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UNSTRUCTURED MULTIGRID METHOD FOR SHELLS 
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SUMMARY 
An accelerated multigrid method, which exploits shell element formulation to speed up the iterative process, 
is developed for inherently poor conditioned thin domain problems on unstructured grids. Its building 
blocks are: (i) intergrid transfer operators based on the shell element shape functions, (ii) heavy smoothing 
procedures in the form of Modified Incomplete Cholesky factorization, and (iii) various two- and three- 
parameter acceleration schemes. Both the flat shell triangular element and the assumed strain degenerated 
solid shell element are considered. Numerical results show a remarkable robustness for a wide spectrum of 
span/thickness ratios encountered in practical applications. 
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1. INTRODUCTION 

This paper focuses on development of efficient iterative solvers for a linear system of equations 
arising from the finite element discretization of large scale shell structures. On one hand, iterative 
methods, such as preconditioned conjugate gradient (PCG) and multi-grid (MG), offer the 
promise of substantially reducing operations and storage requirements for large scale systems, 
but on the other hand, they are not well suited for inherently poor conditioned thin domain 
problems, such as thin shell problems. 

It is often assumed that for well conditioned three-dimensional problems the number of 
degrees-of-freedom for which the conjugate gradient method requires the same amount of CPU 
time as the direct method is in the neighborhood of 500, while a breakeven problem size for the 
multigrid method is approximately double.'.' There is no doubt that the breakeven problem size 
for shells will move upwards as the span/thickness ratio increases. This paper attempts to assess 
the balance between a problem size and a thickness/span ratio that will justify the use of either 
iterative or direct solvers. 

We focus on the accelerated multigrid method for shells, which offers the advantage of 
possessing an asymptotically optimal rate of convergence with linear complexity, i.e. computa- 
tional work for achieving a prescribed accuracy is proportional to the number of discrete 
unknowns. It is important to note that the overhead involved in automatic mesh generation of the 
hierarchy of auxiliary surface meshes needed for multigrid applications is relatively small in 
comparison to the total solution time for large thin domain problems, where a breakeven 
problem size might be very high. 

Since the pioneering work of Fedorenko3 in 1962, multigrid literature has grown at an 
astonishing rate. A cumulative review of the technical literature may be found in the Multigrid 
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Bibliography: which is periodically updated. Applications of unstructured multigrid methods 
have been typically concentrated in fluid mechanics, with very few attempts in solid mechan- 
i c s . ' ~ ~ - ~  To our knowledge this is one of the first attempts aimed at investigating the usefulness of 
the multigrid method for solving a system of discrete equations arising from the finite element 
discretization of shells. The noteworthy exceptions are the PCG method with incomplete 
blockwise factorization preconditioner, which can be interpreted as a nested two-grid method,' 
and the application of the multigrid method to hierarchical shell systems (p-method)," where the 
multigrid-like solvers are most natural due to the simplicity of intergrid transfer operators, which 
are simply injection operators. 

One of our key goals is to examine the influence of various formulations of the primary 
multigrid elements, such as coarse grid correction, smoothing or relaxation procedures, intergrid 
transfer operators, and acceleration schemes, on the overall performance of the iterative process. 
In Section 2, we examine several formulations of intergrid transfer (prolongation and restriction) 
operators for each of the two shell theories: (i) flat elements, formed by combining a plane 
membrane element with a plate bending element, and (ii) degenerated solid elements with certain 
kinematic and mechanical assumptions built in. In the first category we consider the 18 
degrees-of-freedom flat shell triangular element,'2* l3 which is based on the superposition of the 
DKT plate element14 and the membrane element with drilling degrees-of-freedom,' while the 
curved 9-node ANS element16 is used as a representative of the second category. 

2. THE MULTIGRID ALGORITHM 

As a prelude to subsequent derivations we briefly outline the basic two-grid algorithm for solving 
a linear systems of equations resulting from the finite element discretization 

K A B d B  = f A  (1) 

where capital subscripts are reserved for degrees-of-freedom in the source grid. Tensorial 
convention is employed with summation over the repeated indices. 

The two-grid method summarized below is an iterative process that resolves higher frequency 
response of the system by means of standard iterative methods possessing good smoothing 
properties, such as Gauss-Seidel or Incomplete Cholesky preconditioned methods, while the 
remaining smooth components of the solution are captured on the auxiliary coarse grid. 

1. Starting from the source (fine) grid approximation dk ,  which is obtained at the end of cycle i, 
perform typically one or two iterations to smooth out high frequency components of the 
error and evaluate the fine grid residual r A .  This process is referred to as presmoothing. 

