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Abstract: Nonlocal dispersive model for wave propagation in heterogeneous media is derived from the
higher-order mathematical homogenization theory with multiple spatial and temporal scales. In addition to
the usual space-time coordinates, a fast spatial scale and a slow temporal scale are introduced to account for
rapid spatial fluctuations of material properties as well as to capture the long-term behavior of the homoge-
nized solution. By combining various order homogenized equations of motion the slow time dependence is
eliminated giving rise to the fourth-order differential equation, also known as a “bad” Boussinesq problem.
Regularization procedures are then introduced to construct so called “good” Bouinesq problem, where the

need for  continuity is eliminated. Numerical examples are presented to validate the present formulation.

1. Introduction

   The use of multiple-scale expansions as a systematic tool of averaging can be traced to
Sanchez-Palencia [1], Benssousan, Lions and Papanicoulau [2], and Bakhvalov and
Panasenko [3]. The role of higher order terms in the asymptotic expansion has been inves-
tigated in statics by Gambin and Kroner [4], and Boutin [5]. In elastodynamics, Boutin
and Auriault [6] demonstrated that the terms of a higher order successively introduce
effects of polarization, dispersion and attenuation. In [6][7] a single-frequency time
dependence was assumed prior to the homogenization process.

  A general setting for the initial-boundary value problem in heterogeneous media has
been presented by the first two authors in [8][9], where it has been demonstrated that
while the high-order homogenization is capable of capturing dispersion effects for rela-
tively short observation time window, it introduces secular terms which grow unbounded
with time. The problem of secularity has been successfully resolved with the introduction
of slow temporal scales to capture the long-term behavior of the homogenized solution
[8][9].

   The primary objective of the current manuscript is to develop a nonlocal approach inde-
pendent of slow time scale considered in [8][9]. We show that by adding various order
homogenized equations of motion resulting from the higher mathematical homogenization
in space and time [8][9] the slow time scale dependence can be eliminated. The resulting
equation, also known as “bad” Boussinesq equation, contains a fourth-order spatial deriv-
ative term and has no solution for high frequency load excitations. This problem is allevi-
ated by approximating the fourth-order spatial derivative with a mixed spatial-temporal
derivative and thus yielding the so called “good” Boussinesq equation, which is well-
posed. It contains only the second-order spatial-temporal derivatives and thus eliminating
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the need for  continuous elements. The weak formulation and the finite element
approximation leads to the semi-discrete equations of motion, which are then integrated
by using standard time integration schemes. 

   The outline of the manuscript is as follows. Problem description and high-order homog-
enization with multiple space-time scales are reviewed in Section 2 and 3, respectively.
Nonlocal models are derived in Section 4. Finite element procedures for solving the non-
local equations of motion are formulated in Section 5. Section 6 gives numerical exam-
ples.

2. Problem Description

   We consider wave propagation normal to the layers of an array of periodic elastic bilam-

inates with  as a characteristic length (see Figure 1).

Figure 1: A bilaminate with periodic microstructure 

The governing equation for the elastodynamics problem is given by

(1)

with appropriate boundary conditions on the domain boundary  

,     (2)

and initial conditions

,     (3)

where  represents the displacement field; , , A and  the mass

density, elastic modulus, cross-sectional area and external load, respectively;  and

C
1

l

ρ x ε⁄( )u tt; E x ε⁄( )u x;{ }
x;

– 0=

∂L

u 0 t,( ) 0= u x; L t,( ) q t( )
E L( )A
----------------=

u x 0,( ) f x( )= u t; x 0,( ) g x( )=

u x t,( ) ρ x ε⁄( ) E x ε⁄( ) q t( )
( ) x;



3

 denote differentiation with respect to space and time, respectively;   in (1)

denotes the rapid spatial variation of material properties. The goal is to establish an effec-
tive homogeneous model in which local fluctuations introduced by material heterogeneity
do not appear explicitly and the response of a heterogeneous medium can be approximated
by the response of the effective homogeneous medium. This is facilitated by the method of
multiple scale asymptotic expansion in space and time.

3. Asymptotic Analysis with Multiple Space-Time Scales

     Under the premise that the macroscopic domain  is much larger than the

unit cell domain , i.e. , it is convenient to introduce a micro-
scopic spatial length variable y [6][13] such that

(4)

where ,  and c are the macroscopic wavelength, the circular frequency, the wave
number and the phase velocity of the macroscopic wave, respectively. In addition to the
fast spatial variable, we introduce multiple time scales [8][9]

,     (5)

where  denotes the usual time scale and  is a slow time scale. Since the response quan-

tities u and  depend on x, y,  and , a multiple-scale asymptotic expansion is employed
to approximate the displacement and stress fields

 ,      (6)

   Asymptotic analysis consists of inserting asymptotic expansions (6) into the governing
equation (1), identifying the terms with equal power of , and finally, solving the resulting
problems.

