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Abstract

A methodology for computationally efficient formulation of the tangent stiffness matrix
consistent with incrementally objective algorithms for integrating finite deformation kine-
matics and with closest point projection algorithms for integrating material response is
developed in the context of finite deformation plasticity. Numerical experiments illustrate
an excellent performance of the proposed formulation in comparison with other algo-

rithms.
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1.0 Introduction

The notion of consistency between the tangent stiffness matrix and the integration algo-
rithm employed in the solution of the incremental problem has been introduced by Nagte-
gaal [1] and Simo and Taylor [4]. Within the framework of closest point projection
algorithms [2], [5], [6] and in the context of small deformation plasticity, Simo and Taylor

[4] demonstrated the crucial role of the consistent tangent stiffness matrix in preserving
the quadratic rate of asymptotic convergence of iterative solution schemes based upon the
Newton method. Consistent formulations have been subsequently developed for finite
deformation plasticity [7], [8], [11] within the framework of multiplicative decomposition

of the deformation gradient and hyperelasticity.

It is commonly perceived that the tangent stiffness matrix consistent with the incremen-
tally objective algorithms for integrating finite deformation kinematics and with implicit
algorithms for integrating material response is absolutely necessary to optimize the overall

computational cost. This notion stems from the common perception that the overall CPU




time in implicit methods is governed by the cost of solving a linearized system of equa-
tions. This is certainly true in the asymptotic range in the case of skyline direct solvers
(CPUD NBZ; N, B being the problem size and the bandwidth), multifrontal methods
[14] ( CPUD NP , B = 1.2—1.7) and preconditioned conjugate gradient methods [15]
(CPUDO NP , B = 1.17- 1.33). Multilevel methods, on the other hand, possess an opti-
mal rate of convergencg=£1), i.e., CPU time is proportional to the number of discrete
unknowns. When multilevel methods are employed as linear solvers within the Newton
method, the computational complexity of solving a linearized system of equations
becomes comparable to that of stiffness matrix evaluation. Table 1 compares the cost of
stiffness matrix evaluation with the cost of solving a linear system of equation [17] for

several industry and model problems.

TABLE 1. CPU time for stiffness matrix evaluation and solution of linear system of equations

CPU (s) SUN ULTRA SPARC
Problem Element type Equations Stiffness Eval| Linear Solver
Turbine Blade [17] Tetra - 10 207,840 380 820
Ring-Strut [17] Tetra - 4 102,642 61 126
Turbine Nozzle [17] Tetra - 10 131,565 212 462
Joint of Cyl. [18] ANS - 8[19] 186,245 492 517
Concrete Canoe [17 ANS - 8 [19] 132,486 390 497
Automobile [17] DMT-DKT [20] 265,128 395 1116
Hybrid Car [22] HANS (p=6) [21] 67,120 1850 980

It can be seen that for linear problems solved with multilevel methoidg2], the cost of
stiffness evaluation ranges from 40% to 190% of the cost of solving a linear system of
equations. Note that the cost of element stiffness matrix evaluation has been shown to be

proportional top4 [0 being the polynomial order) for 2D problems [23].

For problems with geometric and material nonlinearities the relative cost of matrix com-
putations is significantly larger. Thus, in the realm where the computational complexity of
multilevel solvers is comparable to that of matrix evaluation, stress integration and consis-
tent linearization procedures could potentially become a bottle neck in implicit computa-
tions. For large deformation plasticity the following solution strategies are commonly

employed:




1. Large increments, consistent tangent [7], [24], [27]
2. Large increments, approximate tangent [25], [26]

3. Small increments, approximate tangent [12]

Each of the three strategies has certain advantages and disadvantages. The first strategy
advocating “consistent linearization at any cost” has the advantage of maintaining qua-
dratic asymptotic rate of convergence while advancing solution in large increments. On
the negative side, the cost of stress updates and consistent tangent evaluation may often
overshadow the entire computational cost in particular in the context of multilevel solvers.
The second strategy attempts to reduce the cost of matrix evaluations while advancing the
solution in large increments at the expense of suboptimal rate of convergence and conse-
guently increased number of iterations. The third strategy is based on reducing the number
of iterations within an increment by employing smaller load steps with approximate and

inexpensive tangent, but at the cost of increasing the number of load steps.