2. Restrict the residual from the fine grid to the auxiliary coarse grid 

ra = QaArA (2) 

where lower case subscripts denote the degrees-of-freedom in the auxiliary coarse grid and 
Q a A  is the restriction operator 

3. Compute the coarse grid correction Adb, 

K a b A d b  = ra (3) 

where Ka6 is the coarse grid stiffness matrix obtained either directly on the auxiliary coarse 
grid or by restricting the fine grid stiffness matrix 

K a b  = Q a A K A B Q B b  (4) 
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The solution of equation (3) can be carried out by a direct solver, or, if this is still too 
expensive, by introducing another coarser auxiliary grid and using one or more cycles of the 
two-grid algorithm. 
Prolongate the displacement correction from the coarse grid to the fine grid and update 

d~ -= d ~ + a Q ~ b A d b  (5 )  

where QBb is termed as prolongation operator related to the restriction operator by 
[QBJ = [ Q b ~ l T ,  and o is a coarse grid line search parameter, which minimizes an energy 
functional along the prescribed direction AdB = QBbAdb. Note that w = 1 for two grid 
problems, where the coarse grid stiffness matrix is obtained by restriction (4); otherwise 
minimization along the prescribed direction QBbAdb yields 

Perform one or two iterations (to be referred to as post-smoothing) starting with the 
updated solution on the fine grid to obtain a new approximation d r  '. 
Accelerate the multigrid cycle using two-parameter scheme: 

d g l  * d$ + a(d$+' - d$) + a(d$ - dk-') (7) 

where a and are step sizes (in the corresponding search directions) selected on the basis of 
minimizing the energy functional (see details in Section 4). The alternative acceleration 
scheme in the form of conjugate gradients is briefly described in Section 4. 
Check convergence. If necessary, start a new cycle. 

The building blocks of the accelerated multigrid algorithm, including (i) the intergrid transfer 
operators, (ii) smoothing schemes, (iii) coarse grid correction and (iv) acceleration, will be 
investigated in the subsequent sections. 

3. THE INTERGRID TRANSFER OPERATORS FOR SHELLS 

3.1. Flat shell triangular element 

We consider an 18 degrees-of-freedom flat shell triangular element,'2* l 3  which is based on the 
superimposition of the DKT plate element'* and the membrane plane stress element with drilling 
degrees-of-freedom,' ' subsequently to be referred to as the Discrete Membrane Triangle (DMT). 

3.1.1. The DKT plate bending element. The DKT plate bending element is a Discrete Kir- 
chhoff Triangle which satisfies the Kirchhoff hypothesis at some discrete points within the 
element. For element formulation we refer to Reference 14. In this section we briefly outline only 
those element formulation details which are relevant to the construction of intergrid transfer 
operators. 

Let p1 and p2 be the rotations of the normal to the midsurface in the local element co-ordinate 
system and {da.}T = [wl Ox, O,,, w2 Ox* O,, w3 Ox, O,,,] be the nodal degrees-of-freedom of the 
element corresponding to out-of-plane displacements and midplane rotations, which are related 
by the set of shape functions H!! and H3 described in Appendix A. 

j?1 = H!!da, Pz = H{fda ,  (sum on a' = [1,9]) (8) 
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where the prime on the subscript denotes the quantities with respect to the element local 
co-ordinate system. 

Let x A  be the co-ordinates of the node in the source mesh, which lies within one of the auxiliary 
coarse mesh elements. Then the nodal rotations in the source mesh can be found directly from (8): 

e l ( x A )  = - H $ ( X A ) d a ,  e Z ( x A )  = H { ? ( x ~ ) d ,  (sum on a’ = [1,9]) (9) 

Unfortunately, for the DKT element the transverse displacement w in the interior of the element 
is not defined,I4 since the transverse shear energy is neglected in the element formulation and 
therefore auxiliary interpolation function for w needs to be constructed. We assume that w is 
a quadratic field, with shape functions corresponding to three vertex and three midside modes. 
The midside translations w4 w 5  and w6 are found using the cubic variation of w along each side 
(see Appendix I), which yields 

W(XA)  = H 2 ( X A ) d a ,  (Sum On a’ = [1,9]) (10) 

3.1.2. The D M T  membrane element. The Discrete Membrane Triangular (DMT) element is 
a 9 degrees-of-freedom plane stress element, which interpolates the in-plane translation field 
u and u in terms of in-plane translations and drilling rotations (with respect to the normal of the 
shell plane) at the element vertices 

u = H:.da, u = H:,da, (sum on a’ = [1,9]) (1 1) 

where {da.IT = [ul v1 Oz, u2 u2 eZ2 u3 u3 O,,] is the nodal displacement vector, H ;  and H:, are 
the corresponding shape functions described in Appendix I. 

