

algorithmic parameters: (i) the limiting eigenvalue parameyer; 0.1 , for both Neu-
mann and Dirichlet problems, (ii) one-neighbor approatf(1) , for nonoverlapping
aggregates, and two layers of element overlap?2) , for overlapping aggregates.
1478 Equations
©-----¢  Direct
14+ Source-N |l
Source-D
409 *-— -k -
o 12} Normal-N ||
Q 58 &-—-+  Normal-D
\({)/ ///\\
o 10+ 115 / 22 1
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) 8 r 3 /,/, \ ~
o il / \
O 7/ // \
= 6 L/ /// \ i
$7 hmoame o e
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0 4+ *’#’<>77?j§‘\ 127 .18 . %?959 i
35 33\*\*/ 95 17@}@\ 25
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21E--onanoe T St (2L LR R AR ORI )
O 1 n 1 P
1 10 100
kh

Figure 5: CPU/Cycles versil for discrete Helmholtz linear system with 1478 equations
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Figures 5-7 show the CPU time and iteration count versus the product of the average
element size and the wavenumldx,for the three meshes considered. The prokiubas
been selected since it represents a measure of solution accuracy [16]. No smoothing was
carried out for prolongation operator. Results of the four iterative methods are compared to
the state-of-the-art multifrontal solver [15]. Comparison to other recently developed state-
of-the-art direct solvers [21][22] have not been conducted.
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Figure 6: CPU/Cycles versil for discrete Helmholtz linear system with 9648 equations

23



5000 — S —— :
Bemmmmmm oo o Q- ------ O e g —y ety
450071 Sk ¢ Direct |
__ 4000 - Source-N i
D Source-D
L 3500 - *-—-—~ Normal-N 1
) =---+ N i 612
3 : ormal-D ,
E 3000} i |
- i
‘% 697
3 2500 I .
O 384 Cycles i ‘\'1
5 2000 - Tl H -
UO) 1500 - T~ \\\\538 21&»3@//,‘ ! |
S N 95 =TT 4
~{ Il = !
1000 - ot P 1
182 N 22 |
500 r 76 \*/'// %98 T
23
31 64 %;9454
0 L P | L L N | L h I A
0.1 1 10 100

kh
Figure 7: CPU/Cycles Jgh for discrete Helmholtz linear system with 57586 equations

Even though practitioners dealing with wave propagation problems are primarily inter-

ested in the rang&kh<1 , required for solution accuracy [17], we conduct numerical
experiments outside the range of the usual interest. Our interest in a much wider spectrum
of kh values stems from the fact that not only the analyst may frequently encounter highly
nonuniform meshes, where the precise definitionhdé questionable, but primarily,

because our ultimate goal is to develop a generic black-box equation solver for positive
definite and indefinite systems.

It can be seen from Figures 5-7 thatldr< 1 the two-level method rapidly converges
for the source system. In the cas&kbk 1 the break even point between the one [15] and
two-level methods considered is approximately 5000 equation&h<060.5 the aggrega-
tion scheme based on nonoverlapping aggregates [8], [9] is more efficient in terms of CPU
time, whereas fol0.5<kh<2 the aggregation scheme based overlapping aggregates
works better. Forkh>(2—-4) the use of normal equations cannot be avoided. Figure 6
shows that the two-level method with nonoverlapping aggregates is competitive to the
direct method at approximately 10,000 equations, and is faster than the direct method by a
factor of 2-10 in the case of 50,000 unknowns. It is not surprising thattfor(20— 40

the iterative methods converge in 3-5 iterations, since the eigenvalues of the stiffness
matrix are all negative.
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Figure 8: Influence of prolongation smoothing on the iterative process

Figure 8 compares the CPU time of the iterative process and the iteration count
obtained with the enhanced (10 smoothings) and the tentative (no smoothing) prolonga-
tion operators on nonoverlapping aggregates. It can be seen that the prolongation smooth-
ing considerably reduces the iteration count (factor of up to 14 for the problems
considered), and at a lesser extent the CPU time of the iterative process. This is because
the enhanced prolongation is denser, resulting in increased cost of restriction and prolon-
gation. The overall CPU time obtained with the enhanced prolongation is increased prima-
rily due to the computational cost associated with prolongation smoothing. Nevertheless,
for problems with multiple right hand sides, the overhead generated from prolongation
smoothing and coarse model factorization, might be negligible, and thus the use of
enhanced prolongation could be advantageous.

Other variants of multilevel methods for Helmholtz equation have been described in
[10] and [12].