The approach advocated here is based on selecting both the simple and accurate integrator
[3] that can be consistently linearized to provide a closed form computationally inexpen-
sive tangent stiffness matrix. We show that for moderately large rotation increments the
second order accurate incrementally objective integrator [3] is comparable in terms of
accuracy to the higher order integrator [26] and at the same time the overall computational
cost is drastically reduced in comparison with approaches employing similar integrators

but with inconsistent tangents [12].

The manuscript is organized as follows. Section 2 summarizes constitutive equations of
finite deformation plasticity based on objective stress rates, additive split of rate of defor-
mation, and associative flow rule. Attention is restricted to materials, such as metals, for
which the notion of hypoelasticity is valid. Integration schemes based on the Hughes-
Winget incrementally objective algorithm and the closest point projection algorithm [2],
[5] originally proposed by Wilkins [6] are then briefly outlined in Section 3. In Section 4
we present a systematic approach for derivation of the tangent stiffness matrix consistent
with the integration schemes outlined in Section 3. A number of numerical examples,
illustrating the excellent performance of the proposed formulation and comparing it with
ABAQUS [12], complete the manuscript.




2.0 Rate constitutive equations

The following notation is employed: the left superscript denotes the configuration, such

that' "0 denotes the current configuration at tireAt , whergas s the configura-

tion at timet . For simplicity, we will omithe left superscript for the current configura-

tion, i.e.,d =% . A comma followed by a subscript variakle  denotes a partial

derivative with respect to that subscript variable (f-in-E of/ 0x; ). Summation conven-

tion for repeated subscripts is employed. Subscript pairs with regular and square parenthe-

sizes denote the symmetric and antisymmetric gradients, respectively. The material time

derivative is denoted by a superposed dot. For exarvua1e>§i is the velocity component;
and the components of the rate of deformatégn, , and &pin, , are defined as
i =Vix) < 5 x G—XE Wij = Vi, x] = gﬁ—a—xi% (1)

J

We consider a class of finite-deformation constitutive equations in the rate form com-

monly used in computational plasticity:

o ~ ~

Whereoij represents the Cauchy str£§§; is an objective rate of Cauchy stress, which
represents the material response due to deformaliprs RikR;jl represents the rate of

rotation R; - We refer to [2] for a comprehensive discussion on various choi@s of and

Ajj . For subsequent discussion we consider the chbiges 6

We adopt an additive split of the rate of deformatign, , into elastic rate of deformation,

¢f , and plastic rate of deformatiogff , which gives

gj = &f +£f, G, = Liji (€ — €R1) 3)

ij ij




wherel;;,; are components of the elastic constitutive tensor.

We consider the yield functio®®  defined by:

(a0, aj, Y) = %(oij — 0 Piji (O — ) —%Yz (4)

whereY s the yield stresa;;  the back stress corresponding to the center of the yield sur-

face in the deviatoric stress spadg;, the projection operator, satisfying

PijkiPkimn = Pijmn- FOr von Mises plasticity the projection operator is defined as follows:

_ 1 _1
Piiki = lijii _éaijakl where Lijk = é(aikajl + 0 9) ()
andy;; is the Kronecker delta. For simplicity we assume the associative flow rule

BLONN .
eﬁ? = ﬁ)\ = Dij)\ where Dij = Pijk|(ok|—ak|) (6)

andA is a plastic parameter to be determined by plastic consistency condition (4). The

evolution of the yield stress and the back stress are given in the rate form:

Y = g%—HY)'\ @)
o _ 2(1-B)H :
aj = 3 Pijki (O — 0 )A (8)
where3 is a material dependent paramédtes B < 1) . The extreme {alaed and

B = 1 refer to Ziegler-Prager kinematic and pure isotropic hardening, respechively; s
a hardening parameter defining the ratio between the rate of effective stress and the rate of

effective plastic strain.