As in the DKT element where the transverse displacement field is not defined, in the DMT 
a similar situation exists for the rotational (drilling) field with respect to the normal to the element 
plane. We will construct a linear interpolation for drilling degrees-of-freedom. 

3.3.3. The intergrid transfer operators for D K T  + D M T  shell element. Based on (8)-(ll), and 
after proper assembly we obtain 

d A *  = QA*.,da* (12) 

(13) 

d.4 = QAada (14) 

QA. = TuQLapT&, (no summation ouer the underlined indices) (15) 

in which dAs and da, are local nodal vectors in the source and auxiliary meshes, respectively 

dA*  = [uA, U k  WA, 6 1 ~ ‘  &At &A,] d,, = [Uat Ua, War 81,. 82.. e,.,] 
A similar relation can be constructed for nodal vectors given in the global co-ordinate system 

where 

T A A ,  and Tgaj are local-to-global orthogonal transformation matrices in the source and auxiliary 
meshes, respectively. 

Remark 1. An alternative to the prolongation operator defined on the basis of the element 
shape functions (8)-( 15) is to simply employ a linear interpolation for translational and rotational 
degrees-of-freedom using classical constant strain triangle shape functions, but as will be shown 
in Section 5, the efficiency will suffer. 



UNSTRUCTURED MULTIGRID METHOD FOR SHELLS 1185 

Remark 2. In order to construct the intergrid transfer operator given in (14) for general 
unstructured (unnested) grids it is important to employ an efficient method for collecting and 
interpolating information from one grid to another. The goal is to find in which coarse grid 
element each fine grid node lies as well as fine grid local co-ordinates in the coarse element. This 
operation can be easily accomplished by looping over all fine grid nodes and coarse grid elements, 
in which case the search procedure may overshadow the entire computational cost. A more 
economical procedure can be obtained by introducing the background grid.17 For uniformly 
shaped source grids, the background grid consists of equally-sided brick elements filling the 
rectangular frame encompassing the entire problem domain. The total number of bricks in the 
background grid is taken to be equal to the number of elements in the auxiliary coarse grid. The 
search algorithm consists of two steps: (i) For each node in the source grid, determine in which 
brick element in the background grid it lies. Store the brick number and count the number of 
source grid nodes in each brick. (ii) For each element in the auxiliary coarse grid, determine 
which bricks in the background grid it covers and check if the corresponding source grid nodes 
lie within this element; if they do, calculate the local co-ordinates; if not, proceed to the next 
element . 

3.2. The ANS shell element 

The ANS shell is based on a Mindlin/Reissner-like (Co continuous) degenerated-solid shell 
formulation with assumed natural strain formulation aimed at circumventing locking and 
reducing distortion sensitivity,' 

The displacement field of the ANS element is of the classical degenerated solid type: 

where Ua are nodal translations at the reference surface; e:l, e:2, e:3 are orthonormal fiber basis 
vector at node a, defined so that ei3 is normal to the plane and e:', ei2 are as close as possible to 
the t, q co-ordinate directions; Oal, 002 are rotations of the fiber about the basis vectors ei1, eLz, 
respectively; ha is the thickness of the shell at node a; N,(( ,  q )  are the in-plane nen Lagrangian 
shape functions. 

The prolongation operator for the translational degrees-of-freedom can be directly obtained 
from the above Lagrangian shape functions 

iiA = N,(xA)ii. (sum on a = [l,nen]) (17) 

To construct the prolongation operator for the rotational degrees-of-freedom, we first evaluate 
the relative displacement in the source mesh 

which is then transformed into a local element co-ordinate system 
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where f i  = 1,2 is a free index, and summation over repeated indices over k = 1,2,3 is exercised. 
Consequently the rotational field is prolongated as follows: 

(sum on a = [ 1, nJ) (20) 

where shape functions are summarized in Appendix 11. The resulting node-to-node prolongation 
operator is given by 

Remark 3. An alternative to the prolongation operator for rotational degrees-of-freedom 
defined on the basis of the element shape functions (17)-(20) is to employ a Lagrangian 
interpolation identical to the one employed for translation degrees-of-freedom (1 7). 

Remark 4. For higher-order ANS meshes, it is convenient to construct an auxiliary mesh from 
lower-order ANS elements. For example, the shape functions of 4-node ANS element 
N,4-Node(XA) can be utilized for prolongating the solution from 9-node ANS elements. Similarly, 
9-node elements can serve as an auxiliary mechanism for 16-node elements, and etc. 

For higher-order elements an alternative, which exploits the fact that membrane dominated 
modes are of higher frequency than those of bending, will be tested. By this approach only 
membrane dominated modes of higher-order elements are prolongated using lower-order ele- 
ment shape functions, whereas bending dominated models, for which the smoothing process is 
usually inefficient, are prolongated using injection operator, and then resolved with a direct 
solver. Mode separation is carried out in the local fiber co-ordinate system, which requires 
transformation of all global quantities, including stiffness, displacement and force vectors from 
the global to the local fiber co-ordinate system. 

