
                                                                             International Journal for Multiscale Computational Engineering, 2(3)X-X(2004) 

Space-time Multiscale Laminated Theory

Ryan Lund

New York State Department of Transportation

Jacob Fish*

Rensselaer Polytechnic Institute, Troy, NY 12180

ABSTRACT
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lems.

KEY WORDS

non-local; elastodynamics; homogenization; multiple scales; dispersion; impact;
asymptotic

*Corresponding author: Fishj@rpi.edu

0731-8898/04/$20.00 © 2004 by Begell House, Inc.                                                                                                                        1 
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1. INTRODUCTION

In heterogeneous materials elastic waves tend
to travel faster in stiffer materials, and there-
fore, any a priori assumption about the through-
the-thickness distribution of displacements in a
laminate may have a detrimental effect on the
solution accuracy. Models based on the piece-
wise approximation of the solution in thickness
direction [1] have the flexibility of capturing the
dominant deformation modes, but might un-
necessarily overtax computational resources for
laminates with a significant number of layers.

These limitations of existing theoretical mod-
els motivated the development of the space-
time multiscale laminated theory, which makes
no assumption about the displacement approx-
imation in thickness direction. The proposed
multiscale approach constructs a nearly opti-
mal through-the-thickness solution approxima-
tion by solving a sequence of higher-order local
equilibrium equations.

Research efforts aimed at developing a
nearly optimal laminated plate theory have
reached a level of maturity. While there is a
consensus that an optimal laminated model de-
pends on loading and boundary conditions in
addition to several other factors, the authors of
this manuscript are unaware of any prior work
attempting to tailor the laminated model to sys-
tem dynamics.

To this end it is instructive to briefly sur-
vey related efforts aimed at constructing solu-
tion approximations in the thickness direction.
Babuska [2] developed a hierarchic model for
laminated composites in which the displace-
ment was expanded using Fourier approxima-
tion. Spatial homogenization theory has been
applied to thin laminates by Goldenvizer [3],
Sanchez Palencia [4], Panasenko and Reztov
[5], and Lewinski and Telega [6]. Fish et al.
[7, 8] and Bakhvalov [9] studied wave disper-
sion in a periodic, heterogeneous material us-
ing higher-order asymptotic terms with spatial

and temporal scaling. These higher-order mod-
els showed improved results over the classical
homogenization theory and serve as a motiva-
tion for the present work. Wave dispersion has
been also successfully studied by McDevitt et
al. [10] using multiple spatial scales with an
assumed strain field enriched by a linear com-
bination of strain concentration functions ob-
tained from the unit cell solution.

We consider a plate positioned in the x1x2

plane with piecewise constant material proper-
ties through-the-plate thickness. The domain
of the problem is defined as follows (see also
Fig. 1):

X = {x3(−ε, ε)}
ΩA = {xα}
Ω = ΩA ×X

The boundary ΓA consists of Γh and Γg be-
ing displacement boundary and Γh the bound-
ary where the tractions are prescribed, such that
Γh ∪ Γg = ∅ and Γh ∩ Γg = ΓA. We assume that
the thickness of the plate is very small and de-
fine the small parameter ε (ε ¿ 1 )to be half of
the thickness of the plate.
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FIGURE 1. The laminate elevation, coordinate
system, and layup
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The mathematical model on Ω is as follows:

σij,j − ρui,tt + bi = 0
(Equation of motion), (1.1)

σij = Cijkl (x3) ekl (u)
(ConstitutiveRelation), (1.2)

ekl (u) =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)

(KinematicsRelation). (1.3)

The plate is assumed to be traction free at its
top and bottom surfaces

ti(x3 = ±ε) = σi3(x3 = ±ε)n3 = 0 . (1.4)

On the edges of the plate, we will consider
displacement and traction boundary conditions

σiαnα = ti on Γh

ui = Φi on Γg.
(1.5)

We are restricting the slippage or relative dis-
placement between plies, so there must be dis-
placement and traction continuity at the ply in-
terface I,

[uk]I = 0 [σi3n3]I = [σi3]I = 0. (1.6)

The initial displacement and velocity condi-
tions are

ui(x, t = 0) = fi(x), (1.7)

ui,t(x, t = 0) = gi(x). (1.8)

The material density ρ (xα) and body force
bi(xα) are assumed to be constant through the

thickness of the plate, but vary in the plane of
the plate.

We assume the constitutive tensor Cijkl to be
piecewise constant through the thickness and
orthotropic within each ply. The constitutive
tensor is assumed to possess symmetry and
positive definiteness

Cijkl = Cklij = Clkij , (1.9)

CijklΨijΨkl ≥ 0

If (CijklΨijΨkl = 0) then (Ψkl = 0) .
(1.10)

For simplicity, the constitutive tensor is as-
sumed to be symmetric with respect to the mid-
plane (x3 = 0).

