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Abstract

A methodology for computationally efficient formulation of the tangent stiffness ma

consistent with incrementally objective algorithms for integrating finite deformation k

matics and with closest point projection algorithms for integrating material respon

developed in the context of finite deformation plasticity. Numerical experiments illus

an excellent performance of the proposed formulation in comparison with other 

rithms.
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1.0  Introduction

The notion of consistency between the tangent stiffness matrix and the integration

rithm employed in the solution of the incremental problem has been introduced by N

gaal [1] and Simo and Taylor [4]. Within the framework of closest point projec

algorithms [2], [5], [6] and in the context of small deformation plasticity, Simo and Ta

[4] demonstrated the crucial role of the consistent tangent stiffness matrix in prese

the quadratic rate of asymptotic convergence of iterative solution schemes based up

Newton method. Consistent formulations have been subsequently developed for

deformation plasticity [7], [8], [11] within the framework of multiplicative decompositi

of the deformation gradient and hyperelasticity.

It is commonly perceived that the tangent stiffness matrix consistent with the incre

tally objective algorithms for integrating finite deformation kinematics and with imp

algorithms for integrating material response is absolutely necessary to optimize the o

computational cost. This notion stems from the common perception that the overal
1
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time in implicit methods is governed by the cost of solving a linearized system of e

tions.  This is certainly true in the asymptotic range in the case of skyline direct so

( ;  being the problem size and the bandwidth), multifrontal meth

[14] ( , ) and preconditioned conjugate gradient methods [

( , ). Multilevel methods, on the other hand, possess an o

mal rate of convergence (β=1), i.e., CPU time is proportional to the number of discr

unknowns. When multilevel methods are employed as linear solvers within the Ne

method, the computational complexity of solving a linearized system of equa

becomes comparable to that of stiffness matrix evaluation. Table 1 compares the 

stiffness matrix evaluation with the cost of solving a linear system of equation [17

several industry and model problems.

It can be seen that for linear problems solved with multilevel methods [17], [22], the cost of

stiffness evaluation ranges from 40%  to 190% of the cost of solving a linear syst

equations. Note that the cost of element  stiffness matrix evaluation has been show

proportional to  (p  being the polynomial order) for 2D problems [23]. 

For  problems with geometric and material nonlinearities the relative cost of matrix 

putations is significantly larger. Thus, in the realm where the computational complex

multilevel solvers is comparable to that of matrix evaluation,  stress integration and c

tent linearization procedures could potentially become a bottle neck in implicit com

tions. For large deformation plasticity the following solution strategies are comm

employed:

TABLE 1. CPU time for stiffness matrix evaluation and solution of linear system of equations

Problem Element type Equations

CPU (s) SUN ULTRA SPARC

 Stiffness Eval Linear Solver

Turbine Blade [17] Tetra - 10 207,840 380 820

Ring-Strut [17] Tetra - 4 102,642 61 126

Turbine Nozzle [17] Tetra - 10 131,565 212 462

Joint of Cyl. [18] ANS - 8 [19] 186,245 492 517

Concrete Canoe [17] ANS - 8 [19] 132,486 390 497

Automobile [17] DMT-DKT [20] 265,128 395 1116

Hybrid Car [22] HANS (p=6) [21] 67,120 1850 980

CPU NB2∝ N B,

CPU Nβ∝ β 1.2 1.7–=

CPU Nβ∝ β 1.17 1.33–=

p
4
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1. Large increments, consistent tangent [7], [24], [27]

2. Large increments, approximate tangent [25], [26]

3. Small increments, approximate tangent [12]

Each of the three strategies has certain advantages and disadvantages. The first 

advocating “consistent linearization at any cost” has the advantage of maintaining

dratic asymptotic rate of convergence while advancing solution in large increments

the negative side, the cost of stress updates and consistent tangent evaluation ma

overshadow the entire computational cost in particular in the context of multilevel so

The second strategy attempts to reduce the cost of matrix evaluations while advanc

solution in large increments at the expense of suboptimal rate of convergence and 

quently increased number of iterations. The third strategy is based on reducing the n

of iterations within an increment by employing smaller load steps with approximate

inexpensive tangent, but at the cost of  increasing the number of load steps.