Remark 5. It is important to note that in the case of assumed strain formulation, restriction of 
the source grid stiffness matrix, Q o A K A B Q B b ,  does not yield the stiffness matrix of the coarse grid 
independently recomputed even though the meshes are nested. This is because the assumed strain 
field is enhanced by projecting certain undesirable modes from the symmetric gradient of the 
displacement field. Whether it is more computationally efficient to construct the auxiliary coarse 
mesh stiffness matrix by restriction [equation (4)] or by recomputation and coarse grid acceler- 
ation (6) will be investigated in Section 5. 

4. ACCELERATION SCHEMES 

For ill-conditioned problems various acceleration schemes are essential to speed up the rate of 
convergence.20 This is especially true for thin shell problems, where the auxiliary coarse meshes 
might be too stiff to accurately capture the lower frequency response of the source problem. 
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However, when both the coarse grid correction and relaxation solutions are appropriately scaled 
the speedup is often astonishing, by a factor of ten and more, as evident from our numerical 
examples. 

We start by describing the so-called two-parameter acceleration scheme, which uses the 
incremental multigrid cycle as a search direction, and subsequently scales it to minimize the 
potential energy functional. 

Let rg be the residual at the end of cycle i. The incremental multigrid solution for the next cycle, 
denoted as zg = MG(rh, KAB), is used as the predictor in the two-parameter acceleration scheme. 
The solution in the correction phase is then updated as follows: 

where parameters (ai, p i )  are obtained by minimization of the potential energy functional 

i ( d L  + aiz f  + fiiv;)KAB(dh + aizk + aivk) - (df + a i z i  + p i v f ) f A  min (24) 
a', @ 

The resulting algorithm of the two parameter acceleration scheme is summarized below: 

Step 1: Initiation 

Step 2: Do i = 0, 1,2 . . . until convergence 

Note that the two-parameter acceleration scheme requires no additional matrix-vector multipli- 
cation and for thin shells its benefit clearly overshadows the cost involved in additional vector 
product evaluations. 
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An alternative to the acceleration scheme described in equations (25)-(36) is the use of 
a multigrid cycle as a preconditioner within the conjugate gradient method 

v?' = MG(r$, KAB) + P'v$ (37) 

where the parameters d , P i  are determined from the line search and K-orthogonality 
(KABv$,  v$+') = 0, respectively. 

5. NUMERICAL EXAMPLES AND DISCUSSION 

Our numerical experimentation agenda includes investigation of various intergrid transfer 
operators described in Section 3 as well as other multigrid elements, such as smoothing, coarse 
grid correction and acceleration. 

Two problems are considered, the line pinched cylinder with end diaphragms, and the assembly 
of three cylinders with end diaphragms subjected to a point load. Geometry, loading, boundary 
conditions and material properties for the two problems are given in Figures l(a) and l(b). 
Uniform and graded meshes of either ANS or Flat Shell Triangular (FST) elements as shown in 
Tables I and 11, and Figures 2 and 3 have been considered. For uniform meshes, mesh 1 is used as 
an auxiliary grid for mesh 3, while mesh 2 is auxiliary to mesh 4. Note that there is no direct 
connection between meshes 3 and 4. The nodes of all auxiliary and source meshes are placed on 
the exact geometry, which ensures an unnested situation for curved shell structures. All numerical 
examples were conducted for five different radius/thickness ratios: 50,100,200,500 and 1OOO. 
Convergence was measured in terms of the normalized L2-norm of the residual with the tolerance 
of 10e - 6. Computations were carried out on a SPARC 10 workstation. 

(a). Pinched cylinder with end diaphragm (b). AMlMy of thm cylinders with end diaphrngmn 

Figure 1. Geometry, boundary conditions, material properties 
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F 

Mesh lgrd 

r flat shell tri 

Table I. Cylinder mesh information 

Num. nodes Num. nodes 
Mesh type R dir Y dir 

Mesh 1 21 21 
Mesh 2 31 31 
Mesh 3 41 41 
Mesh 4 61 61 

Table 11. Three cylinder assembly mesh in 
formation 

Num. nodes Num. nodes 
Mesh type R dir Y dir 

Mesh 1 25 25 
Mesh 2 31 31 
Mesh 3 49 49 
Mesh 4 61 61 

Mesh Zgrd Mesh 3grd 

Figure 2. Graded mesh information (flat shell triangular) 

ngular element meshes four different formulations of intergrid 
operators have been compared. 

ransfer 

Bsh-Msh Bending prolongated using DKT element Gape functions [equations (8) and (lo)]; 
- Membrane displacements prolongated using DMT element $ape functions [equa- 
tion (1 l)]. 

