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Abstract: A systematic approach for analyzing multiple physical processes interacting at multiple
spatial and temporal scales is developed. The proposed computational framework is applied to the cou-
pled thermo-viscoelastic composites with microscopically periodic mechanical and thermal properties.
A rapidly varying spatial and temporal scales are introduced to capture the effects of spatial and tem-
poral fluctuations induced by spatial heterogeneities at diverse time scales. The initial-boundary value
problem on the macroscale is derived by using the double scale asymptotic analysis in space and time.
It is shown that an extra history-dependent long-term memory term introduced by the homogenization
process in space and time can be obtained by solving a first order initial value problem. This is in con-
trast to the long-term memory term obtained by the classical spatial homogenization, which requires
solutions of the initial-boundary value problem in the unit cell domain. The validity limits of the pro-
posed spatial-temporal homogenized solution are established. Numerical example shows a good agree-
ment between the proposed model and the reference solution obtained by using a finite element mesh
with element size comparable to that of material heterogeneity. 

1.0  Introduction

The primary objective of the manuscript is to develop a systematic approach for analyzing multiple
physical processes interacting at multiple spatial and temporal scales. The interacting physical pro-
cesses may include mechanical, thermal, diffusion, chemical and electromagnetic fields. Most often
these phenomena are treated as being uncoupled; hence, few separate analyses of the same system are
typically performed for the complete prediction of the response. It is, however, understood that such
treatments should be regarded as first-order approximations to the real complex interactions.

The coupling of mechanical, thermal, diffusion, chemical and electromagnetic fields (stress/strain,
temperature, concentration, current) occurs through diverse phenomena, some of which are depicted in
the interaction matrix shown in Table 1. The interaction matrix is “non-symmetric,” with cell (i, j) rep-
resenting the phenomenon induced by the process corresponding to field i and which influences field j.
For instance, cell (1, 2) represents heating due to plastic deformation, while cell (2, 1) corresponds to
thermal expansion and thermal stresses. A fully coupled analysis would consider all processes shown
in the matrix, while fully uncoupled approach would only consider the diagonal entries. A one-way (or
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partially) coupled approach would consider a lower (or upper) triangular entries in the interaction
matrix.

TABLE 1.  Physical processes interaction matrix

It is important to note that coupling of various physical processes in the mathematical model can be
carried out either by considering additional terms in the field equations (equation coupling) or by
allowing the constitutive law to depend on the interacting field (constitutive law coupling). An exam-
ple of the first category is the effect of the temperature gradient on the stress field, which can be cap-
tured by adding a thermal stress term to equilibrium equations. A less familiar example within the
same class of problems is the effect of diffusion (clustering) and chemical reactions (reaction products)
on the stress field, which can be accounted for by the eigenstrain formulation [4]. An example from the
second category is the influence of temperature upon diffusion which can be captured by simply con-
sidering the diffusion coefficients to be temperature dependent. Symbols E and C in Table 1 stand for
the technique to be used for coupling the respective phenomenon, with E standing for “equation cou-
pling” and C designating “constitutive law coupling”.

As an illustrative example, we consider an initial-boundary value problem for the thermo-viscoelastic
composite. It consists of two spatial scales (micro-constituents and the macro-domain), two temporal
scales (the time scale associated with an applied loading and the intrinsic time scale of the rate-depen-
dent material) and two fully coupled physical processes (thermal and mechanical). Both the constitu-
tive law coupling due to thermally sensitive material properties and the equation coupling induced by
thermal stresses are taken into account for mechanical fields. For thermal fields, on the other hand, we
assume that only the equation coupling occurs due to the mechanical dissipation and dilation effects. 
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To model the local oscillations of mechanical and thermal fields induced by spatial heterogeneities at
diverse time scales, an asymptotic homogenization theory for multiple physical processes with multi-
ple spatial and temporal scales is developed. When the loading is highly oscillatory in comparison with
the material intrinsical time scale it is natural to incorporate a rapidly varying time scale in the asymp-
totic analysis. This fast time variable is defined to characterize the fast varying features of mechanical
and thermal response fields in time domain. 