2. SOLUTION APPROXIMATION

Since the thickness of the plate is much smaller
than the in-plane dimensions, state variables
are expected to have a larger variation through
the thickness than in-plane directions. The fol-
lowing scaling equation is used to resolve the
behavior in the thickness direction:

y =
x3

ε
. (2.1)

The governing equations will be expressed
in terms of three spatial coordinates (x1, x2, y3).
The partial derivative terms in x is expressed
using the following chain rule:

f,j = ∂xjf + ε−1δj3∂y (f) , (2.2)

where

∂xjf = δjα
∂f

∂xα
where α= 1, 2, (2.3)

∂y (f) =
∂f

∂y
. (2.4)
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Temporal scaling is used to suppress the un-
bounded growth of the displacement field as
observed in [7, 8].

ts = εst (2.5)

Following [7, 8], two temporal coordinates
t0 = t and t1 = ε1t are considered.

Thus the temporal derivative is replaced
with the following differential operator:

f,t = f,t0 + ε1f,t1 + ε2f,t2 . (2.6)

Displacements are approximated using the
asymptotic expansion in the form

ui = U0
i (xα)

+
∞∑

s=1

∞∑
t=0

εs+tHs
ikl

∏
(s−1)(y)Dkl

∏
(s−1)

(
Ut(xα)

)
,

(2.7)

where the spatial gradient in the in-plane direc-
tion is defined as:

Dkl
∏

(s)
(
Ut

)
= ∂x∏

1
...∂x∏

s
exkl

(
Ut

)
. (2.8)

In Eq. (2.7)
∏

(s) =
∏

1 ...
∏

s is a multi-
index and s is its length. The multi-index per-
forms like a series of tensor indices. The in-
dices in the multi-index

∏
(s), for example,∏

i will only span 1 and 2 (
∏

i = 1 or 2).
If s, in the multi-index

∏
(s) is less than or

equal to zero, then the multi-index becomes a
null set of indices, i.e., (

∏
(s) = ∅ for s ≤

0). The multi-index
∏

(s..s + t) represents
the indices

∏
s

∏
s+1 ...

∏
s+t. For example,

the plane strain constitutive relation can be ex-
pressed using a multi-index as follows: σιϕ =
Cιϕ

∏
(2) (x3) e∏

(2) (u). This can be expanded
as: σιϕ = Cιϕ

∏
1

∏
2
(x3) e∏

1

∏
2
(u).

Alternatively, it can be expressed in terms of
conventional tensor indices that span 1 and 2,

such as σιϕ = Cιϕαβ (x3) eαβ (u). The term
exkl

(
Ut

)
denotes the symmetric gradient of

Ut with respect to xk and xl. The first three
terms of the displacement expansion can be ob-
tained from Eq. (2.7) as

ui = ε0
(
U0

i

)
+ ε1

(
U1

i + H1
ikl(y)exkl

(
U0

))

+ε2
(
U2

i +H1
ikl(y)exkl

(
U1

)
+H2

ikl
∏

1
∂x∏

1
exkl

(
U0

))

+O(ε3)

where Ut(xα) denotes the through-the-thick-
ness average displacements, i.e., ∂y3

(
Ut(xα)

)
= 0, which may vary in the plane of the plate
ΩA.Hs

ikl
∏

(s−1)(y3) is a concentration factor,
which varies in the thickness direction 3, but is
constant in ΩA , i.e., ∂xα

(
Hs

ikl
∏

(s−1)(y3)
)

= 0.
Since the strain operator exkl (Ut) is symmetric,
the concentration factors possess similar sym-
metry properties:

Hs
i(kl)Π1Π2...Πs−1

= Hs
i(lk)Π1Π2...Πs−1

. (2.9)

The constitutive relation and the equation of
motion given by Eqs. (1.2) and (1.1), respec-
tively, can be expressed in terms of the asymp-
totic expansion and spatial and temporal differ-
ential operators

∂uk
∂xl

= ∂U0
k

∂xl
+ δl3∂yH1

k(mn)
∂U0

m
∂xn

+
∞∑
s=1

∞∑
t=0

εs+t
(
δl

∏
s
Hs

k(mn)
∏

(s−1)+δl3∂yHs+1
k(mn)

∏
(s)

)

×D(mn)
∏

(s)
(
Ut

)
(2.10)

The Cauchy stress can be expanded using
various orders of ε

σij =
∞∑

R=0

εRσR
ij , (2.11)
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where

σR
ij =

R∑

s=0

Cs
ij(mn)

∏
(s)D

(mn)
∏

(s)
(
UR−s

)
(2.12)

and the stiffness coefficients are given by

C0
ij(mn) = Cijkl

(
δkmδln + δl3∂yH1

k(mn)

)

Cs
ij(mn)

∏
(s) =

Cijkl

(
δl

∏
s
Hs

k(mn)
∏

(s−1)+δl3∂yHs+1
k(mn)

∏
(s)

)

for s ≥ 1.