The approach advocated here is based on selecting both the simple and accurate in

[3] that can be consistently linearized to provide a closed form computationally inex

sive tangent stiffness matrix. We show that for moderately large rotation incremen

second order accurate incrementally objective integrator [3] is comparable in term

accuracy to the higher order integrator [26] and at the same time the overall comput

cost is drastically reduced in comparison with approaches employing similar integ

but with inconsistent tangents [12].

The manuscript is organized as follows. Section 2 summarizes constitutive equati

finite deformation plasticity based on objective stress rates, additive split of rate of d

mation, and associative flow rule. Attention is restricted to materials, such as meta

which the notion of hypoelasticity is valid. Integration schemes based on the Hu

Winget incrementally objective algorithm and the closest point projection algorithm

[5] originally proposed by Wilkins [6] are then briefly outlined in Section 3. In Sectio

we present a systematic approach for derivation of the tangent stiffness matrix con

with the integration schemes outlined in Section 3. A number of numerical exam

illustrating the excellent performance of the proposed formulation and comparing it

ABAQUS [12], complete the manuscript. 
3



 such

ura-

-

rtial

ven-

renthe-

l time

onent;

-

 which

rate of

 and

tion,
2.0  Rate constitutive equations

The following notation is employed: the left superscript denotes the configuration,

that  denotes the current configuration at time , whereas  is the config

tion at time . For simplicity, we will omit the left superscript for the current configura

tion, i.e., . A comma followed by a subscript variable  denotes a pa

derivative with respect to that subscript variable (i.e. ). Summation con

tion for repeated subscripts is employed. Subscript pairs with regular and square pa

sizes denote the symmetric and antisymmetric gradients, respectively. The materia

derivative is denoted by a superposed dot. For example,  is the velocity comp

and the components of the rate of deformation, , and spin, , are defined as

(1)

We consider a class of finite-deformation constitutive equations in the rate form com

monly used in computational plasticity:

(2)

where  represents the Cauchy stress;  is an objective rate of Cauchy stress,

represents the material response due to deformation;  represents the 

rotation . We refer to [2] for a comprehensive discussion on various choices of 

. For subsequent discussion we consider the choice: .

We adopt an additive split of the rate of deformation, , into elastic rate of deforma

, and plastic rate of deformation, , which gives 

,      (3)

t t∆+
t t∆+

t

t

t t∆+≡ xi

f,xi
∂f ∂xi⁄≡

vi xi
·

=

ε·ij ω· i j

ε·i j v i xj,( )≡ 1
2
---

xj∂
∂vi

xi∂
∂vj+

 
 
 

= ω· i j v i xj,[ ]≡ 1
2
---

xj∂
∂vi

xi∂
∂vj–

 
 
 

=

σ· i j σi j
° σ̂

·
i j+= where σ̂

·
i j Λ· ikσkj σikΛ· kj–=

σi j σi j
°

Λ· i j R· ikRkj
1–

=

Rij Rij

Λ· i j Λ· i j ω· i j=

ε·ij

ε·ij
e ε·ij

p

ε·ij ε·ij
e ε·i j

p+= σi j
° Lijkl ε·kl ε·kl

p–( )=
4
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where  are components of the elastic constitutive tensor. 

We consider the yield function  defined by:

(4)

where  is the yield stress;  the back stress corresponding to the center of the yie

face in the deviatoric stress space;  the projection operator, satisf

. For von Mises plasticity the projection operator is defined as follo

(5)

and  is the Kronecker delta. For simplicity we assume the associative flow rule

(6)

and  is a plastic parameter to be determined by plastic consistency condition (4

evolution of the yield stress and the back stress are given in the rate form:

(7)

(8)

where  is a material dependent parameter, . The extreme values 

 refer to Ziegler-Prager kinematic and pure isotropic hardening, respectively; 

a hardening parameter defining the ratio between the rate of effective stress and the

effective plastic strain.