Homogenization with multiple temporal scales could be traced back to Bensousan et al. [1] where the
convergence analyses of the hyperbolic equations with oscillatory coefficients were established.
Francfort [4] generalized the conventional spatial homogenization method to the case of thermo-elastic
composites. For the hyperbolic conservation law with rapid spatial fluctuations, Kevorkin and Bosley
[7] showed that the continuous initial data which is independent on the fast temporal scale may intro-
duce a dependence on both fast spatial and temporal scales in the homogenized solutions. A handful of
recently publications on this topic has been briefly reviewed in [3], where the role of multiple temporal
scales in wave propagation in heterogeneous solids was investigated.

For the homogenization of viscoelastic heterogeneous media, it is well known that in addition to the
original memories due to the viscosity of micro-constituents, an extra long-term fading memory is
induced by the homogenization process. This phenomenon has been illustrated in [5], [8], [9] and [11]
for either Kelvin-Voigt or Maxwell viscoelastic model with only instantaneous memories in the micro-
constituents. This extra long-term memory in the homogenized constitutive equation arises due to the
interactions between fast spatial variation and time dependence of the coefficients of partial differen-
tial equations. We remark that all these studies were based on the spatial homogenization only and the
history-dependent integral kernel associated with the long-term memory is determined by a local ini-
tial-boundary value problem in the unite cell domain [6][13]. In this manuscript we show that the extra
long-term memory term resulting from the homogenization process in space and time can be obtained
by solving a first order initial value problem. This is in contrast to the long-term memory term obtained
by the classical spatial homogenization, which requires solution of the initial-boundary value problem
in the unit cell domain. This gives rise to an elegant homogenized solution which can be easily imple-
mented into the numerical setting.

In Section 2 we start our presentation with a general setting of the initial-boundary value problem for
the fully coupled Kelvin-Voigt thermo-viscoelastic composite. In addition to the usual space-time
coordinates rapidly varying spatial and temporal scales are introduced to capture the effects of spatial
and temporal fluctuations. The macroscopic initial-boundary value problem is obtained by the double
scale asymptotic analysis in space and time. It is shown that an extra long-term memory obtained from
solving a first order initial value problem in macroscopic field is introduced into the homogenized
solution. Section 3 discusses various relations between the temporal and spatial scales as well as the
validity of the proposed model. Numerical experiment comparing the proposed model with the refer-
ence solution obtained by using a finite element mesh with element size comparable to that of material
heterogeneity is given in Section 4.
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2.0  Space-time multiple scale analysis for the coupled thermo-viscoelastic 
composite

In the present work, the Kelvin-Voigt viscoelastic model is considered for micro-constituents. In con-
trast to the multiscale analysis conducted by Boutin and Wong [2], where a single frequency quasi-har-
monic displacement field has been assumed so that the constitutive equation can be transformed to the
elastic-like form, we consider a general setting of the coupled initial-boundary value problem. The dis-
tributed heat source arises due to the mechanical dissipation and the thermal dilation in micro-constitu-
ents. The thermally sensitive mechanical properties (stiffness and viscosity) as well as the thermal
dilation term in the constitutive equation lead to the full coupling between mechanical response and
thermal diffusion.

2.1  Definition of multiple spatial and temporal scales

The microstructure of a composite material is assumed to be locally periodic ( -periodic) with a scale
parameter  defined by the Representative Volume Element (RVE or unit cell). The macroscopic
domain is represented by  while  denotes the unit cell domain. We assume that RVE exists and its
characteristic size  is small enough in comparison with the intrinsic reference length  on the
macro-scale so that

(1)

Thus, the coordinate vector for macro-  and micro-  scales can be related by 

(2)

In addition to the distinct spatial scales, we can identify at least two temporal scales in a typical
thermo-viscoelastic problem: the time scale associated with the applied loading and the intrinsic time
scale of the rate-dependent material. In the present work, we introduce a fast varying temporal coordi-
nate  to represent the fast oscillations of mechanical and thermal fields in time domain induced by the
highly oscillatory loading. For linear systems and weakly nonlinear systems, the characteristic length
of  is of the same order as the period  of a loading profile [2]. We assume that the intrinsic time
scale , which is determined by material properties, describes a relatively long-term behavior, and
thus the following relations hold:

(3)

where  and  denote the fast varying and natural time coordinates, respectively;  is the characteris-
tic length of the natural time scale;  is the small scale parameter defined in the time domain. We start
by considering the special case of

(4)
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It is important to note that the definitions of the multiple spatial and temporal length scales are physi-
cally distinct for the mechanical and thermal fields. Further discussion on the relation between the tem-
poral and spatial scales as well as on the validity of the homogenized solution is left to Section 3.

With the definition of the fast varying variables  and  as well as the local -periodicity assumption,
all the mechanical and thermal response quantities denoted by  can be defined as

 (5)

where  is the basic period vector of the microstructure and  is a 3 by 3 diagonal matrix with arbi-
trary integer components. The corresponding -periodic function can be defined by using the con-
ventional nomenclature:

(6)

The differentiations with respect to space and time variables can be expressed using the chain rule:

     and    (7)

where the comma followed by a subscript variable denotes a partial derivative and superscribed dot
denotes the time derivative. Summation convention for repeated subscripts is adopted except for the
subscripts  and .

2.2  Initial-boundary value problem statement for the coupled thermo-viscoelastic 
composites

Attention is restricted to small deformations and small temperature increases. The microscopic constit-
uents are assumed to be homogeneous and their thermo-viscoelastic behavior can be described by the
following initial-boundary value problem in the macroscopic domain  [6][7]:

(1) Equation of motion

(8)

where  is the density;  and  the displacement and stress components, respectively;  the
body force component assumed to be independent of the fast varying coordinates.

(2) Constitutive equation

(9)
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where  and  denote the strain and the strain rate components, respectively;  the temperature
change from the initial temperature;  and  the elastic stiffness and the viscosity tensor com-
ponents, respectively;  where  denotes the coefficient of thermal expansion and

 stands for the components of the thermal stress. We assume that the fourth-rank tensor compo-
nents  and  as well as the second-rank tensor components  and  satisfy conditions of
symmetry and positivity. We further assume that  and  are thermally sensitive which lead to
the constitutive law coupling between the mechanical and thermal fields, while  is assumed to be
insensitive to the temperature change, i.e. 

(3) Kinematic equation

(10)

(4) Energy equation

(11)

where  and  is the specific heat per unit mass;  denotes heat flux;  the initial tem-
perature and  the heat supply. Both  and  are assumed to be independent of the fast varying
coordinates. The total temperature  is given by . The mechanical dissipation term

 and the dilation induced heat supply  fall into the category of equation coupling for
the thermal fields.

(5) Linear thermal diffusion

(12)

where  denotes the thermal conductivity tensor components assumed to be symmetric and positive
definite. Since  is insensitive to temperature changes, it is also assumed to be time-independent, i.e.,

.

(6) Initial and boundary conditions

The non-oscillatory initial conditions at  and  are imposed on both time scales, i.e., the
initial state is assumed to be spatially and temporally smooth [5]. The thermo-mechanical boundary
conditions are also assumed to be non-oscillatory and the interfaces between different microscopic
constituents are perfectly bonded.
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2.3  Double scale asymptotic analysis in space and time

To solve for the initial-boundary value problem described in Section 2.2, we start by introducing the
following double scale asymptotic expansions:

;        (13)

where  and  are -periodic functions and  denotes the order of the associated component in
the expansion. According to (13) and the chain rule in (7), the asymptotic expansions of strain (10) and
the strain rate can be expressed as

;       (14)

where, with the definition of symmetric displacement gradients

    and    ,      (15)

the strain and strain rate components for various orders of  in (14) are given as:

,    ,      (16)

and 

(17)

Consequently, the expansion of the stress field is obtained by substituting the expansions in (15) into
the constitutive equation (9), which gives
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Similarly, the expansion of the heat flux is obtained by using (12) and (13) such that

(20)

where

   and    ,     (21)

Having defined the asymptotic expansions for the mechanical and thermal fields, the equation of
motion (8) and the energy equation (11) can be stated in terms of two sets of equations with increasing
order of  starting from  for the energy equation and  for the equation of motion. Solv-
ing these equations successively yields the  initial-boundary value problem and the homoge-
nized constitutive equations.