3.0 Integration of rate constitutive equations

In this section, we briefly outline the Hughes-Winget incrementally objective integration

scheme [3] in the context of finite deformation analysis in which the stress objectivity is




preserved for finite rotation increments. We then briefly summarize the closest point pro-

jection scheme closely related to radial return algorithms for integrating material response

[2], [5], [6].

3.1 Incrementally objective integration algorithms

There are several incrementally objective integration schemes. One of the most popular
approaches is known as the corotational method, where all the fields of interest are trans-
formed into the corotational system [2], [10]. In such a corotational system, the form of

constitutive equations is analogous to that of small deformation theory and is consistent
with the generalized notion of hyperelasticity provided that an appropriate choice of the

rotation tensorR , is made [9]. An alternative approach developed by Hughes and Winget
[3] is based on the additive incremental split of material and rotational response. In the

present manuscript we focus on the latter.

The Hughes-Winget algorithm [3], for integrating the rate constitutive equations arising

from the finite deformation can be summarized as follows:

— t+At

ta tr t
i 0;; = 0j +Agy; gjj = Ry O Ry ©)

1’ J

t/\

_ tz _ t
o = o +Aa o = Ry o Ry (10)

ij?
whereAo;; anddaj; denote the stress and back stress increments resulting from the mate-

rial response (see Section 3.2), aqd is obtained by applying the generalized midpoint
rule [3]:

1 1

To maintain the second order accuracy [3] strain and rotation increments are obtained

using the midpoint rule:

10 0Au; dAu, U 10 0Au; dAu, O
Ng;; = é%um/zxj * at+At/J2XIE Aoy = é%um/zxj _at+At/J2XE (12)




whereAu; is a displacement increment component and

t+ At t t+At/2

% = % +Au, X

t+ At

2%+ %) (13)

3.2 Closest point projection scheme

For integrating the material response given in the rate form ((6), (7), (8)), the Backward
Euler integration scheme, which can be interpreted as the closest point projection algo-

rithm [5], is employed:

eﬁ-’ = teﬁ-’ + DUA)\ (14)
t
ty., 2BH 3Y
Y=Y+ YAN O Y & e 15
3 3- 2BHA (19
t~  2(1-pB)H
ajj = O + =P (O — g ) AA (16)
t/\
0 = O —LijgOwdA,  off = 0y + Ly By 17)
whereAh =740 0
The process is regarded elastic if:
2
(oitjr_aij)Pijkl(otkrl _kal)__Y2 <0 (18)
AN™ =0

Otherwise the process is plastic. In the case of the plastic process we proceed by subtract-

ing (16) from (17) to arrive at the following result:

t/\
0 =0 = (ljg +AAD ) 710k — ) (19)

where
_ 2
Uik = LijstPsuat é(l_B)HPijkl (20)

The value ofAN is obtained by satisfying the consistency condition (4). Substituting (15)
and (19) into (4) produces a nonlinear equatiorMdr . The Newton method is typically

used to solve foAA




-1

[l |
ANy = A)‘k_E'?%D @ (21)
O an,
wherek is the iteration count. It can be shown that the derivagwve A\ required in
(21) is given as:
0P -1 4BhY?2
AN =05 (g + A0 ) 70 k|mn(0mn—0‘mn)—9—_%ﬁhm (22)

The converged value &\ is then used in combination with (19), (15), (16) and (17) to

update the yield stress, the back stress, and the Cauchy stress.

4.0 Consistent linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mulation of the tangent stiffness matrix consistent with the integration procedure
employed is essential to maintain the asymptotic quadratic rate of convergence of the
Newton method provided that the solution is smooth. In Section 4.1 we derive the Jaco-
bian matrix for the finite deformation elasto-plastic constitutive model, which in Section
4.2 leads to the formulation of the tangent stiffness matrix consistent with the integration

procedures outlined in Section 3.