3.0  Integration of rate constitutive equations

In this section, we briefly outline the Hughes-Winget incrementally objective integra

scheme [3] in the context of finite deformation analysis in which the stress objectiv

Lijkl

Φ

Φ σ i j αij Y, ,( ) 1
2
--- σi j αi j–( )Pijkl σkl αkl–( ) 1

3
---Y2–=

Y αi j

Pijkl

Pijkl Pklmn Pijmn=

Pijkl I ijkl
1
3
---δij δkl–= where I ijkl

1
2
--- δikδj l δil δjk+( )=

δij

ε·ij
p Φ∂

σi j∂
---------λ· ℵij λ

·
= = where ℵi j Pijkl σkl αkl–( )=

λ

Y· 2βH
3

-----------Yλ·=

αi j
° 2 1 β–( )H

3
-------------------------Pijkl σkl αkl–( )λ·=

β 0 β 1≤ ≤( ) β 0=

β 1= H
5
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preserved for finite rotation increments. We then briefly summarize the closest poin

jection scheme closely related to radial return algorithms for integrating material res

[2], [5], [6].

3.1  Incrementally objective integration algorithms

There are several incrementally objective integration schemes. One of the most p

approaches is known as the corotational method, where all the fields of interest are

formed into the corotational system [2], [10]. In such a corotational system, the for

constitutive equations is analogous to that of small deformation theory and is cons

with the generalized notion of hyperelasticity provided that an appropriate choice o

rotation tensor, , is made [9]. An alternative approach developed by Hughes and W

[3] is based on the additive incremental split of material and rotational response. 

present manuscript we focus on the latter.

The Hughes-Winget algorithm [3], for integrating the rate constitutive equations ar

from the finite deformation can be summarized as follows: 

(9)

(10)

where  and  denote the stress and back stress increments resulting from the

rial response (see Section 3.2), and  is obtained by applying the generalized mi

rule [3]:

(11)

To maintain the second order accuracy [3] strain and rotation increments are ob

using the midpoint rule:

(12)

R

σi j σi j
t ∆t+ σ̂ ij

t σ∆ ij ,+= σ̂i j
t

Rik σkl
t

Rjl=≡

αi j αi j
t ∆t+≡ α̂i j

t α∆ i j ,+= α̂i j
t

Rik αkl
t

Rjl=

σ∆ ij α∆ i j

Rij

Rij δij δik
1
2
---∆ωik– 

  1–
∆ωkj+=

εi j∆ 1
2
---

∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
∂∆uj

∂ x
t ∆t 2⁄+

i

----------------------+
 
 
 

= , ω i j∆ 1
2
---

∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
∂∆uj

∂ x
t ∆t 2⁄+

i

----------------------–
 
 
 

=

6
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where  is a displacement increment component and 

,       (13)

3.2  Closest point projection scheme

For integrating the material response given in the rate form ((6), (7), (8)), the Back

Euler integration scheme, which can be interpreted as the closest point projection

rithm [5], is employed:

(14)

(15)

(16)

,     (17)

where 

The process is regarded elastic if:

(18)

Otherwise the process is plastic. In the case of the plastic process we proceed by s

ing (16) from (17) to arrive at the following result:

(19)

where

(20)

The value of  is obtained by satisfying the consistency condition (4). Substituting

and (19) into (4) produces a nonlinear equation for . The Newton method is typ

used to solve for :