(2.13)

The symmetry existing in both the constitu-
tive tensor and the macroscopic strain operator
gives rise to similar symmetries in the higher-
order stiffness tensor, i.e.,

Cs
(ij)(mn)(

∏
(s)) for s ≥ 0. (2.14)

Substituting the stress expansion (2.11) into
the equation of motion (1.1) and using spatial
and temporal differential operators yields the
following equilibrium equations for various or-
ders of ε:

ε−1
(
∂yσ0

i3

)
= 0 (2.15)

and

∞∑

R=0

εR
(
∂xασR

iα + ∂yσR+1
i3

)
−ρ

∞∑

R=0

εRaR
i +bi = 0,

where

aR
i = ΨUR

i

+
R∑

s=1

(
Hs

imn
∏

(s−1)D
mn

∏
(s−1)ΨU(R−s)

)
,

(2.16)

ΨUt = Ut
,t0t0 + 2Ut−1

,t0t1
+ 2Ut−2

,t0t2

+Ut−2
,t1t1

+ 2Ut−3
,t1t2

+ Ut−4
,t2t2

(2.17)

We define the averaging spatial operator as

〈f〉 =
1
2

1∫

−1

fdy (2.18)

and apply it to the equation of motion to obtain
the macroscopic equations of motion

∞∑
R=0

εR
(
∂xα

〈
σR

iα

〉
+

〈
∂yσR+1

i3

〉)

− ρ
∞∑

R=0

εR
〈
aR

i

〉
+ bi = 0.

(2.19)

The second term in (2.19) can be evaluated
using the traction conditions on the top and
bottom of the plate defined by (1.14).

〈
∂yσR

i3

〉
= σR

i3

∣∣1
−1

= 0. (2.20)

The homogenized (or average) stresses are
given by

〈
σR

ij

〉
=

R∑

s=0

Ds
ij(mn)

∏
(s)D

(mn)
∏

(s)
(
UR−s

)
, (2.21)

where the homogenized stiffness tensors of
each order are

Ds
ij(mn)

∏
(s) =

〈
Cs

ij(mn)
∏

(s)

〉
. (2.22)

The concentration factors are normal-
ized so that

〈
Hs

imnΠ(s−1)

〉
= 0 for any s > 0.
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Consequently, the homogenized acceleration
reduces to

〈
aR

i

〉
= ΨUR

i . (2.23)

Substituting (2.20)–(2.23) into (2.19) yields a
simplified expression for the macroscopic equa-
tion of motion

∞∑

R=0

εR
(
∂xα

〈
σR

iα

〉)−ρ

∞∑

R=0

εRΨUR
i +bi =0. (2.24)

The macroscopic equation of motion (2.24) is
subsequently subtracted from the equation of
motion given by Eq. (2.15) to give

∞∑

R=0

εR
(
∂xα∆

(
σR

iα

)
+∂yσR+1

i3 −ρ
(
aR

i −ΨUR
i

))
=0,

(2.25)

where the delta function is defined as

∆(f) = f − 〈f〉 . (2.26)

Exploiting the fact that ε is a small parameter
yields one equation for each order of ε,

∂xα∆
(
σR

iα

)
+ ∂yσR+1

i3 − ρ
(
aR

i −ΨUR
i

)
= 0

R = 0...∞.
(2.27)

We proceed by inserting the stress (2.11)–
(2.13) and the acceleration (2.16) expansions
into Eq. (2.27). Manipulating the indices and
factoring out the average displacement gradi-

ent from the first two terms of (2.27) yields

∂yC0
i3(mn)D

(mn)
(
UR+1

)

+




R∑
s=0

∂yCs+1
i3(mn)

∏
(s+1)

+
R∑

s=0
∆

(
Cs

i
∏

s+1(mn)
∏

(s)

)




D(mn)
∏

(s+1)
(
UR−s

)

−ρ

(
R∑

s=1

(
Hs

imn
∏

(s−1)

))
Dmn

∏
(s−1)ΨU(R−s) = 0

R = −1...∞.
(2.28)

The first term in Eq. (2.28) will vanish by
(2.15). The last term will vanish for R = 0. Solv-
ing the homogenized equilibrium system (2.24)
for the acceleration yields

ρΨUR
i = ∂xα

〈
σR

iα

〉
R > 0. (2.29)

Substituting the stress expansion into Eq.
(2.29) yields:

ρΨUR
i =

R∑
s=0

Ds
iα(mn)

∏
(s)D

(mn)
∏

(s)α
(
UR−s

)
R>0

(2.30)

and applying a differential operator to Eq.
(2.30) gives

ρD(kl)
∏

(s−1)ΨUR−s
i =

R−s∑
p=0

Dp
kα(mn)Φ(p)D

(mn)lαΦ(p)
∏

(s−1)
(
UR−s−p

)
.