   Following the aforementioned procedure and expressing the spatial and temporal deriv-
atives using the chain rule

,     (7)

we obtain a series of equations in ascending power of  starting at . We successively
equate the factors of each of these powers to zero. 

3.1  homogenization

   At , we have
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(8)

   The general solution to the above equation is

(9)

where  and  are functions of macro coordinates. To ensure periodic-

ity of  over the unit cell domain  (  denotes quantities in the stretched coor-

dinate system y),  must vanish, implying that the leading-order displacement depends

only on the macroscale

(10)

   At , the perturbation equation is

(11)

   Due to linearity of the above equation, the general solution to  is

(12)

   Substituting (12) into (11) yields

(13)

   For a -periodic function , we define an averaging operator

(14)

   The boundary conditions for the unit cell problem described by (13) are

                (a) Periodicity: ,    

                (b) Continuity: ,       

(c) Normalization:    (15)

where  is the volume fraction of the unit cell;  is the jump operator and

E y( )u0 y,{ }
y,

0=

u0 a1 x η τ, ,( ) 1
E ζ( )
----------- ζ a2 x η τ, ,( )+d

y0

y0 y+

∫=

a1 x η τ, ,( ) a2 x η τ, ,( )

u0 l̂ l ε⁄= ˆ( )

a1

u0 u0 x η τ, ,( )=

O ε 1–( )

E y( ) u0 x, u1 y,+( ){ } y, 0=

u1

u1 x y η τ, , ,( ) U1 x η τ, ,( ) H y( )u0 x,+=

E y( ) 1 H y,+( ){ } y, 0=

l̂ G x y η τ, , ,( )

G〈 〉 1

l̂
---- G x y η τ, , ,( ) yd

l̂

∫=

u1 y 0=( ) u1 y l̂=( )= σ0 y 0=( ) σ0 y l̂=( )=

u1 y α l̂=( )[ ] 0= σ0 y α l̂=( )[ ] 0=

u1 x y η τ, , ,( )〈 〉 U1 x η τ, ,( )= ⇒ H y( )〈 〉 0=

0 α 1≤ ≤ [ ]



5

,       (16)

   Equation (13) together with the boundary conditions (15) define the unit cell boundary
value problem from which  can be uniquely determined:

,    (17)

      At , the perturbation equation is

(18)

   Applying the averaging operator defined in (14) to the above equation and accounting
for the periodicity of , yields the macroscopic equation of motion at :

 (19)

where

,      . (20)

3.2  homogenization

    is determined from the  perturbation equation (18). Substituting (12) and (19)

into (18) gives

(21)

where

(22)

   Linearity suggests that  may be sought in the form

(23)

   Substituting the above expression into (21) yields

(24)

   The boundary conditions for the above equation are: periodicity and continuity of 
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mined by solving the unit cell boundary value problem defined by (24). For details we
refer to [8]. Once  is found, we can calculate

,       (25)

   Next we consider the  equilibrium equation

(26)

   Applying the averaging operator to (26) and exploiting periodicity of , we derive the

macroscopic equation of motion at 

(27)

3.3  homogenization

    is determined from  perturbation equation (26). Substituting (12), (23) into (26)

and making use of the macroscopic equations of motion (19) and (27), we have

(28)

   Owing to linearity of (28), the general solution to  is as follows

(29)

   Substituting (29) into (28) gives

(30)

   The above equation, together with periodicity and continuity of  and  as well as the

normalization condition , fully determine .

   Consider the equilibrium equation of :

(31)

   Applying the averaging operator to (31) and taking into account periodicity of  yields

(32)

   Substituting (23) and (29) into (32) yields
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(33)

   Inserting the expressions for  and  into (33) and averaging over the unit cell
domain yields the macroscopic equation of motion at the second order:

(34)

where

(35)

    characterizes the effect of the microstructure on the macroscopic behavior. It is pro-

portional to the square of the dimension of the unit cell . Note that for the homogeneous

material,  or , and in the case of identical impedance of two material con-

stituents  ( ),  vanishes. 