2.3.1   and  equations 

We first consider the  energy equation

(22)

Due to symmetry and positivity of the viscosity tensor  as illustrated by equation (22), along with
equations (17) and (19), leads to 

;            (23)

Since the initial conditions are non-oscillatory it implies  and the first equation in
(23) gives , i.e.,  is independent of 

(24)

With (23), it can be easily shown that the  order equation of motion and energy equation are
automatically satisfied.

2.3.2   equation 

The  order equations take the following form:
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(25)

Integrating the first equation in (25) over the unit cell domain and making use of the -periodicity of
 and the -independence of  as shown in (24), as well as the non-oscillatory initial conditions,

yields

           (26)

Apparently,  is independent of fast spatial and temporal variables and thus it represents the macro-
scopic displacement field while its symmetrical gradient  represents the macroscopic strain field.
With this in mind along with (17) and (19), the  order equation of motion in (25) is reduced to

(27)

which can be further reduced to  due to the fact that  is symmetric and positive defi-
nite and  is -periodic. Due to the non-oscillatory initial conditions it follows that

 (28)

indicating that  is independent of . Based on (26) and (27), the following identities for the strain
and stress fields can be identified:
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Thus the first non-vanishing terms in the expansion of strain, strain rate and stress fields are all 
order.

As for the  order energy equation in (25), the simplified form can be obtained by exploiting
(21) and (29) which yields 
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2.3.3   equation 

With the solutions obtained from the lower order equations, (29) and (31), the  order equations
take the following form:

(32)

We first consider the  order energy equation. Averaging it over the unit cell domain and utiliz-
ing the -periodicity of  and -independence of , we have

(33)

Thus,  is independent of the fast varying variables and can be viewed as the macroscopic tempera-
ture change

Along with (21) and (33),  order energy equation turns into
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where  is Kronecker delta. Equation (36) along with the corresponding periodic boundary condi-
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equation (see, for example, [9]). Upon the solutions of (36) and (35),  order heat flux defined in
(21) can be written as
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We now consider  order equation of motion in (32). Using the same considerations as for equa-
tion (25) and recalling that  is independent of , the  order equation of motion provides

(38)

It can be seen that  is independent of the fast varying variables. Consequently, the  order
equation of motion, combined with definitions in (17) and (19) as well as the relations in (26) and (33),
turns into

(39)

According to (26) and (33), we conclude that ,  and  represent the macroscopic strain,
strain rate and temperature fields which are independent of  and . To solve (39) for  in terms
of these macroscopic response quantities, we recall that  and  have been assumed to be ther-
mally sensitive in the present work. Following [2] and noting that our attention is restricted to small
temperature changes in comparison with the initial temperature , the thermally sensitive material
properties are defined as
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As stated in Section 2.1 the thermal expansion coefficient  is assumed to be independent of temper-
ature change, i.e., . Since  all the quantities in (39), except for ,
are known to be independent of . It follows that  should be also independent of . Following
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mined by the energy equation (evolution law) we introduce the following decomposition
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(42)

where  and  denote the symmetric gradient of  and  with respect

to , i.e. 

(43)

To solve for  and  as well as for the temperature change induced macroscopic
response  and , we start by substituting (42) into (39), which yields 

(44)
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these two local concentration functions can be evaluated by the following two linear unit cell problems
obtained from (44) when  so that  and :
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proved that  and  are polarization functions whose integrations over the unit cell domain
vanish due to the periodicity. The temperature change induced macroscopic response fields,  and
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(48)

and the spatial averaging operator  is defined as 

(49)

where  is the volume of the unit cell. The solution of  from (47) is a history-dependent func-
tion which leads to the long-term fading memory in the macroscopic constitutive equation. In contrast
to the long-term memory induced by the classical spatial homogenization process [6][9][13], which
involves solving an initial-boundary value problem in the unit cell domain (see (A16) in Appendix),
the present long-term memory is obtained by solving the first order initial value problem at each
Gauss-point in the macro-domain. 