(2.31)

Symmetry is enforced for indices k and l on
the right-hand side of Eq. (2.31). Symmetry
with respect to two indices is denoted using the
bracket operator around the corresponding in-
dices. Substituting (2.31) into (2.28) yields
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R+1∑
s=0

(
∂yCs+1

i3(mn)
∏

(s+1)+∆Cs
i
∏

s(mn)
∏

(s)

)

×D(mn)
∏

(s+1)
(
UR−s

)−
R∑

s=1
Hs

i(kl)
∏

(s−1)

×
R−s∑
p=0

(
Dp

kα(mn)Φ(p)D
(mn)lαΦ(p)

∏
(s−1)

(
UR−s−p

))
=0.

(2.32)

Solving for higher-order stiffness gives

C0
i3(mn)

∏
(1) = K0

i(mn)
∏

(1) (2.33)

and

Cs+1
i3(mn)

∏
(s+1) =

y∫
0




s∑
p=1

(
Hp

i(k
∏

1)
∏

(2..p)

)

〈
Cs−p

k
∏

p+1(mn)
∏

(p+2..s+1)

〉

−∆Cs
i
∏

s(mn)
∏

(s)




dy

+Ks+1
i(mn)

∏
(s+1)

with s ≥ 0 and ∂y3K
s
i(mn)

∏
(s) = 0.

We proceed by substituting the stress expan-
sion (2.11) into the traction boundary condition
at the top and bottom of the plate, which yields

σR
i3n3

∣∣
y=±1

=

R∑
s=0

Cs
i3(mn)

∏
(s)D

(mn)
∏

(s)
(
UR−s

)
n3

∣∣∣∣
y=±1

=0.
(2.34)

Since UR
i is constant through the thickness

we have the following boundary condition for
the out-of-plane stiffness:

Cs
i3(mn)

∏
(s)

∣∣∣
y=±1

= 0. (2.35)

Combining Eqs. (2.33) and (2.35) yields

Ks
i(mn)

∏
(s) =

−
1∫
0




s−1∑
p=1

(
Hp

i(k
∏

1)
∏

(2..p)

)

〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
i
∏

s(mn)
∏

(s−1)




dy

s ≥ 1.

(2.36)

Substituting Eq. (2.36) into (2.33) gives

C0
i3(mn)

∏
(1) = 0 (2.37)

and

Cs
i3(mn)

∏
(s) =

Λ




y∫
0




s−1∑
p=1

(
Hp

i(k
∏

1)
∏

(2..p)

)

〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
i
∏

s(mn)
∏

(s−1)




dy




s ≥ 1,

where

Λ(f(y)) = f(y)− f(1).

The constant terms in Eq. (2.36) are zero for
s =0 and 1.
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3. SOLUTION OF THE LOCAL
(THROUGH- THE-THICKNESS)
PROBLEM

In this section we derive the closed-form ex-
pression for the concentration factors and cal-
culate their average value to be used in macro-
scopic equations. We start by substituting the
stiffness expansion (2.13) into (2.36) and solve
for the highest-order concentration factor

(
∂y3H

1
t(mn)

)
= − [Ci3t3]

−1 Ci3mn (3.1)

and

(
∂y3H

s+1
t(mn)

∏
(s)

)
=

[Ci3t3]−1Λ




y∫
0




s−1∑
p=1

(
Hp

i(k
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
i
∏

s(mn)
∏

(s−1)




dy




−[Ci3t3]
−1 Ci3

∏
s kH

s
k(mn)

∏
(s−1)

for s ≥ 1.

Integrating the above equation with respect
to y yields

H1
t(mn) = −

y∫

0

[Ci3t3]
−1 Ci3mn + G1

t(mn) (3.2)

and

Hs+1
t(mn)

∏
(s) =

y∫
0




[Ci3t3]−1Λ





y∫
0




s−1∑
p=1

(
Hp

i(k
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
i
∏

s(mn)
∏

(s−1)




dy








dy

−
y∫
0

(
[Ci3t3]

−1 Ci3
∏

s kH
s
k(mn)

∏
(s−1)

)
dy

+Gs+1
t(mn)

∏
(s)

for s ≥ 1.

Applying the normalization condition(〈
Hs

imnΠ(s−1)

〉
= 0 for s > 0

)
to Eq. (3.2)

yields the solution for the concentration factors

H1
t(mn) = −

y∫

0

[Ci3t3]
−1 Ci3mn (3.3)

and

Hs+1
t(mn)

∏
(s) =

+∆




y∫
0




[Ci3t3]−1Λ
y∫
0




l
s−1∑
p=1

(
Hp

i(k ∏
1)

∏
(2..p)

)

×
〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
i
∏

s(mn)
∏

(s−1)




dy




dy




−∆
(

y∫
0

(
[Ci3t3]

−1
Ci3

∏
s kHs

k(mn)
∏

(s−1)

)
dy

)

for s ≥ 1.