Bln-Mln Bending prolongated using h e a r  field; Membrane prolongated using h e a r  field. 
Bsh-Mln - Bending prolongated using DKT element &ape functions [equations (8) and (lo)]; 

Membrane prolongated using h e a r  field. 
Bln-Msh &ding prolongated using linear field; Membrane displacements prolongated using 

DMT element g a p e  functions [equation (1 l)]. 
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Table 111. Comparison of intergrid transfer operators for flat shell triangular element (Pinched cylinder 
with end diaphragms problem. Incomplete Cholesky smoothing, two-parameter acceleration) 

~ ~~ ~~ ~~~ 

Mesh Intergrid Thicklspan Thicklspan Thickjspan Thickjspan Thicklspan 
coarse/ fine transfer 1/50 1 / 100 11200 11500 1/1OOo 

Bln-Mln 119-8119 124-7121 
Bsh-MSh 97.1110 99.3/11 
Bsh-Mln 93-618 101.819 
Bln-Msh 124.8120 128.0121 
Bln-Mln 321.4120 317,4120 

Bsh-Mln 257.318 251.217 
Bln-Msh 324.6120 325.8120 

Mesh 113 

Bsh-Msh 278-2111 281-2111 Mesh 214 

139.3128 
119.81 19 
119.01 17 
144.6127 
331.6122 
282.41 12 
265.7110 
349.9 122 

203.41 53 
137,1126 
139-5126 
210.2153 
386,3131 
326.61 18 
320.8/18 
394.9131 

302.5199 
181.4143 
183.4144 
3267199 
521.7157 
391.0130 
384.0130 
564.21 57 

Table IV. Comparison of intergrid transfer operators for flat shell triangular element (Pinched three 
cylinder assembly with end diaphragms problem. Incomplete Cholesky smoothing, two-parameter 

acceleration) 

Mesh Intergrid 
coarselfine transfer 

Thicklspan 
1/50 

Thick /span 
1/100 

Bln-Mln 
Bsh-Msh 
Bsh-Mln Mesh 113 
Bln-Msh 
Bln-Mln 
Bsh-Msh 
Bsh-Mln Mesh 214 
Bln-Msh 

21 3-81 19 

165.417 
229-1119 
361.1120 
3205111 
298.017 
393.01 19 

181.0/10 
205.5120 
188.7111 
168.819 
226.21 20 
369.4120 
3 18.01 11 
304,518 
3 8 5.5 / 20 

Thickjspan 
11200 

214.6122 
184.91 13 
1702110 
22 1.3 124 
371.7122 
338.91 12 
344,2110 
393.0121 

Thick /span 
11500 

~ 

287,5143 
231.3123 
21 7-1 123 
309.0143 
457.2137 
395-2121 
383.1/21 
480.7134 

Thicklspan 
1/1000 

559.01 123 
402.8165 
394.9168 
648.21124 
752.0188 
5669147 
564,5147 
860.5190 

Tables I11 and IV compare computational efficiency (measured in terms of CPU time and 
number of iterations) of various intergrid transfer operators for the two test problems. From the 
program architecture standpoint the use of linear basis for prolongating all the fields (Bln-Mln) is 
very attractive, since no information on element formulation is needed in the solution process. 
Nevertheless, it is evident from Tables I11 and IV, that the computational efficiency of the 
two-grid method, which exploits the element information and in particular that of the DKT 
element in the iterative solution process, is by far superior. It can be seen that the optimal 
computational performance has been obtained with the Bsh-Mln version of the prolongation 
operator. 

In the case of 9-node ANS elements we study the following five different formulations of the 
intergrid transfer operators defined as: 

BiQ9 9-node g-Quadratic prolongation for midplane displacements and rotations. 
BiQ9Mr - n o d e  - - _  Bi-Quadratic prolongation for midplane displacements [equation (17)]. Mid- 

plane rotations are extracted from displacements [equations (18) and (20)]. 
BiL4 +node -- Bi-Linear prolongation for midplane displacements and rotations, i.e. 4-node 

elements are used as an auxiliary mesh for 9-node elements. 
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\ \ \ 

Mesh lgrd Mesh 2grd nksb 3grd 

Figure 3. Graded mesh information (quadrilateral shell element) 

Table V. Comparison of intergrid transfer operators for ANS shell element (Pinched cylinder with end 
diaphragms problem. Incomplete Cholesky smoothing, two-parameter acceleration) 