ui∆

x
t ∆t+

i x
t

i ∆ui+= x
t ∆t 2⁄+

i
1
2
--- x

t
i x

t ∆t+
i+( )≡

εij
p εij

pt ℵi j λ∆+=

Y Y
t 2βH

3
-----------Y∆λ+= Y⇒ 3 Y

t

3 2βH λ∆–
---------------------------=

αi j α̂i j
t 2 1 β–( )H

3
-------------------------+ Pijkl σkl αkl–( ) λ∆=

σi j σi j
tr Lijkl ℵkl∆λ–= σi j

tr σ̂i j
t

Lijkl εkl∆+=

λ∆ λt ∆ t+ λt–≡

σi j
tr αi j–( )Pijkl σkl

tr αkl–( ) 2
3
---Y2–

∆λ m( ) 0=

0<

σi j αi j– I ijkl ∆λ℘i jkl+( ) 1– σkl
tr α̂kl

t
–( )=

℘i jkl LijstPstkl
2
3
--- 1 β–( )HPijkl+=

∆λ

∆λ

∆λ
7
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where  is the iteration count. It can be shown that the derivative  require

(21) is given as:

(22)

The converged value of  is then used in combination with (19), (15), (16) and (1

update the yield stress, the back stress, and the Cauchy stress.

4.0  Consistent linearization

While integration of the constitutive equations affects the accuracy of the solution, th

mulation of the tangent stiffness matrix consistent with the integration proce

employed is essential to maintain the asymptotic quadratic rate of convergence 

Newton method provided that the solution is smooth. In Section 4.1 we derive the 

bian matrix for the finite deformation elasto-plastic constitutive model, which in Sec

4.2 leads to the formulation of the tangent stiffness matrix consistent with the integ

procedures outlined in Section 3.   

4.1  The Jacobian matrix for the finite deformation elasto-plastic 
constitutive model

The Jacobian matrix for the finite deformation elasto-plastic constitutive model outlin

the previous sections is obtained by taking the material time derivative of the stress a

back stress ((17), (16)) at the current configuration (time ):

(23)

(24)

∆λk 1+ ∆λk
Φ∂

∂∆λ
----------

 
 
  1–

Φ–
∆λk

=

k Φ∂ ∂∆λ⁄

Φ∂
∂∆λ
---------- ℵ– i j I ijkl ∆λ℘i jkl+( ) 1– ℘klmn σmn αmn–( ) 4βhY2

9 6βh∆λ–
--------------------------–=

∆λ

t t∆+

σ· i j σ̂
·t

ij L+ ijkl ∆ε·kl Pklmn σ· mn α· mn–( )∆λ– ℵklλ
·

–{ }=

α· i j α̂
·t

i j
2 1 β–( )h

3
-----------------------+ Pijpq σ· pq α· pq–( )∆λ ℵi j λ

·
+{ }=
8
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Remark 1: It is common in practice (see for example Section 3.2.2 in ABAQUS the

manual [12]) to introduce the following two approximations, which assume infinitesim

ity of the time step: 

(25)

In the remainder of this section we derive the consistent Jacobian matrix exactly, 

Section 5, we show that the two approximations given in (25) considerably increas

number of iterations in the Newton method.

We start by subtracting (24) from (23) which yields:

(26)

where  and  in (26) are computed by taking the material time derivative of (9

(10), which yields

(27)

where

(28)

Taking the material derivative of (11) gives

(29)

where

(30)

Substituting (29) into (27) results in

(31)

σ̂
·t

i j σ̂
·

i j≈ Λikσkj σikΛkj–= ∆ε·kl ε·kl≈

σ· i j α· i j– I ijkl ∆λ℘i jkl+( ) 1– σ̂
·t

kl α̂
·t

kl–( ) L+ klmn∆ε·mn ℘klmnℵmnλ
·

–
 
 
 

=

σ̂
·t

i j α̂
·t

ij

σ̂
·t

i j Aijmn
σ R·mn= , α̂

·t

i j Aijmn
α R·mn=

Aijmn
σ δimδknRjl δjmδnlRik+( ) σt kl=

Aijmn
α δimδknRjl δjmδnlRik+( ) αt kl=

R·mn Bmnpq∆ω· pq=

Bmnpq 2δmp ∆ωmp–( ) 1– δqn Rqn+( )=

σ̂
·t

i j α̂
·t

i j– T ij( ) pq[ ]∆ω· pq=
9
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(32)

It is important to note that the derivation of  and  appearing in equations (26

(31), should be consistent with the midpoint integration scheme employed. In the fo

ing we focus on such consistent linearization.