Given the solutions for the concentration fac-
tors, we proceed with the evaluation of the stiff-

International Journal for Multiscale Computational Engineering



SPACE-TIME MULTISCALE LAMINATED THEORY 9

ness terms in Eq. (2.13). The solution for the
stiffness tensors of various orders is given by

Cs
ij(mn)

∏
(s) =

Cijkl

(
δl

∏
s
Hs

k(mn)
∏

(s−1)+δl3∂y3H
s+1
k(mn)

∏
(s)

)

for s ≥ 1

(3.4)

and

C0
ij(mn) = Cijkl

(
δkmδln + δl3∂y3H

1
k(mn)

)

C0
i3kl = 0.

The concentration factors are substituted into
the stiffness equations to give

Cs
ij(mn)

∏
(s) =

(
Cijt

∏
s
− Cijt3 [Cr3t3]

−1 Cr3
∏

s k

)
Hs

k(mn)
∏

(s−1)

+Cijt3[Ct3r3]−1Λ




y∫
0




s−1∑
p=1

(
Hp

r(k
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

k
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
r

∏
s(mn)

∏
(s−1)




dy




for s ≥ 1
(3.5)

and

C0
ιϕ(µν) = Cιϕµν − Cιϕ33C33µν

C3333
.

The membrane stiffness can be obtained by
allowing the indices i and j, in Eq. (3.5), span 1
and 2, which yields

Cs
ιϕ(mn)

∏
(s) =

(
C0

ιϕκ
∏

s

)
Hs

κ(mn)
∏

(s−1)

+Cιϕ33

C3333
Λ




y∫
0




s−1∑
p=1

(
Hp

3(t
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

t
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
3

∏
s(mn)

∏
(s−1)




dy




for s ≥ 1.

The out-of-plane shear stiffness can be calcu-
lated by restricting i to 1 or 2 and forcing j to
be 3

Cs
ι3(mn)

∏
(s) =

Λ




y∫
0




s−1∑
p=1

(
Hp

ι(t
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

t
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
ι
∏

s(mn)
∏

(s−1)




dy




for s ≥ 1.

The transverse normal stiffness can be evalu-
ated by taking i and j in Eq. (3.5) to be 3

Cs
33(mn)

∏
(s) =

Λ




y∫
0




s−1∑
p=1

(
Hp

3(t
∏

1)
∏

(2..p)

)

×
〈
Cs−1−p

t
∏

p+1(mn)
∏

(p+2..s)

〉

−∆Cs−1
3

∏
s(mn)

∏
(s−1)




dy




for s ≥ 1.
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The zero-order stiffness terms for membrane,
shear and transverse normal stresses are:

C0
ιϕ(µν) = Cιϕµν − Cιϕ33C33µν

C3333
, (3.6)

C0
ι3(mn) = 0, (3.7)

C0
33(mn) = 0. (3.8)

The first-order stiffness terms for membrane,
shear, and transverse normal stresses are

C1
ιϕ(mn)

∏
(1) = y

(
C0

ιϕκ
∏

1

)
Aκ(mn), (3.9)

C1
ι3µν

∏
(1) = −

y∫

0

(
∆C0

ι
∏

1 µν

)
dy, (3.10)

and

C1
33(mn)

∏
(1) = 0, (3.11)

where

Aα(mn) = Aα(nm)andAαm3 = δαm.

The second-order stiffness terms for mem-
brane, shear, and transverse normal stresses are

C2
ιϕ(µν)

∏
(2) =

(
C0

ιϕκ
∏

2

)
H2

κ(µν)
∏

(1)

+Cιϕ33

C3333
Λ


y∫

0




H1
3τ

∏
1
D0

τ
∏

2(µν)

−C1
3

∏
2(µν)

∏
(1)


dy


 ,

(3.12)

C2
ι3(mn)

∏
(2) =

AκmnΛ
( y∫

0

(
C0

ι
∏

2

∏
(1)κy3

)
dy

)
,

(3.13)

C2
33(µν)

∏
(2) =

Λ
( y∫

0

(
D0

τ
∏

2(µν)H
1
3(τ

∏
1)
−C1

3
∏

2(µν)
∏

(1)

)
dy

)
.