Remark 1: It can be easily shown that in the case of equal mass density, , the fol-

lowing identity holds: 

(36)

where  

(37)

   The significance of (36) is that   can be evaluated by averaging over the leading-order

unit cell solution without consideration of the higher-order boundary value problem in the
unit cell. This feature will greatly simplify numerical computations in multi-dimensional
case [20].

4. Nonlocal models

   The macroscopic equations of motion are stated in (19), (27) and (34). The initial and
boundary conditions for the above equations of motion are prescribed as 

                                                                    ICs:   ,                                                                                                                        
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                    BCs: ,     

   ,           (39)

   The above initial-boundary value problem is well-posed. From the equation of motion
(27) and the initial and boundary conditions (38) and (39), we can readily deduce that

. 

   In [9] we have shown that the dispersive solution can be obtained by solving the leading-
order macroscopic equation of motion (19) subjected to the secularity constraint

. (40)

   The above formulation necessitates simultaneous solution of two sets of partial differen-
tial equations with two temporal coordinates. In this section we will derive an alternative
formulation in attempt to eliminate the dependence on the slow time coordinate. 

    We start by defining the mean displacement  as

(41)

    Adding (19), (27) and (34), and neglecting terms of order  and higher, we obtain
an equation of motion for the mean displacement

(42)

where  denotes the second full time derivative of the mean displacement. Equa-

tion (42) is fourth-order in space. It necessitates four boundary conditions to define a well-
posed boundary value problem. However, for the problem under consideration, there are
only two physically meaningful boundary conditions for the mean displacement. Mathe-
matically similar equation to (42) arises in fluid dynamics of shallow water theory and
crystal-lattice theory, and is often known as a “bad” Boussinesq equation (cf. [16][17]).

   To study the characteristics of the so called “bad” Boussinesq equation (42), we consider
a model problem with an initial disturbance in the displacement field at one end and load
free at the other. We compliment two artificial boundary conditions

,      (43)

The solution to the above initial-boundary value problem can be obtained in close form:
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U·· U tt;=
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(44)

where

,      , (45)

,     (46)

   Solution (44) is considered “bad” since for higher order terms in the Fourier series the
value in the square root is negative making the solution meaningless. 

In comparison, the exact solution of macroscopic equation of motion (34) subjected to
secularity constraint (40) is given as [9]:

(47)

The Taylor’s series expansion of square root term in (44) is given as:

(48)

Note that  and thus if  with  then the

higher order terms in (48) can be neglected and the nonlocal approximation coincides with
the exact solution of (34) and (40). Moreover, if the excitation function is of low fre-

quency only, i.e.  for all n for which  is of order one, then the two for-

mulations will also provide similar results. 

    Elimination of high frequency excitation modes can be also accomplished by using a
sufficiently coarse spatial discretization (or coarse finite element mesh) for numerical
approximation of the nonlocal initial-boundary value problem. 

Remark 2: It is appropriate to note that the nonlocal equation of motion (42) contains the
information on the characteristic length. This can be seen by comparing the classical non-
local continuum theory (see for example [18]) with the current model. Assuming constant

weight function the spatial derivative of the nonlocal strain, , [18] is given by:
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(49)

where  is a characteristic size in the physical domain. Matching the coefficients of the 

fourth order term in (49) and (42) yields . In the case of volume fraction 

 equal to 0.5 the relation between the characteristic size and the unit cell dimension is 
given as

(50)

An upper bound of this ratio (obtained by maximizing the ratio with respect to  and

) is equal to . It can be easily shown that in the case of weight function given as

 the upper bound of the ratio  is approximately 30% higher. For
example, in concrete it has been observed [19] that the characteristic size is approximately
three aggregates. Assuming that a typical volume fraction is approximately 0.5, the char-
acteristic size approximately contains 1.5 unit cells. This agrees well with our model
which predicts the characteristic size to be in the range of 1.4 to 1.8 unit cells depending
on the choice of weight functions.   

   To this end we propose an alternative nonlocal approach by which the second order spa-
tial derivative (42) is approximated by a second order temporal derivative by exploiting
the following relation (for details see [20])

(51)
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   Note that equation (52) is second-order in space, and thus two boundary conditions are
sufficient. Since the highest spatial derivative appearing in this equation is second order

the need for  continuity is eliminated.

   Equation (52) can be solved analytically for the aforementioned model problem by sep-
aration of variable, which yields:

(54)

   It can be readily observed that solution (54) is well-behaved and convergent with
increase of terms in the Fourier series. Comparison to the source problem in a heteroge-
neous medium will be conducted in Section 6. 