4.1 The Jacobian matrix for the finite deformation elasto-plastic
constitutive model

The Jacobian matrix for the finite deformation elasto-plastic constitutive model outlined in

the previous sections is obtained by taking the material time derivative of the stress and the

back stress ((17), (16)) at the current configuration (timét ):

tA .
c>-ij = cyij + Lijk|{A£kI - I:)klmn(cymn_dmn)A)‘ -0 kl)‘} (23)
t~ 2(1-B)h .




Remark 1:It is common in practice (see for example Section 3.2.2 in ABAQUS theory
manual [12]) to introduce the following two approximations, which assume infinitesimal-
ity of the time step:

t

Gjj = 0jj = N0y — O\ Ag =€y (25)

In the remainder of this section we derive the consistent Jacobian matrix exactly, and in
Section 5, we show that the two approximations given in (25) considerably increase the

number of iterations in the Newton method.

We start by subtracting (24) from (23) which yields:

Ot~ ta .0
0 —aj = (I +AAD ijkl)_lg( O = O) + LigmnB€mp— O kImann)‘E (26)

t~ ta
where o;; andaj; in (26) are computed by taking the material time derivative of (9) and

(20), which yields

t~ ta
0 = Afj’mann, o = Aﬁ‘mann (27)

where

t
Almn = (5im5knRj| +OmOniRi) O

ijmn
P t (28)
Afmn = (5im5knRj| +OimdnRy) Oy
Taking the material derivative of (11) gives
Rmn = BrnpAPpq (29)
where
Brmnpg = (2€'>mp—Ammp)—l(éqn +Ryn) (30)

Substituting (29) into (27) results in

ta t~




where

Tijpg = (Ai(J)mn_Aﬁ(mn)anpq (32)

It is important to note that the derivationd;; abe appearing in equations (26) and

ij
(31), should be consistent with the midpoint integration scheme employed. In the follow-

ing we focus on such consistent linearization.

We start by taking the material time derivative of the gradient of the displacement incre-

ment with respect to the position vector at the midstep (see equation (12)):

dd 9y O_ 9y 0%  dAu dt 9'%,

U
ad = -l — 0 (33)
dt@t+At/2XjD atXk Sz digpt+Av2, O

t
X; axk J

Linearization of the second term in (33) yields

ath D)t + At/ ZXmD atXn

t+At/2, dt t t+At/2
0 x, S0 ax, U X

a0 9%
a%t+m/2

[l
0= (34)
O

5
Combining (33) and (34) gives

dU dAuy E_ v, dAu, ?HAUZXW]E atxn @)
dt@HAt/ZXjD at+At/2Xj at+At/2detD atxn Dat+At/2Xj

Equation (35) can be further simplified by exploiting the following relation

t+At/2 t

(D ¥ XmD_ 0 [dt+avz2, ]_ 0 Ud D(m+ XmDD_ 1an
a5 0= +0r X3 = —— G5 0= = -0
dtg atxn H atxn t atxn oto 2 g 2 atxn

(36)

which after substitution into (35) yields

E% t+At/2XJE T gmT2 at+At/2XmE

ov,,

t+At/2
0 X;

(37)

By utilizing the following equality

10



1 O0Au

t
1 0 Q+avz. 1, O 9%
im_26t+At/2 i

- X —ZAu= =
at+At/2XmD 21 gLHav2,

)

m

equation (37) can be recast into the following form:

atxi ov,,
ot +At/2xm R ZN

dtb odAy, O
a%HAt/z U=

XjD

Defining My, as

atxi 0X,

t+AL/2 At+AL/2
0 X, 0 -

Mijir =

yields

dld dAy, O M
a% t+At/2XJE = Mijia Vi, x

Taking symmetric and antisymmetric part of (41) with respect to indigxes
final expressions fof¢;  anfld;

A& = My Vi x» Ay = M Vi x

It can be easily seen that for infinitesimally small step Blzg, = &,9;
We proceed by substituting (42) and (31) into (26), which yields

_15y © -
i =i = (Lijig + BAD i)™ LiamnVim, x, = O kimnD m}

(38)

(39)

(40)

(41)

we get the

(42)

(43)

WhereLEIrnn is the Jacobian matrix for the finite deformation elastic constitutive model

given as

e —_
Lipg = TkimnMimnipg * LiimnM(mn)pq

(44)

11



The plastic parametek, , in (43) is computed by linearizing consistency condition (4), i.e.