6.2 Shear banding problem

We consider a linearized shear banding problem, illustrated in Figure 1. The cube is
discretized with 16x16x16, 24x24x24 and 32x32x32 8-node hexahedral elements totaling
to 14739, 46875 and 107811 degrees-of-freedom. We assume that a shear band (softening
zone) develops on the diagonal plane of two layers of elements [18]. We consider the spec-
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trum of ratios between the stiffness inside and outside the shear Bgydy E , in the
range of0.3and- 0.7.

Three approaches of constructing aggregation-based prolongation have been tested: (i)
eigenfunctions defined on nonoverlapping aggregates with Neumann boundary condi-
tions, (ii) linear fields defined on nonoverlapping aggregates, (iii) eigenfunctions defined
on overlapping aggregates combined with rigid body modes defined on nonoverlapping
aggregates. The three schemes have been applied to both the source system and normal
equations. We denote the resulting six methods as: Solfjezardnn), Source{inear),
Source-[irichlet)/R(igid)B(ody), Normal-Neumann), _Normal-(inear), _Normal-
D(irichlet)/R(igid)B(ody).

The following combination of algorithmic parameters have been considered: the limit-
ing eigenvalue parametey, , equal to 0.0001, 0.01, 0.1, 0.3 for Normal-D/RB, Source-D/
RB, Source-N, and Normal-N aggregation schemes, respectively. The topology of aggre-

gated model, the acceleration schemes and two-level smoothers employed are the same as
in Section 6.1.

Figures 9, 10 and 11 show the CPU time and iteration count vé&sps/ E for the
three meshes considered. It can be seen that for positive definite systems with oscillatory
coefficients and for weakly indefinite systent,,,,4/E>-0.1 , the behavior of the two-
level methods as applied to the source system is similar to that of Helmholtz equations
with kh<1. For E,,,/E = -0.1 the break even point between one [15] and two

level methods is approximately 10,000 equations. The linear interpolation over nonover-
lapping aggregates performs well for positive definite systems, but is less efficient then

methods based on selection of eigenfunctions &y, ,/E = 0.1
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Figure 9: CPU/Cycles v&, ,,/E  for shear banding problem with 14739 equations
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Figure 10: CPU/Cycles v&,,,/E  for shear banding problem with 46875 equations
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Figure 11: CPU/Cycles v&, ,,4/E for shear banding problem with 107811 equations

For highly indefinite systems the direct solver is more efficient in terms of CPU time
than the iterative schemes applied to normal equations for problems below 100000
unknowns. Among the three two-level schemes considered the prolongator based on the
linear interpolation on nonoverlapping aggregates, had in general the best performance

with few exceptions (E,,,4/E = —0.5 in Figure 11). This can be explained by the fact

that linear fields represent the Kernel of normal equations with constant coefficients, and
the prolongator based on linear interpolation does not involve overhead associated with
local eigenvalue analysis.

The influence of prolongation smoothing on the solver performance was similar to that
illustrated in Figure 8, i.e, significant reduction in iteration count, minor gains in CPU
time of the iterative process and increased total computational cost for problems with a
single right hand side vector.

For utilization of geometric multigrid methods in plasticity with strain hardening we
refer to [19], [20].

7.0 Future work

The manuscript represents the first step towards developing an automated general pur-
pose multilevel solver for indefinite systems. It is critical that such a solver should be
robust. It may use different strategies, such as utilizing normal equations for highly indefi-
nite problems or the source system for weakly indefinite problems, but it should not fail.
This goal have been partially accomplished. We have demonstrated that such a hybrid
solver exist, but we have not addressed the issue of how to select an optimal solution strat-
egy. In particular, what is an optimal number of levels, how to construct an optimal prolon-

28



gation operator, will the method converge for the source system or should the normal
equations be used instead and what is an optimal accelerator and smoother for a problem
at hand? Clearly, the answer to these questions depends on the problem data, including the
sparsity, the spectrum of eigenvalues, the problem size, and the number of right hand
sides. For positive definite systems a decision graph-based methodology has been devel-
oped in [9] and we indent to generalize this or a similar framework to indefinite systems.

Even though a family of efficient two-level solvers, which does not require an explicit
formation of normal system of equations, has been developed for normal equations it is
evident that these normal solvers are below par with two-level methods directly applied to
the source system (provided that they converge). Therefore, further improvement of pro-
longators, smoothers and accelerators is critical if we are to extend the range of applicabil-
ity of the two- and multi- level methods for indefinite (source) system of equations.
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