We start by taking the material time derivative of the gradient of the displacement i

ment with respect to the position vector at the midstep (see equation (12)):

(33)

Linearization of the second term in (33) yields

(34)

Combining (33) and (34) gives

(35)

Equation (35) can be further simplified by exploiting the following relation

(36)

which after substitution into (35) yields

(37)

By utilizing the following equality

Tijpq Aijmn
σ Aijmn

α–( )Bmnpq=

∆ε·i j ∆ω· ij

td
d ∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂vi

∂ x
t

k

---------
∂ x

t
k

∂ x
t ∆t 2⁄+

j

----------------------
∂∆ui

∂ x
t

k

-----------
td

d ∂ x
t

k

∂ x
t ∆t 2⁄+

j

----------------------
 
 
 

+=

td
d ∂ x

t
k

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂ x

t
k

∂ x
t ∆t 2⁄+

m

------------------------
td

d ∂ x
t ∆ t 2⁄+

m

∂ x
t

n

------------------------
 
 
  ∂ x

t
n

∂ x
t ∆ t 2⁄+

j

----------------------–=

td
d ∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂vi

∂ x
t ∆t 2⁄+

j

----------------------
∂∆ui

∂ x
t ∆t 2⁄+

m

------------------------
td

d ∂ x
t ∆t 2⁄+

m

∂ x
t

n

------------------------
 
 
  ∂ x

t
n

∂ x
t ∆t 2⁄+

j

----------------------–=

td
d ∂ x

t ∆t 2⁄+
m

∂ x
t

n

------------------------
 
 
  ∂

∂ x
t

n

---------
td

d x
t ∆t 2⁄+

m 
  ∂

∂ x
t

n

---------
td

d xm x
t

m+

2
-------------------

 
 
 

 
 
  1

2
---

∂vm

∂ x
t

n

---------= = =

td
d ∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
 
 
 

δim
1
2
---

∂∆ui

∂ x
t ∆t 2⁄+

m

------------------------–
 
 
  ∂vm

∂ x
t ∆t 2⁄+

j

----------------------=
10
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equation (37) can be recast into the following form:

(39)

Defining  as

(40)

yields

(41)

Taking symmetric and antisymmetric part of (41) with respect to indexes  we ge

final expressions for  and :

(42)

It can be easily seen that for infinitesimally small step size .

We proceed by substituting (42) and (31) into (26), which yields

(43)

where  is the Jacobian matrix for the finite deformation elastic constitutive mod

given as

(44)

δim
1
2
---

∂∆ui

∂ x
t ∆t 2⁄+

m

------------------------–
x

t ∆t 2⁄+
m∂

∂ x
t ∆t 2⁄+

i
1
2
---∆ui– 

  ∂ x
t

i

∂ x
t ∆t 2⁄+

m

------------------------= =

td
d ∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂ x

t
i

∂ x
t ∆t 2⁄+

m

------------------------
∂vm

∂ x
t ∆t 2⁄+

j

----------------------=

Mijkl

Mijkl

∂ x
t

i

∂ x
t ∆t 2⁄+

k

-----------------------
∂xl

∂ x
t ∆t 2⁄+

j

----------------------≡

td
d ∂∆ui

∂ x
t ∆t 2⁄+

j

----------------------
 
 
 

Mijkl vk xl,=

ij

∆ε·i j ∆ω· ij

∆ε·ij M ij( )kl vk xl,= , ∆ω· ij M ij[ ]kl vk xl,=

Mijkl δikδj l=

σ· i j α· i j– I ijkl ∆λ℘i jkl+( ) 1– Lklmn
e

vm xn, ℘klmnℵmnλ
·

–{ }=

Lklmn
e

Lklpq
e TklmnM mn[ ]pq L+

klmn
M mn( )pq=
11
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The plastic parameter, , in (43) is computed by linearizing consistency condition (4

, which yields

(45)

Substituting (43) into (45) provides

(46)

where

(47)