® = 0, which yields

4BH Y2\
Dij(dij—dij)—g—_ﬁwm\ =0 (45)

Substituting (43) into (45) provides

A = SpVim n (46)
where
S, = O3 (i + AAD i) ™ Liimn :
O (i + A0 45 ) ™0 ipgHpg + Q_f% 0
The Jacobian matrix for the finite deformation plastic constitutive mdd’lﬂ, , is

obtained by substituting (46), (27) and (29) into (23), which yields

0 = L Vi x (48)
where
Wi = AfmnBrnpdMipai
Lijmné\ﬂ(mn)kl _Pmnpq%LAu;\ét"' O pqsgl(l-setm— D stu wSa) =0 mnSKIE

(49)

Finally, the Jacobian matrix for the finite deformation elasto-plastic constitutive model is
given as

e .
_ Ohijw for elastic process

Lijk| - (50)

El_ﬂm for plastic process

4.2 Consistent tangent stiffness matrix

We start from the system of nonlinear equations arising from the finite element discretiza-

tion

12



rp = ant(qA)_fzxt =0 fint = J’Q Nia. onide (51)

whereN, , is set o€’ continuous shape functions, suchvthat Ny A0 ; the upper case

subscripts denote the degree-of-freedom and the summation convention over repeated

indexes is employed for the degrees-of-freedom and for the spatial dimerggions; and

g, are components of nodal displacement and velocity vectorsf,iﬁtnd fi’ﬁnd are

components of the internal and external force vectors, respectively.

The consistent tangent stiffness matkx,;  , is obtained via consistent linearization of the

discrete equilibrium equations (51). It is convenient to formulate such a linearization pro-

cedure as:

=0 O
KAB = a_qB%rAD (52)

For simplicity, assuming that the external force vector is not a function of the solution, the

consistent linearization procedure yields:

d _,.d -1 t
A" J’tQE(NiA, tXmijOijJ)d Q (53)
whereJ is the Jacobian between the configurations tamst F;., ; is the deformation
gradient defined as
_ _t+At -1_t _t
ij— Xj, tXm = J',S(m and ij— Xm’ X = Xm’ t+At)? (54)

Linearization of (53) yields

d _ -1 -1 -1 t
—rp = LQ Nia tXm{ Fmj0jjJd + Fj0id + Fry0; 3 d'Q (55)

Substituting (50) into (55) and exploiting the well-known kinematical relations

J = v F;lj = —F;1|V|,Xj yields:

13



KAB = J'Q NiA, XjLiik| NkB, X dQ (56)

where

Lijki = Liji + 9103 — 00y (57)

andL;;,, is defined in (50).

5.0 Numerical experiments

Numerical integration and consistent linearization schemes described in sections 4 and 5
have been implemented into ABAQUS [12] as a User defined ELement (UEL). Note that
in ABAQUS finite deformation plasticity algorithms are similar to those described in Sec-
tion 4. The key difference is in the formulation of the tangent stiffness matrix. Hence while
the solutions are (almost) identical, the iterative process would have a different character.
Three numerical examples are considered. In the first (Section 5.1) we investigate the
accuracy of the Hughes-Winget integration algorithm, whereas the following two subsec-
tions (5.2 and 5.3) focus on the computational efficiency aspects. For the numerical exper-
iments considered in Sections 5.2 and 5.3, the load increments were chosen so that the
total error resulting from the numerical integration will not exceed 3% in the maximal

deflection.