Mesh Intergrid 
coarselfine transfer 

BiQ9 
BiQ9Mr 

Mesh 113 BiL4 
MeBiL4 
BiQ9Re 

Thick 1 span 
1/50 

297.9114 
306.81 14 
366.01 19 
438.819 
270.61 10 

Thicklspan 
1/100 

341.1126 
353-9126 
430.0136 
467.1 1 13 
301.21 16 

Thick 1 span 
11200 

423.0151 
450-0/51 
569.6172 
645.6121 
357.3130 

Thicklspan Thicklspan 
1/500 1/1OOo 

656.51128 1028.61245 
748.01 129 1207.01247 
975.61176 1581.01328 
711.9140 747.4166 
536.3179 975.91188 

BiQ9 728.8110 7750/18 905.7134 1283.0183 189561167 
BiQ9Mr 753.6111 845.1118 965,7134 1413.6184 2153,81168 

Mesh 214 BiL4 929.1113 1056.0124 1260.8148 1993.31121 3160.61242 
MeBiIA 1401.118 1450-6/10 14534115 1651.5128 1874.7145 
BiQ9Re 664.918 672.7112 773.0120 1024*0/50 1581.41111 

MeBiL4 

BiQ9Re 

Bending prolongated using an identity operator. +node %-Linear prolongation is 
used for Membrane only. See Remark 4. 
!-node Bj-Quadratic prolongation and restriction operators for all degrees-of-free- 
dom. Coarse mesh stiffness matrix Recomputed and coarse grid solution accelerated 
using equation (6). See Remark 5. 

Tables V and VI compare the five intergrid transfer operators for the two test problems. It is 
evident that the most efficient formulation is the one that recomputes the coarse grid stiffness 
matrix (BiQsRe), i.e. the stiffness matrix obtained by any form of restriction fails to effectively 
capture the lower frequency response of the source mesh. This is not surprising, because the 
intergrid transfer operators are formulated on the basis of shape functions only, and do not reflect 
the enhanced strain field of the assumed strain element. The intergrid transfer operator, which is 
based on bi-linear prolongation for membrane and identity for bending, MeBiL4, yields fewer 
cycles, but does not offer savings in terms of the overall performance because the auxiliary mesh is 
larger and thus CPU time per cycle is longer. 

Comparing results in Tables I11 and IV with those in Tables V and VI, it can be seen that 
a general trend indicates a significantly faster rate of convergence of the flat shell triangular 
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Table VI. Comparison of intergrid transfer operators for ANS shell element (Pinched three cylinder 
assembly with end diaphragms problem. Incomplete Cholesky smoothing, two-parameter acceleration) 

Mesh Intergrid Thicklspan Thicklspan Thicklspan Thicklspan Thickispan 
coarselfine transfer 1/50 1/100 11200 1/500 l/lOOo 

BiQ9 
BiQ9Mr 

Mesh 1/3 BiL4 
MeBiL4 
BiQ9Re 

BiQ9 
BiQ9Mr 

Mesh 214 BiL4 
MeBiL4 
BiQ9Re 

449.8112 
467.3112 
772,3148 
966.0138 
413.0111 
729.61 11 
777.3111 

1239.9147 
1802.0139 
681.2110 

4906122 
514.3122 
931.1/80 

1126.7159 
456.5118 
762.61 18 
819.8119 

1482.77170 
2033.9154 
733.41 14 

601.5142 
618.1143 

1319*0/ 139 
1350.7186 
521.7130 
972.8135 
982.3136 

2141.31140 
2468.5192 
834.6125 

8 67.9 / 103 
98 1-21 103 

2230.81298 
1856.91153 
835.6177 

1398.1186 
1421.5187 
3739.61292 
3543.31 156 
1163.1164 

1340.9/200 
1564.81203 

> 300 
> 400 

13651/164 
1937.11164 
2194.71165 

> 300 
3765.81186 
1767.31 131 

Table VII. Comparison of solvers for graded meshes 
(Pinched cylinder with end diaphragms problem with 

thicklspan 1/100. Two-parameter acceleration) 

Solver type FST ANS 

Two grid (2grdJ3grd) 326.918 1701,7153 
Direct 484-4 2278.7 
Three grid (lgrd/2grd/3grd) 326.8120 2846.41 163 
Direct 484.4 2278.7 

Table VIII. Comparison of acceleration schemes for flat shell triangular element (Pinched cylinder 
with end diaphragms problem. Incomplete Cholesky smoothing) 

Mesh Accel. Thickfspan Thickfspan Thicklspan Thicklspan Thickfspan 
coarselfine type 1/50 1/100 11200 11500 1/1OOo 

Case 1 119-4111 147.8118 232-7137 588.0/127 1481.71354 
Mesh 113 Case 2 93.618 101.819 119.0117 139.5126 183.4144 

Case 3 92-518 94.419 113.8117 138.3126 1853144 
Case 1 336-6114 313-4112 392.2120 779-9161 1760-5/166 

Mesh 214 Case 2 257.318 251.217 265.7110 320.8118 384*0/30 
Case 3 250.118 247.017 265.0/10 311-2118 384.0130 

Note: Case 1: without acceleration; Case 2 two-parameter acceleration, Case 3: CG acceleration 

element. Similar observations have been found from the experiments conducted on the two and 
three level graded meshes as shown in Table VII. 