(3.14)
The third-order stiffness terms for mem-

brane, shear, and transverse normal stresses are

C3
ιϕ(mn)

∏
(3) =

(
C0

ιϕκ
∏

3

)
H3

κ(mn)
∏

(2)

−Cιϕ33

C3333
Λ

( y∫
0

(
∆C2∏

3 3(mn)
∏

(2)

)
dy

)
,

(3.15)

C3
ι3(µν)

∏
(3) =

Λ




y∫
0




H2
ι(t

∏
1)

∏
2

〈
C0

t
∏

3(µν)

〉

−∆C2
ι
∏

3(µν)
∏

(2)


dy


,

(3.16)

C3
33(mn)

∏
(3) =−Λ




y∫

0

(
∆C2

3
∏

3(mn)
∏

(2)

)
dy


. (3.17)

The fourth-order stiffness terms for shear
and transverse normal stresses are

C4
ι3(mn)

∏
(4) =

−Λ


y∫

0




δι
∏

1
yD2∏

2 3(mn)
∏

(3..4)

+C3
ι
∏

4(mn)
∏

(3)


dy


,

(3.18)

C4
33(mn)

∏
(4) =

Λ




y∫
0




H1
3(t

∏
1)

〈
C2

t
∏

2(mn)
∏

(3..4)

〉

+H3
3(t

∏
1)

∏
(2..3)

〈
C0

t
∏

4(mn)

〉

−C3
3

∏
4(mn)

∏
(3)




dy




.
(3.19)
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The transverse normal stiffness for the fifth
order is

C5
33(mn)

∏
(5) =

Λ


y∫

0




H2
33

∏
1

∏
2
D2

3
∏

3(mn)
∏

(4..5)

−∆C4∏
5 3(mn)

∏
(4)


dy


.

(3.20)

Remark: The higher-order stiffness terms
for membrane, shear, and transverse normal
stresses differ from those obtained using static
formulation. This is because the dynamic for-
mulation accounts for the fact that the through-
the-thickness stress distribution depends on the
variation of the wave speed in different layers.

To obtain the overall or homogenized stiff-
ness tensor we apply the averaging operator to
the stiffness tensors of each order. For odd val-
ues of s, the stiffness tensors are antisymmetric,
and thus, their average is zero. Applying the
averaging operator to even-order stiffness ten-
sors yields

Ds
ij(mn)

∏
(s) =

〈
Cs

ij(mn)
∏

(s)

〉
=

〈
Cijkl

(
δl

∏
s
Hs

k(mn)
∏

(s−1)+δl3∂y3H
s+1
k(mn)

∏
(s)

)〉

for s ≥ 1
(3.21)

and

D0
ij(mn) =

〈
Cijkl

(
δkmδln + δl3∂y3H

1
k(mn)

)〉

C0
i3kl = 0.

The zero-order homogenized stiffness ten-
sors for membrane, out-of-plane shear and
transverse normal stiffness are

D0
ιϕ(µν) =

〈
Cιϕµν − Cιϕ33C33µν

C3333

〉
, (3.22)

D0
ι3(mn) = 0, (3.23)

and

D0
33(mn) = 0. (3.24)

The second-order, homogenized stiffness
tensors are

D2
ιϕ(mn)

∏
(2) =

〈

(
C0

ιϕκ
∏

2

)
H2

κ(mn)
∏

(1)

+Cιϕ33 C3333Λ


y∫

0



H1

3t
∏

1
D0

t
∏

2(mn)

−C1
3

∏
2(mn)

∏
(1)


dy




〉
,

(3.25)
D2

ι3(mn)
∏

(2) =

Aκmn

〈
Λ

( y∫
0

(
C0

ι
∏

2

∏
(1)κy3

)
dy

)〉
,

(3.26)

D2
33(µν)

∏
(2) =

〈
Λ




y∫
0




H1
3(t

∏
1)

〈
C0

t
∏

2(µν)

〉

−∆C1
3

∏
2(µν)

∏
(1)


dy



〉

.
(3.27)

The fourth-order homogenized stiffnesses
are

D4
ι3(mn)

∏
(4) =

Λ




y∫
0




H1
ι(t

∏
1)

〈
C2

t
∏

2(mn)
∏

(3..4)

〉

+H3
ι(t

∏
1)

∏
(2..3)

〈
C0

t
∏

4(mn)

〉

−C3
ι
∏

4(mn)
∏

(3)




dy




,
(3.28)
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D4
33(mn)

∏
(4) =

Λ




y∫
0




H1
3(t

∏
1)

〈
C2

t
∏

2(mn)
∏

(3..4)

〉

+H3
3(t

∏
1)

∏
(2..3)

〈
C0

t
∏

4(mn)

〉

−C3
3

∏
4(mn)

∏
(3)




dy




.
(3.29)

It can be easily seen that that the mem-
brane, shear, and transverse homogenized stiff-
ness tensors of each order possess the following
symmetry properties

Ds
(ιϕ)(mn)(

∏
(s))

Ds
(ι3)(mn)(

∏
(s))

Ds
33(mn)(

∏
(s)).

(3.30)

4. NONLOCAL EQUATIONS OF MOTION

Substituting the stress expansions (2.12) and
(2.13) into the homogenized equations of mo-
tion (2.24) yields the homogenized membrane
equations of motion

∞∑
R=0

εR

(
R∑

s=0
Ds

ια(mn)
∏

(s)D
(mn)

∏
(s)α

(
UR−s

))

−ρ
∞∑

R=0

εR
〈
aR

ι

〉
+ bι = 0.