To this end, (42) can be expressed in a concise form as

(50)

where 

(51)

Finally, we remark that the time-dependence of these four parameters is due to the temperature-depen-
dence of  and .

2.3.4   equation 

The  order equations of motion and energy, along with (26) and (29), can be written as
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(52)

where the  order stress  and strain rate  can be obtained from (17), (19), (38) and (50)
which gives 

(53)

It can be seen that both  and  are independent of . 

For the  order equation of motion in (52), the volume average over the unit cell domain provides

(54)

where the macroscopic stress is determined by the homogenized constitutive equation

(55)

and the homogenized coefficients are given by

(56)

The  homogenized energy equation is obtained by averaging the second equation in (52) over
the unit cell domain and making use of (33) and (37)

(57)

where  is given in (53);  is the homogenized thermal conductivity given by

 (58)
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and the average volumetric specific heat  is defined as

(59)

Finally, we remark that the initial and boundary conditions for the components in asymptotic expan-
sions are defined to satisfy the imposed conditions of the source problem defined in Section 2.2. Thus
the initial and boundary conditions for the  components coincide with those imposed on the
source problem, while the components of higher order of  follow trivial initial and boundary condi-
tions. 

3.0  Validity of the Homogenized Solutions

In the previous section we have shown that the extra long-term memory in the homogenized constitu-
tive equation (55) can be obtained by solving a first order initial value problem in the macroscopic
domain. Therefore, the proposed homogenized constitutive model (55) offers significant computa-
tional advantages by eliminating the need for evaluating the local initial-boundary problem associated
with the long-term memory in homogenization processes [6][13]. 

Despite the remarkable simplicity of the present model, it is important to investigate under what cir-
cumstances the fast temporal scale exists and the homogenized solution is valid. Recall that the
homogenized solution obtained in Section 2.3 is based on the assumption . We have inves-
tigated other relations between the temporal and spatial scales and results of these findings are summa-
rized in Table 2. The derivation details corresponding to various combinations of multiple spatial and
temporal scales are presented in Appendix. It is shown that once the fast temporal scale in mechanical
fields exists, the present solution is unconditionally valid; the multiple temporal scales in thermal
fields have no effect on the  homogenized solutions. On the other hand, when the fast temporal
scale does not exist in mechanical fields, our approach is not valid and the homogenized solutions take
the classical form obtained by spatial homogenization only [6][9].

TABLE 2. Validity of the homogenized solutions (m, n = 1,2,3...; )
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The existence of fast varying temporal scale is determined by the characteristic temporal length of
response fields and material itself. The intrinsic temporal scale can be estimated by requiring the two
major terms in the equation of motion (8), i.e. elastic and viscous contributions, to be of the same
order, which yields

(60)

where  means the norm of ;  is the characteristic length of macroscopic reference time
scale. Physically, the ratio defined in (60) characterizes the rate of creep behavior. Note that the ther-
mal dilation effect is typically very small and inertial force is assumed to be not in dominance.

For the energy equation, we denote the characteristic length of the intrinsic temporal scale in thermal
fields as . To quantify , we require the first two terms in the energy equation (11), i.e. the specific
heat increase and thermal conductivity term, are of the same order, which yields

(61)

where  represents the heat front advance after time elapse . Then, we can infer by such reason-
ing that, when , the heat front has swept through the unit cell so that all the heat fluctuations
generated before the start of  has been smoothed out in the unit cell, and thus the homogenized ther-
mal fields could be reached provided that no more heat is generated during . In this sense,  can be
approximated as

(62)