5. Numerical Procedures

   In this section, we focus on the finite element implementation of the “good” Boussinesq
equation (52). Based on the usual weighted-residual approach, the weak statement of the

problem is as follows: For  , find , such that

                          

(55)

and

,     (56)

for all admissible test functions , where

(57)

(58)

with  denoting the set of square-integrable functions over . 

   Introducing the finite element approximation into the above weak formulation leads to
the semi-discrete equations of motion
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(59)

where  is the vector of nodal values of displacements and  is the load vector;  and

 are the mass and stiffness matrices, respectively: 

,        (60)

,         (61)

(62)

where ,  and  are element mass matrix, stiffness matrix and shape function,
respectively.

   Equation (59) can be integrated in the time domain by using standard time integration
schemes.

Remark 3: For (62) to be valid the load  must be twice differentiable in time or
approximated as such. Based on (35) it can be easily shown that

(63)

where  is the time required for the wave to travel through the unit cell. In other words,
for the second term in (62) to be comparable in magnitude to the first term the load period

should be . In the present manuscript attention is restricted to load frequencies

which are significantly larger than  and thus the second term in (62) is neglected.

6. Numerical Results and Discussion

   To validate the proposed nonlocal model, we consider two problems with different load-
ing cases. For each problem, a reference solution of the source problem for heterogeneous
solid is constructed by utilizing a fine mesh with element size comparable to the size of
the microconstituents.

Problem 1: Macro-domain  m; unit cell  m composed of two material

constituents with  GPa,  GPa,  Kg/m3,  Kg/m3;
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=
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volume fraction . At  m an initial disturbance  in displacement field

                  

is applied;  and  denote the Heaviside step function; ,  and  are

the magnitude, the location of the maximum value and the half width of the initial pulse,
respectively. The pulse is similar in shape to the Gaussian distribution function.

 

Figure 2: The response with an initial disturbance in displacement ( ).

α 0.5= x 20= f x( )

f x( ) f0a0 x x0 δ–( )–[ ]2
x x0 δ+( )–[ ]2 1 h x x0 δ+( )–[ ]–{ } 1 h x0 δ– x–( )–{ }⋅=

a0 1 δ4⁄= h x( ) f0 x0 δ

δ 1.4m=
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   The calculated homogenized material properties are:  GPa,  Kg/

m3 and  N. In this case,  and the ratio of impedance of the

two material constituents is . The magnitude of the initial pulse is  m.

   We plot the time-varying displacement at  m in Figures 2 and 3, for the cases of

 m, and  m, respectively. The corresponding ratios between the pulse

width and the unit cell dimension  are 14 and 6, respectively. In each of the figures,
we show three time windows and compare the reference solution of the heterogeneous
solid, the finite element solution predicted by the classical homogenization , and the

analytical and the finite element solutions of the “good” Boussinesq problem.

Figure 3: The domain with an initial disturbance in displacement ( )
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x 30=
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δ 0.6m=
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Problem 2: The size of the domain and that of the unit cell are  m and  m,

respectively. The material properties of the two constituents are  GPa, 

GPa,  Kg/m3, and . The calculated homogenized material

properties are:  GPa,  Kg/m3 and  N. In this case,

. 

Figure 4: The response with an impact load (pulse duration ).

   The bar is subjected to an impact load  at 

m, where  is the duration of the impact pulse,  KN and  is scaled in such a

way that . The time-varying displacements at  m are plotted in Fig-

ures 5 and 6, which correspond to pulse duration  and ,
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respectively. In each of the two figures, there are three responses corresponding to the ref-
erence solution, the finite element solution predicted by the classical homogenization 

and the finite element solution of the “good” Boussinesq equation. 

Figure 5: The domain with an impact load (pulse duration ).

   The phenomenon of dispersion can be clearly observed in Figures 2-5. When the width
of the initial disturbance in displacement is much larger than the unit cell size or the
impact pulse duration is comparatively long, which corresponds to the cases in Figure 2
and Figure 4, the pulse almost maintains its initial shape except for some small wiggles at
the wavefront. In this case, the classical (leading-order) homogenization provides a crude
approximation to the response of the heterogeneous solid. However, when the pulse width
of the initial disturbance is comparable to the dimension of the unit cell or the impact
pulse duration is very short, which are the cases in Figure 3 and Figure 5, the wave

U0

T 15.71µs=
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becomes strongly dispersive and the classical homogenization errs badly. On the other
hand, the nonlocal dispersive model proposed in this paper provides a good approximation
to the response of heterogeneous solid.
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