(4.1)

The homogenized bending equation of mo-
tion is given as

∞∑
R=0

εR

(
R∑

s=0
Ds

3α(mn)
∏

(s)D
(mn)

∏
(s)α

(
UR−s

))

−ρ
∞∑

R=0

εR
〈
aR

3

〉
+ b3 = 0.

(4.2)

The average through-the-thickness displace-
ment can be obtained by applying the averag-
ing operator to the displacement expansion

Ui = 〈ui(x, y, t)〉 =
∞∑

t=0

εtU t
i (x). (4.3)

The homogenized equilibrium equations can
be expressed in terms of the average displace-
ment. Combining Eqs. (4.2) and (4.3), gives the
nonlocal membrane equation of motion

D0
ια(mn)D

(mn)α(U)

+ε2D2
(ια)(mn)(

∏
(2))D

(mn)
∏

(2)α(U)

−ρUι,tt + bι = 0.

(4.4)

We proceed by substituting the average dis-
placement (4.3) into bending equation of mo-
tion (4.4) and truncate terms of order O

(
ε6

)
and higher, which yields the nonlocal bending
equation of motion

ε2D2
3α(mn)

∏
(2)D

(mn)
∏

(2)α (U)

+ε4D4
3α(mn)

∏
(4)D

(mn)
∏

(4)α (U)

−ρU3,tt + b3 = 0.

(4.5)

Note that the second term in Eq. (4.5) has
a sixth-order spatial derivative. Regularization
(or stabilization) procedure is introduced to re-
duce the order of differential equation and to
filter out the high-frequency content [7, 8].

Following [7, 8] we approximate the second-
order membrane stiffness tensor in terms of the
zero-order membrane stiffness and unknown
fourth-order tensor V(ιϕ)ρ

∏
2
, which represents

the through-the-thickness variation

D2
(ιϕ)(µν)(

∏
(2))

∼= V(ιϕ)ρ
∏

2
D0

(µν)(
∏

1 ρ). (4.6)
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A least-squares approximation is used to ap-
proximate V(ιϕ)ρ

∏
2
. The resulting zero-order

equilibrium equation is given as

D0
µν

∏
1 ρD

(µν)
∏

(2)ϕ(U)=ρ∂xϕ∂x∏
2
Uρ,tt

−∂xϕ∂x∏
2
bρ = O(ε1).

(4.7)

Further assuming that the gradient of the
body force is constant in the thickness direction
yields:

D0
ια(mn)∂xαexmn (U)

+ε2Vιϕρ
∏

2
ρ∂xϕ∂x∏

2
Uρ,tt

−ρUι,tt + bι = O(ε3).

(4.8)

Equation (4.8) is referred to as the regular-
ized or stabilized membrane equation of mo-
tion.

Consider the second-order terms in Eq. (4.5)

ε2D2
3α(mn)

∏
(2)D

(mn)
∏

(2)α (U) =

ρU3,tt − b3 = 0.
(4.9)

Taking two spatial derivatives, while requir-
ing that b3,αβ = 0, yields

ε2D2
3α(mn)

∏
(2)D

(mn)
∏

(4)α (U) =

ρU3,tt
∏

(3..4).
(4.10)

To express the higher-order term in Eq. (4.5)
in terms of the lower-order spatial gradient,
the fourth-order bending stiffness D4

3α(mn)
∏

(4)

is approximated in terms of the second-order
bending stiffness D2

3α(mn)
∏

(2)

D4
3α(mn)

∏
(4) ∼ V 2∏

3

∏
4
D2

3α(mn)
∏

(2). (4.11)

Substituting Eq. (4.11) into Eq. (4.5) yields

D2
3α(mn)

∏
(2)D

(mn)
∏

(2)α (U) +

ρV 2∏
3

∏
4
U3,

∏
3

∏
4 tt − ρU3,tt + b3 = 0.

(4.12)

The above is referred to as the regularized
(stabilized), bending equation of motion. A
least-squares approximation is used to approx-
imate D4

3α(mn)
∏

(4) ∼ V 2∏
3

∏
4
D2

3α(mn)
∏

(2). For
more details we refer to [11].

Given the average displacement field U
and the concentration factors the displacement,
strain, and stress through the thickness distri-
bution follow from Eqs. (2.7), (2.12), and (4.4).

5. MODEL VERIFICATION

For model verification we consider a beam
problem aligned along the axis 1. Either plane-
stress or plane-strain assumptions are made in
direction 2. Piecewise homogenous properties
are assumed in direction 3. Figure 2 shows the
schematics of the beam. For details on the di-
mensional reduction from the plate equations
to the beam problem we refer to [11].