4.0  Numerical Examples

As shown in Figure 1, we consider a single ply of unidirectionally reinforced fibrous composite sub-
jected to the uniform pressure. The fibers are assumed to be aligned in  direction and the ply is sup-
ported by a rigid foundation. We further assume that the thickness (  in  direction) of the ply is
very small compared with the size in other two dimensions (  and  directions). Thus the thermo-
mechanical response of the composite ply can be described by a stack of unit cells along  direction
subjected to the periodic boundary conditions in  and  directions. The finite element model of the
unit cell is shown in Figure 1. 
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Figure 1. Composite plate and the associated unit cell

We assume that each phase in the unit cell is isotropic and homogeneous. The volume fractions of the
two phases are denoted by  for phase on  and  for phase on , such that  and

. Material properties of each phase are denoted as follows: Young’s moduli at initial
temperature , Poisson’s ratio at initial temperature , viscosity at initial temperature , ther-
mal expansion coefficient , thermal conductivity , density , and specific heat per unit mass .
The material properties are summarized as follows:

Fiber: , , , ,

 , , , 

Matrix: , , , ,

   , , , 

We assume that the thermal sensitivities for elastic stiffness and viscosity are: 
and . The adiabatic boundary conditions are imposed on the ply, and the body
force  and the heat supply  are set to zero. The initial temperature  is assumed to be
uniform throughout the ply. As shown in Figure 1, the displacement boundary condition in the form of 

  (63)

is applied in  direction on the free boundary, where  and  are the loading parameters. 
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In this example, the inertia force is set to be very small in comparison with the elastic and viscous
effects so that the quasi-static problem is considered. The reference solution obtained by deploying a
very fine mesh in the three-dimensional strip is compared against the homogenized solution. The sim-
ulation results of one-cycle 10-Hz loading are plotted in Figure 2 and Figure 3, where the loading his-
tory and the corresponding comparisons between the reference solutions and the homogenized
solutions of end force, temperature change and stress component are illustrated. It can be seen that the
dilation effect offsets the temperature increase in the unloading phase. In Figure 4, the distribution of
the residual stress  in the unit cell right after the one-cycle loading, which is reconstructed from the
homogenized solution (53), compares well with the reference solution.

 

Figure 2. Loading history and the end force obtained with the homogenized and reference solutions
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Figure 3. Temperature and stress  obtained with the homogenized and reference solutions

Figure 4. Distribution of the local residual stress  right after the loading
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5.0  Summary and future research directions

A computational framework for analyzing multiple physical processes interacting at multiple spatial
and temporal scales is developed and applied to the coupled thermo-viscoelastic composites. Rapidly
varying spatial and temporal scales are introduced to capture the oscillations induced by local hetero-
geneities at diverse time scales. The homogenized initial-boundary value problem along with the
homogenized constitutive equations are derived using the double scale asymptotic analysis in space
and time. It is shown that the additional long-term memory induced by homogenization process can be
obtained by solving a first order initial value problem as opposed to solving initial-boundary value
problem in the unit cell domain in the case of the classical spatial homogenization.

We have identified two diverse time scales resulting from the input excitations and rate dependent
material behavior. Further investigation reveals higher order terms in the asymptotic expansions grow
unbounded in time and will affect the accuracy of the first order homogenized solutions when the
observation time window is long enough. A regularization scheme to suppress this secular time depen-
dence has been recently proposed for wave propagation problems in elastic heterogeneous solid [3].
The applicability of this regularization scheme for the present model will be investigated in the future
work.
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Appendix

In this section, we summarize the results of  homogenized solutions corresponding to different
combinations of spatial and temporal length scales as shown in Table 2. We start by introducing the
averaging operator in the time domain with fast temporal oscillating variable . According to [5], it
requires

 exist and be finite (A1)

In the Laplace transformed domain, (A1) is equivalent to

 exist and be finite (A2)

where  is the variable in the transformed domain corresponding to ;  is Laplace transformation
of function .