The Jacobian matrix for the finite deformation plastic constitutive model, 

obtained by substituting (46), (27) and (29) into (23), which yields

(48)

where

(49)

Finally, the Jacobian matrix for the finite deformation elasto-plastic constitutive mode
given as

(50)

4.2  Consistent tangent stiffness matrix

We start from the system of nonlinear equations arising from the finite element discr

tion

λ·

Φ· 0=

ℵi j σ· i j α· ij–( ) 4βHY2λ·

9 6βH∆λ–
----------------------------– 0=

λ· Smnvm n,=

Smn

ℵi j I ijkl ∆λ℘ijkl+( ) 1– Lklmn
e

ℵij I i jkl ∆λ℘i jkl+( ) 1– ℘klpqℵpq
4βHY2

9 6βH∆λ–
----------------------------+

-----------------------------------------------------------------------------------------------------------------=

Lijkl
p

σ· i j Lijkl
p vk xl,=

Lijkl
p Aijmn

σ BmnpqM pq[ ]kl +=

Lijmn M mn( )kl Pmnpq

Ipqst

∆λ
---------- ℘pqst+ 

  1–
Lstkl

e ℘stuvℵuvSkl–( ) ℵmnSkl––
 
 
 

Lijkl

Lijkl
e for elastic process

Lijkl
p for plastic process




=

12
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where  is set of  continuous shape functions, such that ; the upper

subscripts denote the degree-of-freedom and the summation convention over re

indexes is employed for the degrees-of-freedom and for the spatial dimensions; 

 are components of nodal displacement and velocity vectors; and  and 

components of the internal and external force vectors, respectively. 

The consistent tangent stiffness matrix, , is obtained via consistent linearization 

discrete equilibrium equations (51). It is convenient to formulate such a linearization

cedure as:

(52)

For simplicity, assuming that the external force vector is not a function of the solution

consistent linearization procedure yields: 

(53)

where  is the Jacobian between the configurations  and ;  is the deform

gradient defined as

(54)

Linearization of (53) yields

(55)

Substituting (50) into (55) and exploiting the well-known kinematical relatio

,  yields:

rA fA
int qA( ) fA

ext– 0= = fA
int NiA xj, σij Ωd

Ω∫=

NkA C
0

vk NkAq·A=

qA

q·A fA
int fA

ext

KAB

KAB q·B∂
∂

td
d rA 

 ≡

td
d rA td

d N
iA xt m,

Fmj
1– σi j J( )d Ωt

Ωt∫=

J t t ∆t+ Fjm

Fjm x
j x

t
m,

= x
t t∆+

j xt m,
≡ and Fmj

1–
x
t

m xj,= x
t

m xt t∆+
j,

≡

td
d rA N

iA x
t

m,
F·mj

1– σi j J Fmj
1– σ· i j J Fmj

1– σi j J
·+ +{ }d Ωt

Ωt∫=

J· Jvk xk,= F·mj
1–

Fml
1– vl xj,–=
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(56)

where

(57)

and  is defined in (50).

5.0  Numerical experiments

Numerical integration and consistent linearization schemes described in sections 4

have been implemented into ABAQUS [12] as a User defined ELement (UEL). Note

in ABAQUS finite deformation plasticity algorithms are similar to those described in S

tion 4. The key difference is in the formulation of the tangent stiffness matrix. Hence 

the solutions are (almost) identical, the iterative process would have a different cha

Three numerical examples are considered. In the first (Section 5.1) we investiga

accuracy of the Hughes-Winget integration algorithm, whereas the following two su

tions (5.2 and 5.3) focus on the computational efficiency aspects. For the numerical 

iments considered in Sections 5.2 and 5.3, the load increments were chosen so 

total error resulting from the numerical integration will not exceed 3% in the max

deflection.