For numerical verification we consider two
examples: the membrane (bar) and the bend-
ing (beam) problems. We first consider a piece-
wise homogeneous, isotropic bar such that t is
the thickness, Ep is the modulus, and vp is the

å

X3 Axis of Symmetry at x3=0

X1

Ply 4
Ply 3
Ply 2
Ply 1

FIGURE 2. Schematics of the beam
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Poisson ratio for ply p. The dimensions of the
bar are as follows: ε = .02m, L = 1m. Material
properties are symmetric about the center of the
beam.

We consider a composite bar with four plies
(p = 4). In the first example considered, de-
noted as bar 1, we study a bar with significantly
reduced properties (to mimic existence of dam-
age) in the second and mid-layers. For bar 2
the deviation of material properties is taken to
be less pronounced. Material properties for the
two bars are as follows:

Bar 1: E =





200

.01

50

1





Gpa v =





.3

.2

.3

.3





Bar 2: E =





200

1

40

3





Gpa v =





.3

.3

.3

.3





We consider the following initial

U(x, t = 0) = f(x), U,t(x, t = 0) = 0

and boundary

U(x = 0, t) = 0, σ11(x = L, t > 0) = 0

conditions. The initial displacement function is:
f (x) = eloadx where eload is the initial, constant
strain.

We compare three bar models

• M02 – zero-order formulation with piece-
wise linear approximation in axial direction
• M22 – nonlocal formulation with piece-

wise linear approximation in axial direction

• M24 – nonlocal formulation with piece-
wise cubic approximation in axial direction and
continuity of derivatives

with a two-dimensional reference solution (de-
noted as MPS). To obtain the reference solution
(MPS) a sequence of two-dimensional meshes
was considered to ensure convergence (up to
the error of 10–5 in the energy norm) to the
elasticity solution in 2D. For all problems con-
sidered, implicit time integration (Newmark
method with β= 1/4, γ= 1/2) [12] has been em-
ployed. For more details on time integration for
nonlocal equations, we refer to [7, 8]. Numeri-
cal results of the three models are compared to
the reference solution in Figs. 3 and 4.

The results show significant improvement
of the displacement solution compared to the
zero-order theory in case of significant proper-
ties reduction in one of the layers. The wave
speed for the higher-order solutions, M24 and
M22, has been found to be in good agreement
with the reference solution.

We proceed with the verification of the beam
model. Plane-strain condition is assumed in
direction 2. We consider a simply supported
beam with length L = 1, width b = 1, and a
uniformly distributed time-dependent load w
given as

w = Fa × g(t).

The function g(t) is a half-sine function illus-
trated in Fig. 5 and Fa = 500N

m .
The beam is simply supported and com-

posed of eight plies that have mirror symmetry
about the mid-plane. All plies have the same
thickness and ε = .01m. The following material
properties are considered:

E =





1
50
5

200





Gpa v =





.3

.3

.3

.3





.
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FIGURE 3. Comparison of average displacement 1 at x=L in Bar 1

FIGURE 4. Comparison of average displacement 1 at x=L in Bar 2
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FIGURE 5. Loading function g(t)

Two beam models,
• M3F26 – the classical Kirchoff beam ele-

ment
• M5VF6 – the proposed nonlocal beam el-

ement

are compared to MPS. The results are extracted
at x = L/4. Figures 6 and 7 illustrate the time
history of the axial stress at the top of the beam
and the shear stress at the mid-plane, respec-
tively. The nonlocal solution, M5VF26, has been
found to be in good agreement with the refer-
ence solution. Shear stresses obtained from the
classical solution seem to be out of phase with
the reference solution.

Figures 8–10 show two snapshots in time for
the axial, shear, and transverse normal stress
distribution in the thickness direction. Unlike
the classical beam model, the time response of

the nonlocal formulation matches the reference
solution reasonably well.

6. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

The response of the proposed multiscale lam-
inated model has been found to be in good
agreement with the reference solution. The
multiscale laminated theory developed here
provides a significant improvement over clas-
sical approaches for highly heterogeneous lam-
inates (caused by ply damage or delamination)
subjected to dynamic response.

This paper explores the possibility of tailor-
ing the laminated theory to system dynamics.
This concept has been found to be quite promis-
ing, but the implementation of the theory and

International Journal for Multiscale Computational Engineering
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FIGURE 6. Axial stress at the top of the beam

FIGURE 7. Shear stress at the mid-plane
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FIGURE 8. Axial stress at different snapshots in time
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FIGURE 9. Shear stress at different snapshots in time g(t)

Volume 2, Number 3, 2004



20 LUND & FISH

FIGURE 10. Normal stress at different snapshots in time
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verification studies so far have been limited to
simple model problems of beams and bars. Im-
plementation of the theory to plates and shells
as well the verification studies will be pursued
in our future investigation.
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