Tables VIII and IX investigate the influences of acceleration on the rate of convergence in the 
case of FST and ANS meshes, respectively. It can be seen that acceleration significantly affects the 
rate of convergence especially as the span thickness ratio increases. The two acceleration schemes, 
based on the conjugate gradient method and minimization of potential energy functional, 
described in Section 4 have similar performance in terms of number of iterations and CPU time. 
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Table IX. Comparison of acceleration schemes for ANS element (Pinched cylinder with end diaphragms 
problem. Incomplete Cholesky smoothing) 

Mesh Accel. Thicklspan Thicklspan Thicklspan Thickfspan Thicklspan 
coarse/ fine tYPe 1/50 1/100 11200 11500 1/1o00 

Case 1 538.1145 2074.11159 />  500 / >  lo00 /> lo00 

Case 1 1028.5123 1656.9173 42341273 / >  lo00 />  lo00 

Mesh 113 Case 2 297.9114 341,1126 423.015 1 656,51128 1028.61245 
Case 3 300-9114 336,9126 417.7151 674.51128 1054.51245 

Mesh 214 Case 2 728.8110 775-0118 905.7134 1283.0183 189561167 
Case 3 7160/10 790-9118 937-6134 1290-8/83 1929-51 167 

Note: Case 1: without acceleration; Case 2: two-parameter acceleration, Case 3: CG acceleration 

Table X. Comparison of smoothing procedures for flat shell triangular element (Pinched cylinder with 
end diaphragms problem. Two-parameter acceleration) 

Mesh Smoothing Thicklspan Thickfspan Thicklspan Thicklspan Thicklspan 
coarselfine procedure 1/50 1/100 11200 1 1500 1/1o00 

MIC 93.618 101.819 119.0117 139-5126 183.4144 
Mesh 113 1 GS 109-9114 114*5/16 157.3132 340-81101 69711235 

2 GS 106.419 113*6/11 144.1118 260-8146 544.61114 
MIC 257.318 251.217 265.7110 320.8118 384,0130 

Mesh 214 1 GS 293.3114 302.4115 344.9121 570.5157 1215.0/160 
2 GS 295.519 294.619 328.5113 459.6128 829,3163 

Table XI. Comparison of smoothing procedures for ANS element (Pinched cylinder with end diaphragms 
problem. Two-parameter acceleration) 

Mesh Smoothing Thicklspan Thicklspan Thicklspan Thickfspan Thicklspan 
coarse/ fine procedure 1/50 1/100 11200 1 1500 1/1o00 

MIC 297.9114 341.1126 423.0151 656,51128 1028.61245 
Mesh 113 1 GS 371.8132 538.7182 1092.81244 / > 300 / >  300 

2 GS 369.1122 521.4147 1060.7/140 1 > 300 />300 

Mesh 214 1 GS 812.7122 995-4143 1749.71136 />  300 /> 300 
2 GS 809.4114 1032.5129 1732.4180 /> 300 />300 

MIC 728.8110 775-0/18 905.7134 1283.0183 1895-61167 

In Tables X and XI we investigate two popular smoothing procedures based on Gauss-Seidel 
and Modified Incomplete Cholesky (MIC) Factorization"' with 0.05 diagonal scaling for stabiliz- 
ation for both FST and ANS meshes. It is evident that for thick shells, the two smoothers have 
similar computational performance. For poor conditioned problems (span/thickness ratio over 
500) a heavier smoothing procedure, such as MIC, is the most efficient, by far outperforming one 
or two Gauss-Seidel smoothing iterations. 
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Table XII. Comparison of solution methods for flat shell triangular element (Pinched cylinder with 
end diaphragms problem) 

Mesh Slover Thickispan Thickispan Thicklspan Thicklspan Thicklspan 
coarseffine type 1/50 1 / 100 11200 1/500 1/1OOo 

Two-grid 257-318 251-217 265.7110 320.8118 384-0130 
Mesh 214 PCG 1088.71427 977.81372 1231-1/485 > 500 > 500 

Direct 864.8 

Table XIII. Comparison of solution methods for ANS element (Pinched cylinder with end dia- 
phragms problem) 

Mesh Slover Thicklspan Thickispan Thicklspan Thickispan Thickispan 
coarseifine type 1/50 1/100 11200 1/500 11 1000 