A.1  Thermal Fields: 

A.1.1 Mechanical Fields: 

The  order equation of motion and energy equation can be expressed as

(A3)

O ε0( )

τ

 1
τ̂
--- 

τ̂ ∞→
lim f τ( ) τd

0

τ

∫

 s f̃ s( )
s 0→
lim

s τ f̃ s( )
f τ( )

εl εn=  ετ, ε=

εl εm=  ετ, ε=

O ε0( )

ρεu··i
0 σij xj,

0 σij yj,
m bi+ +=

λε θ·
0

θ,τ
1+( ) qi xi,

0 qi yi,
1 Vijkl

ε e· ij
0 e·kl

0 T0βij
ε e· ij

0–+ +=
21



where  and  are both independent of the fast varying variables and represent the macroscopic dis-
placement and temperature change; the  order stress  and strain rate  take the following
form

(A4)

where  is obtained by solving a linear unit cell problem with periodic boundary conditions

(A5)

Following (39) and (50), the solution of (A5) is given as 

(A6)

where the four time-dependent parameters  and  are defined in (51). To this
end, we conclude that the present local constitutive equation (A4) is identical to (53). Making use of
the homogenization process for  equation of motion in Section 2.3.4 leads to the same homoge-
nized equation of motion:

(A7)

and the associated homogenized constitutive equation

(A8)

where the homogenized coefficients in (A8) are defined in (56).

For the  energy equation, the heat flux  is determined by

(A9)

where  is obtained by solving a linear unit cell problem
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   and   (A11)

where  is defined in (36). The homogenized energy equation is obtained by applying the spatial
and temporal averaging processes, (49) and (A2), to the second equation in (A3) and making use of
(A11) so that

(A12)

where all the quantities have the same definitions as those in (57).

A.1.2 Mechanical Fields: 

Comparing this case to Section A.1.1, the only difference is in the  order equation of motion

(A13)

where  and  are both independent of the fast varying variables and represent the macroscopic dis-
placement and temperature change;  is defined in (A4). Since  vanishes due to the temporal
averaging (A2), and both  in (A3) and  in (A13) have no contribution to the homogenized
equation of motion due to local periodicity, the  order homogenized equations in the present
case are identical to those in Section A.1.1.

A.1.3 Mechanical Fields: 

The  order equation of motion and energy equation can be expressed as
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the following form
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(A16)

(A16) is in the similar form as those obtained by spatial homogenization [6][9][11]. For the 
energy equation, the heat flux  is determined by (A11). The homogenized energy equation has the
same form as (A12), but the definition of  follows (A15). In this case, it is shown that the homoge-
nized solutions obtained in Section 2.3.4 are not valid.

A.2  Thermal Fields: 

A.2.1 Mechanical Fields: 

In this case, the  order equation of motion and its homogenized solutions are the same as those
in Section A.1.1. For the  energy equation, 

(A17)
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In this case, the  order equation of motion and its homogenized solutions are the same as those
in Section A.1.2, while the  order energy equation and its homogenized solutions are the same
as those in Section A.2.1.

A.2.3 Mechanical Fields: 

The homogenized equation of motion and energy equation in this case are the same as those obtained
in Section A.1.3. Our solutions in Section 2.3.4 are not valid in this case.

A.3  Thermal Fields: 

A.3.1 Mechanical Fields: 

In this case the  order equation of motion and its homogenized solutions are the same as those
obtained in Section A.1.1. The  order energy equation can be obtained by removing  in (A5)
and the homogenized energy equation is the same as that in Section A.1.1 since  vanishes due to
temporal averaging.

A.3.2 Mechanical Fields: 

In this case the  order equation of motion and its homogenized solutions are the same as those
obtained in Section A.1.2. The  order energy equation can be obtained by removing  in (A5)
and the homogenized energy equation is the same as that in Section A.1.1.

A.3.3 Mechanical Fields: 

Similar to Section A.2.3, our homogenized solutions in Section 2.3.4 are not valid in this case.

O ε0( )
O ε0( )

εl εm=  τ0 tr⁄ 1≥  ,

εl εn=  τ0 tr⁄ 1≥  ,

εl εm=  ετ, ε=

O ε0( )
O ε0( ) θ,τ

1

θ,τ
1

εl ε=  ετ, εm=

O ε0( )
O ε0( ) θ,τ

1

εl εm=  τ0 tr⁄ 1≥  ,
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