5.1 Rotating-stretching bar problem

To investigate the accuracy of the integration algorithm, we consider a rotating-stretching
bar problem [26]. The total rotation is Q@hereas the total stretching is only 0.1%. The
prescribed solution is applied in three increments, i.e., rotation incremeft F@dre 1
compares the accuracy of the Hughes-Winget integration algorithm with the higher order
integration scheme [26] and the exact solution. It can be seen that even though rotation
increments are very large, the second order accurate Hughes-Winget algorithm provides

excellent accuracy in the stress field, resulting in the maximum error not exceeding 6%.

14



Exact & Rashid Sal. —
5000 - Currend Approach o
4000 -
E a
i 2000 -
2000 -
’ e @
& o Al iy
} 1 =
H e -
. e T
[ At | i 3

0 000502035 030850404505

Tirme

Figure 1: Rotating-stretching bar problem

5.2 Rigid body rotation of tetrahedral

In our second numerical experiment, we consider a single tetrahedral element subjected to

a rigid body finite rotation. The initial and final configurations are shown in Figure 2.

Deformed
Configuration

Initial
Configuration

Figure 2: Rotation of tetrahedral element

The material is considered elastic with Young’s modutus; 21000 , the Poisson’s ratio,

v = 0.3. The boundary conditions are set in such a way that nodes A and B are held

15



fixed, while the horizontal component of the displacement at node C is prescribed, result-

ing in a rotation angle of approximated)°

The prescribed displacement is applied in one increment, and it takes 5 iterations using
consistent tangent and 54 iterations using approximate tangent (the original ABAQUS
algorithm). With smaller load increments the advantage is less drastic. For example, for
the same loading applied in three increments the number of iterations using the consistent
tangentis 4, 5 and 5, whereas with the approximate tangent the number of iterations is 15,
16 and 16.

5.3 The 3D beam problem

We next consider a cantilever beam problem as shown in Figure 3. All the degrees-of-free-
dom at the clamped end are fixed. Uniform loading is applied at the tip of the beam in the
transverse direction. The length, width, and the depth of the beam are 12, 1 and 2, respec-

tively. The elastic constants are the same as in the previous example. Plasticity parameters

are as follows: the hardening modulk$,= 1000 , the mixed hardening parameter,

B = 1, and the initial yield stresg,Y = 21 . The finite element mesh contains 4351 4-
node tetrahedral elements totaling 1091 nodes. We consider two cases: an elastic beam
(geometric nonlinearity only), and an elasto-plastic beam (geometric and material nonlin-
earity). In both cases the magnitude of loading is selected so that the maximal deflection at
the tip is approximately one third of the beam length. For the problem with material non-

linearity 79% of elements experience plastic deformation.

The loading is applied in one increment. With the consistent tangent stiffness matrix the
number of iterations is 11 and 16 for elastic and elasto-plastic problems, respectively. With
the conventional tangent the number of iterations increases to 26 and 38 for elastic and

elasto-plastic problems, respectively.

To this end we note that the computational cost of the consistent tangent stiffness matrix

evaluation was approximately twice as high as that of the approximate tangent, but the

16



overall computational cost associated with the formulation employing consistent tangent

was still lower.
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Figure 3: Deformation of cantilever beam

6.0 Summary and future research

A methodology for efficient implementation of the incrementally objective algorithm [3]
has been developed. The usefulness of the proposed formulation has been demonstrated as

the numerical experiments show significant savings in computational cost.

The scope of the paper was limited to the cases where the notion of hypoelasticity is valid.
This is appropriate for metals, where elastic strains remain small compared to plastic
deformation. For polymers, which exhibit large elastic and plastic deformations of compa-

rable magnitude, a different treatment might be required.

Several questions, however, remained unanswered. First, we have not investigated whether
a consistent tangent operator for the incrementally objective corotational formulation with
the rotation part extracted from the deformation gradient can be derived with the same
ease as for the present formulation. Such a corotational formulation would have a number
of advantages, the key one being compatible with the notion of hyperelasticity [9]. Sec-

ondly, it is important to investigate how increasingly complex incrementally objective

17



algorithms would fare against the multiplicative decomposition and hyperelasticity based

algorithms [8] in terms of accuracy and computational efficiency.
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