Two-grid 664-918 672-7112 773-0120 10240/50 1581*4/111 
Mesh 214 PCG 1580.7/314 2170.81474 > 500 > 500 > 500 

Direct 1490.3 

6. SUMMARY AND CONCLUSIONS 

Recent years have seen a re-emergence of iterative solvers in finite element structural analysis due 
to increasing demand to analyse very large finite element systems. However, the major obstacle 
that needs to be overcome before iterative solvers can be routinely used in commercial packages is 
circumventing their pathological sensitivity to problem conditioning. This paper presents an 
attempt in this direction in the form of an accelerated multigrid method dedicated for inherently 
poor conditioned thin domain problems, which exploits the knowledge of the finite element 
formulation in speeding up the iterative process. 

Tables XI1 and XI11 compare the performance of the most efficient version of the accelerated 
multigrid method developed against the conjugate gradient method with Incomplete Cholesky 
preconditioner and the direct solver with skyline storage for the two problems and the two types 
of elements considered. In the case of the multigrid solver, the CPU time includes the overhead 
involved in the auxiliary mesh generation and the data transfer between the grids. Results show 
remarkable robustness of the accelerated multigrid method for a wide spectrum of span/thickness 
ratios encountered in practical applications as opposed to the MIC preconditioned conjugate 
gradient method. Nevertheless, superiority claims with respect to direct methods are premature at 
this point since (i) no comparisons with some of the state-of-the-art sparse direct s01vers'~ have 
been carried out, and (ii) no tests were conducted on large scale industry problems. Moreover, we 
would like to caution that for linear static analysis, any form of the multigrid method requires for 
each load case a new iterative process (except for the stiffness formation, restriction and 
factorization on the coarse grid), whereas in a direct solution, factorization is performed only 
once, and each load case requires only forward reduction and back substitution. 



UNSTRUCTURED MULTIGRID METHOD FOR SHELLS 1195 

APPENDIX 

I. Flat triangular shell element shape functions 

Ht? and H$ are given below:14 
The DKT plate element shape functions corresponding to the rotational degrees-of-freedom 

H f ’  = 1.5 (a6N6 - a S N s )  HF = bsNs + b6N6 

H$  = N1 - CSNS - CgN.5 HF = 1-5 (d6N6 - dsNs) (39) 
- 

2 - - N1 + e S N S  + e6N6 H$ = - (b5N5 + b6N6) 

where Ni are standard 6-node triangular element shape functions, and 

I J  2yZ)/l$ a - - x../12. bk = 1 xijyij / l i j  2 ck = ( a x .  - 1 

d k  = - yij/l$ ek = - iXitf)/l$ (40) 

l?.=x?.+y?. x . . = x . - x  

k - I J  I J  

IJ  IJ  IJ  IJ  I j Yij  = Yi - Yj 

where k = 4,5,6 for the sides ij = 23,31, 12 respectively. The functions H2, H$, H t ,  H t ,  H F  
and H t  are obtained from the above expressions by replacing N1 by N2 and indices 6 and 5 by 
4 and 6, respectively. The functions H P ,  H?, H$, HP,  H k  and H F  are obtained by replacing 
N1 by N3 and indices 6 and 5 by 5 and 4, respectively. 

Following construction given in equation (10) the out-of-plane displacement shape functions 
H: are given by 

H? = 1 - 5 - ?  

H F  = 4 ( l  - t - q)  ( X l Z t  - x3lq) 

H r  = 

H ? = q  H ~ = 4 ? C - Y 3 1 ( 1 - 5 - ? ) + Y 2 3 t l  

H ; = f q [ X 3 1 ( l  - t - ? ) - x 2 3 < 1  

HT - 5 - ?) ( -y125 + y3lq) 

H l  = 5: 

- h 3 ?  + Yl2(1 - r - q)]  HZ = 34[xZ3q - X 1 2 ( l  - r - q)] (41) 

where t and q are the area coordinates. 
The DMT element shape functions H:. and H:, are given as in” 

HU, = 1 - t - q H: = 0 H;  = $ ( I  - 5 - ?) (Cylz - qy31) 

HU4 = 5: H ;  = 0 HYS = - ( I  - 4 - ?)yiz + YYZJ (42) 

H; = q Hi = 0 H$ = + q [  - ly23 + (1  - 5: - q)Y31] 

and 

H”,O H”, l -<-q  H V 3 = 3 ( 1 - r - f l ) ( - r ~ 1 2 + t f X j i )  



1196 J. FISH ET AL. 

II. Shape function for ANS shell element 

Interpolants for the rotational field directly follow from equations (18)-(20). 

ha 

h A  
N;l1(xA) = - Na(ei2(1)eA2,x + e!2(2)eA2.y + eL(3)e~z.z) 
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