5.1  Rotating-stretching bar problem

To investigate the accuracy of the integration algorithm, we consider a rotating-stretc

bar problem [26]. The total rotation is  90o, whereas the total stretching is only 0.1%.  Th

prescribed solution is applied in three increments, i.e., rotation increment is 30o. Figure 1 

compares the accuracy of the Hughes-Winget integration algorithm with the higher o

integration scheme [26] and the exact solution. It can be seen that even though rota

increments are very large, the second order accurate Hughes-Winget algorithm prov

excellent accuracy in the stress field, resulting in  the maximum error  not exceeding

KAB NiA xj, Lijkl NkB xl, Ωd
Ω∫=

Lijkl Lijkl δklσij δkjσil–+=

Lijkl
14
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ratio,

 held
Figure 1: Rotating-stretching bar problem

5.2  Rigid body rotation of tetrahedral

In our second numerical experiment, we consider a single tetrahedral element subje

a rigid body finite rotation. The initial and final configurations are shown in Figure 2. 

Figure 2: Rotation of tetrahedral element

The material is considered elastic with Young’s modulus, , the Poisson’s 

. The boundary conditions are set in such a way that nodes A and B are

E 21000=

ν 0.3=
15
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onlin-

tion at
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 the 

. With 

and 

matrix

ut the
fixed, while the horizontal component of the displacement at node C is prescribed, r

ing in a rotation angle of approximately .

The prescribed displacement is applied in one increment, and it takes 5 iterations

consistent tangent and 54 iterations using approximate tangent (the original ABA

algorithm). With smaller load increments the advantage is less drastic. For examp

the same loading applied in three increments the number of iterations using the con

tangent is 4, 5 and 5, whereas with the approximate tangent the number of iteration

16 and 16.

5.3  The 3D beam problem

We next consider a cantilever beam problem as shown in Figure 3. All the degrees-o

dom at the clamped end are fixed. Uniform loading is applied at the tip of the beam 

transverse direction. The length, width, and the depth of the beam are 12, 1 and 2, 

tively. The elastic constants are the same as in the previous example. Plasticity para

are as follows: the hardening modulus, , the mixed hardening param

, and the initial yield stress, . The finite element mesh contains 435

node tetrahedral elements totaling 1091 nodes. We consider two cases: an elasti

(geometric nonlinearity only), and an elasto-plastic beam (geometric and material n

earity). In both cases the magnitude of loading is selected so that the maximal deflec

the tip is approximately one third of the beam length. For the problem with material

linearity 79% of elements experience plastic deformation. 

The loading is applied in one increment. With the consistent tangent stiffness matrix

number of iterations is 11 and 16 for elastic and elasto-plastic problems, respectively

the conventional tangent the number of iterations increases to 26 and 38 for elastic 

elasto-plastic problems, respectively. 

To this end we note that the computational cost of the consistent tangent stiffness 

evaluation was approximately twice as high as that of the approximate tangent, b

40°

H 1000=

β 1= Y
0

21=
16
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overall computational cost associated with the formulation employing consistent ta

was still lower.

Figure 3: Deformation of cantilever beam

6.0  Summary and future research

A methodology for efficient implementation of  the incrementally objective algorithm 

has been developed. The usefulness of the proposed formulation has been demonst

the numerical experiments show significant savings in computational cost.

The scope of the paper was limited to the cases where the notion of hypoelasticity is

This is appropriate for metals, where elastic strains remain small compared to plasti

deformation. For polymers, which exhibit large elastic and plastic deformations of co

rable magnitude, a different treatment might be required. 

Several questions, however, remained unanswered. First, we have not investigated w

a consistent tangent operator for the incrementally objective corotational formulation

the rotation part extracted from the deformation gradient can be derived with the sam

ease as for the present formulation. Such a corotational formulation would have a nu

of advantages, the key one being compatible with the notion of hyperelasticity [9]. S

ondly, it is important to investigate how increasingly complex incrementally objective
17



sed 

spe-
-

dent 
s, 
av-

 rate 

lasto-

sto-

s-

tic 
 

nal-

orma-
s 

on-

for 

e 
algorithms would fare against the multiplicative decomposition and hyperelasticity ba

algorithms [8] in terms of accuracy and computational efficiency. 
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